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Abstract

Recurring vulnerabilities widely exist and remain undetected
in real-world systems, which are often resulted from reused
code base or shared code logic. However, the potentially small
differences between vulnerable functions and their patched
functions as well as the possibly large differences between
vulnerable functions and target functions to be detected bring
challenges to clone-based and function matching-based ap-
proaches to identify these recurring vulnerabilities, i.e., caus-
ing high false positives and false negatives.

In this paper, we propose a novel approach to detect recur-
ring vulnerabilities with low false positives and low false neg-
atives. We first use our novel program slicing to extract vulner-
ability and patch signatures from vulnerable function and its
patched function at syntactic and semantic levels. Then a tar-
get function is identified as potentially vulnerable if it matches
the vulnerability signature but does not match the patch sig-
nature. We implement our approach in a tool named MVP.
Our evaluation on ten open-source systems has shown that, i)
MVP significantly outperformed state-of-the-art clone-based
and function matching-based recurring vulnerability detec-
tion approaches; ii) MVP detected recurring vulnerabilities
that cannot be detected by general-purpose vulnerability de-
tection approaches, i.e., two learning-based approaches and
two commercial tools; and iii) MVP has detected 97 new
vulnerabilities with 23 CVE identifiers assigned.

1 Introduction

Vulnerabilities can be exploited to attack software systems,
threatening system security. Therefore, it is vital to detect and
patch vulnerabilities in software systems as early as possible.
Various techniques have been developed to detect vulnerabil-
ities, e.g., static analysis (e.g., [17, 45, 61, 62, 75]), fuzzing
(e.g., [9, 11, 39, 52, 63, 64, 67, 69, 70]), symbolic execution
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(e.g., [6, 10, 24, 60]) or manual auditing. Several advances
have also been made to automatically patch vulnerabilities
for the purpose of reducing patch deployment delays (e.g.,
[13, 15,25, 47, 73]).

Due to reusing code base or sharing code logic (e.g., similar
processing logic for similar objects in their different usages)
in software systems, recurring vulnerabilities which share the
similar characteristics with each other widely exist but remain
undetected in real-world programs [46, 50, 75]. Therefore, re-
curring vulnerability detection has gained wide popularity, es-
pecially with the increased availability of vulnerabilities. The
scope of this paper is to detect recurring vulnerabilities; i.e.,
given a vulnerability that behaves in a very specific way in
a program, we detect whether other programs may have this
specific behavior. Differently, general-purpose vulnerability
detection techniques (e.g., [1, 2, 41, 44, 77]) leverage the gen-
eral behaviors of a large fraction of vulnerabilities to find
specific instances of these general behaviors in programs.

Existing Approaches. A general idea to detect recurring
vulnerabilities is to match the source code of a target system
with known vulnerabilities; and various approaches have been
proposed (e.g., [28, 34, 38, 40, 41, 50, 56, 65, 77, 78]). Exist-
ing approaches can be classified into clone-based and function
matching-based approaches.

Clone-based approaches (e.g., [28, 34, 38, 50, 78]) consider
the recurring vulnerability detection problem as a code clone
detection problem; i.e., they extract token- or syntax-level sig-
nature from a known vulnerability, and identify code clones to
the signature as potentially vulnerable. Function matching-
based approaches (e.g., [56, 65]) directly use vulnerable func-
tions in a known vulnerability as the signature and detect
code clones to those vulnerable functions. They do not con-
sider any vulnerability characteristics as they are not designed
particularly for recurring vulnerability detection.

However, due to the nature of clone detection and no
consideration of how a vulnerability is fixed, clone-based
and function matching-based approaches fail to differentiate
the potentially small differences between vulnerable function
and patched function, causing high false positives. Moreover,



these approaches fail to detect recurring vulnerabilities whose
vulnerable functions have large code differences from those
of the known vulnerability due to their imprecise vulnerability
signature or pattern, leading to high false negatives.

Challenges. In summary, there are two main challenges in
detecting recurring vulnerabilities with both low false posi-
tives and low false negatives. The first challenge is how to dis-
tinguish already patched vulnerabilities to reduce false posi-
tives. The second challenge is how to precisely generate the
signature of a known vulnerability to reduce both false posi-
tives and false negatives.

Our Approach. To address the two challenges, we propose
a novel recurring vulnerability detection approach, named
MVP (Matching Vulnerabilities with Patches). Specifically,
to address the first challenge, we not only generate a vulnera-
bility signature but also a patch signature to capture how a vul-
nerability is caused and fixed. We leverage the vulnerability
signature to search for potentially vulnerable functions, and
use the patch signature to distinguish whether they are already
patched or not. To address the second challenge, we propose a
novel slicing method to extract only vulnerability-related and
patch-related statements to generate vulnerability and patch
signatures at both syntactic level and semantic level. Besides,
we apply statement abstraction and entropy-based statement
selection to further improve the accuracy of MVP.

Evaluation. We have implemented MVP, and evaluated it
on ten open-source systems with 25,377 security patches. We
compared M VP with two state-of-the-art, most closely related
clone-based approaches (ReDeBug [28] and VUUDY [34]).
The results indicate that M VP outperformed ReDeBug and
VUUDY by improving precision by 74.5% and 75.6% and
recall by 42.4% and 65.8%. M VP discovered 97 new vulner-
abilities with 23 CVE identifiers assigned. We also compared
MVP with function matching-based approaches (Sourcer-
erCC [56] and CCAligner [65]). The results show that MVP
outperformed SourcererCC and CCAligner by improving pre-
cision by 83.1% and 83.3% and recall by 22.5% and 30.6%

Besides, we compared MVP with the-state-of-art learning-
based approaches (VulDeePecker [41] and Devign [77]) and
commercial tools (Coverity [2] and Checkmarx [1]) to demon-
strate the incapability of such general-purpose vulnerability
detection techniques in detecting recurring vulnerabilities.

Contribution. The main contributions of our work are:

e We proposed and implemented a novel recurring vulnera-
bility detection approach by leveraging vulnerability and
patch signatures through our novel slicing technique.

e We conducted intensive evaluation to compare MVP with
four categories of state-of-the-art approaches. MVP signif-
icantly outperformed them in accuracy.

e We found 97 new vulnerabilities in ten open-source sys-
tems with 23 CVE identifiers assigned.

2 Motivation

2.1 Problems

We investigate the similarity among vulnerable function (V),
patched function (P) and target function (7') to illustrate the
problems of existing approaches. P is the result of applying a
security patch on V; and T is a vulnerable function in a target
system under detection. We use Sim(f1, f2) to denote the sim-
ilarity score between function f; and f5.

We used 34,019 pairs of vulnerable functions and their
corresponding patched functions in 25,377 security patches
in ten projects (used in our evaluation), and used Sourcer-
erCC [56] to measure the similarity score of each pair. The
results show that Sim(V, P) is above 70% for 91.3% of pairs.
Therefore, code differences between vulnerable and patched
functions are small in most vulnerabilities. As a result, clone-
based approaches may detect patched function as vulnerable
because they take only vulnerable function as the signature
(without taking patched function into consideration). Func-
tion matching-based approaches identify patched function
as vulnerable if Sim(V,P) is larger than its default similar-
ity threshold (e.g., 70% for SourcererCC [56] and 60% for
CCAligner [65]). In a word, when Sim(V, P) is large, existing
approaches can introduce high false positives.

On the other hand, if Sim(V,T) is small, existing ap-
proaches cannot detect 7. In fact, in all the truly vulner-
able functions detected in our evaluation, 35.1% of them
have a Sim(V, T) of lower than 70% and existing approaches
miss most of them (see Table 3). Specifically, clone-based
approaches take a whole vulnerable function as the signa-
ture, thus it is more likely to miss T whose Sim(V,T) is
small. Function matching-based approaches cannot detect
T as vulnerable if Sim(V,T) is smaller than their default sim-
ilarity threshold (e.g., 70% for SourcererCC [56] and 60%
for CCAligner [65]). In summary, when Sim(V,T) is small,
existing approaches may introduce high false negatives.

2.2 A Motivating Example

To illustrate the limitation of existing approaches and to moti-
vate the idea of MVP, we use a vulnerability in Qcacld-2.0
as a running example. Qcacld-2.0 is an open-source driver for
Qualcomm WLAN, which is widely used in Android phones.
Fig. 1 shows a patch of Qcacld-2.0, which fixes an out-of-
bound access vulnerability in function WDA_TxPacket. The
patch adds a sanitizing check for the local variable vdev_id
at Line 18-22, which is used as an index to access the array
wma_handle->interfaces in Line 28.

Clone-based Approach. For example, ReDeBug [28] uses
pure syntax-level matching to find recurring vulnerabilities.
Given a patch, ReDeBug takes lines prefixed by a “-” and
context information (lines with no prefix) as vulnerable sig-
nature while removing blank lines, braces and comments. If



1diff --git a/CORE/SERVICES/WMA/wma.c b/CORE/SERVICES/

WMA /wma.c
2index 0Ocb2ab8bd..cac414969 100644
3--- a/CORE/SERVICES/WMA/wma.c

4+++ b/CORE/SERVICES/WMA/wma.c
sbool WDA_TxPacket (void *wma_context, wvoid *tx_frame,
eFrameType frmType, tpPESession psessionEntry) {

6 tp_wma_handle wma_handle = (tp_wma_handle) (
wma_context) ;

7 int32_t is_high_latency;

8 u_int8_t downld_comp_required = 0;

9 tpAniSirGlobal pMac;

10 ol_txrx_vdev_handle txrx_vdev;

11 u_int8_t vdev_id = psessionEntry->smeSessionId;

12

13 if (NULL == wma_handle) {

14 printf ("wma_handle is NULL\n");

15 return false;

16 }

17

18+ if (vdev_id >= wma_handle->max_bssid) {

19+ printf ("Invalid vdev_id %u\n", vdev_id);

20 + return false;

21+ }

2+

23 pMac = (tpAniSirGlobal)vos_get_context (

VOS_MOD_ID_PE, wma_context->vos_context);

24 if (!pMac) return false;

25 if (frmType >= HAL_TXRX_FRM_MAX) return false;

26 if (! ((frmType == HAL_TXRX_FRM_802_11_MGMT) || (
frmType == HAL_TXRX_FRM_802_11_DATA)))

27 return false;

28 txrx_vdev = wma_handle->interfaces[vdev_id].handle

29 if(!txrx_vdev) return false;

30 if (frmType == HAL_TXRX_FRM_802_11_DATA) {

31 adf_nbuf_t skb = (adf_nbuf_t)tx_frame;

32 adf_nbuf_t ret = ol_tx_non_std(txrx_vdev,
ol_tx_spec_no_free, skb);

33 if (ret) { // do something }

34 is_high_latency = wdi_out_cfg_is_high_latency (
txrx_vdev->pdev->ctrl_pdev);

35 downld_comp_required = is_high_latency &&
tx_frm_ota_comp_cb;

36 }

37 if (downld_comp_required) { // do something }

38 return true;

3error:

40 return false;

41}

Figure 1: Patch for an Out-of-Bound Access Vulnerability

the signature is found in the target function, the target func-
tion will be identified as vulnerable. In Fig. 1, ReDeBug uses
nearby 3 (by default) lines before and after the patch (Line
15-17 and Line 23-25) to generate the vulnerability signature.
However, since in the patched function, Line 20-22 and Line
23-25 happen to have the same syntax as the vulnerability
signature, ReDeBug mistakenly detects the patched function
as vulnerable.

MVP. In Fig. 1, the root cause of vulnerability is that there
is a missing check for the local variable vdev_id, which is
used as an index to access an array later at Line 28. MVP
builds data flow of the local variable vdev_1id as the semantic
signature. With the help of it, it can detect semantic-equivalent
vulnerabilities whose syntax is slightly changed. The detailed
signature extraction process will be discussed in § 3.2.

1. Extracting Function Signature
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2. Extracting Vulnerability and Patch Signatures

Figure 2: Overview of Our Approach (rounded rectangles rep-
resent inputs (green), intermediate results (yellow), and final
outputs (red), and rectangles represent sub-steps in MVP)

3 Methodology

Fig. 2 shows the overview of MV P, which contains three steps.
The Extracting Function Signature step (§ 3.2) takes a target
system as an input, and generates a signature for each function
in the target system. The Extracting Vulnerability and Patch
Signatures step (§ 3.3) takes a security patch as an input, and
generates a vulnerability signature and a patch signature to
reflect a vulnerability from the perspective of how it is caused
and how it is fixed. The final Detecting Vulnerability step
(§ 3.4) determines whether each function in the target system
is potentially vulnerable by matching its signature with the
vulnerability and patch signatures.

3.1 Definition

This section introduces the key definitions used in our ap-
proach. We first define the function signature as follows.
Definition 3.1 (Function Signature). Given a C/C++ function
f, we define its signature as a tuple ( foyn, frem), Where fiy, is
a set of the hash values of all statements in the function; f.,
is a set of 3-tuple (hy,h,,type) such that h and hy denote
hash values of two statements (i.e., i1, h2 € fiy,), and type €
{data,control} denotes the statement whose hash value is /]
has a data or control dependency on the statement whose hash
value is h,.

fsyn captures the statements of a target function as the syn-
tactic signature. fi.,, captures data and control dependencies
among statements in the function as semantic signature. They
are providing complementary information of a function to
help to improve the matching accuracy.

In the remaining of this paper, we assume that each vulner-
ability is within one function. We use (f,, p,) to denote the
pair of a vulnerable function f, and the patched function p,
after fixing the vulnerability in f,.

Definition 3.2 (Function Patch). Given a pair of functions
(fv, pv)» the function patch P, consists of one or more hunks.
A hunk is a basic unit in patch, which consists of context lines,

c
S
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deleted lines and/or added lines. Deleted lines are lines in the
f, but missing from p,,, while added lines are lines missing in
f» but present in p,. The first and last 3 lines in a hunk and
lines between deleted and/or added lines are context lines.

Given a function pair (f,, p,) and the patch P,, we further
define S;; as the statements in the f, but missing from p,,
Saaq as the statements missing in f,, but present in p,, S,,; as
all statements in f,, Sy as all statements in p,.

3.2 Extracting Function Signature

We extract fy, and f.n, for each function f in three steps as
explained in the next three subsections respectively.

3.2.1 Parsing and Analyzing Function

Given the source code of a target system as the input, we
first apply a robust parser Joern [74] to parse the code and
generate a code property graph which merges abstract syntax
tree, control flow graph and program dependence graph into
a joint data structure. From the code property graph, we first
obtain all the functions in the target system, and then for
each function, we generate its abstract syntax tree (AST) and
program dependence graph (PDG).

3.2.2 Abstracting and Normalizing Function

As developers may reuse code snippets with renamed pa-
rameters/variables, we first perform abstraction to each func-
tion before extracting the signature to avoid false negatives.
Specifically, we identify formal parameters, local variables
and string literals from the AST of a function, and replace
every occurrence of formal parameters, local variables and
string literals respectively with a normalized symbol PARAM,
VARIABLE and STRING, respectively.

There is an exception for format strings in our abstraction;
i.e., instead of replacing a format string with STRING, we only
reserve format specifiers, following the prototype % [f1lags]

[width] [.precision] [length]specifier [3], in a for-
mat string. The reason is that several types of vulnerabilities
are related to format specifiers, such as format string vul-
nerability and stack-based buffer overflow vulnerability. For
example, the patch of a stack-based buffer overflow vulner-
ability CVE-2018-7186 [5] just changed the format string
“protos=%s” to “protos=%$490s”. We abstract these two
string formats to “%s” and “%$490s” respectively.

After abstraction, we apply normalization to each statement
in the function body via removing all comments, braces, tabs,
and white spaces. In this way, our approach becomes tolerant
to changes to code formatting or comments.

3.2.3 Generating Function Signature

To generate the function signature, we first apply a hash func-
tion on each abstracted and normalized statement to compute

(a) Original Function Code

I int count_character (char str[], char target) {

2 printf ("The input string is:");

3 printf (str);

4 unsigned int i, num = 0;

5 for (i = 0; 1 < strlen(str); i++

6 if (str[i] == target)

7 num += 1;

8 printf ("\nTotal count of %c is %d\n", target, num);
9 return num;

10 }

(b) Abstracted Function Code

I int count_character (char PARAM[], char PARAM) {
2 printf (STRING) ;

3 printf (PARAM) ;

4 unsigned int VARIABLE, VARIABLE = 0;

5 for (VARIABLE = 0; VARIABLE < strlen (PARAM);

VARIABLE ++)
6 if (PARAM[VARIABLE] == PARAM)
7 VARIABLE += 1;
8 printf ("%c%d", PARAM, VARIABLE);
9 return VARIABLE;

10 }

(¢) Normalized Function Code

printf (STRING) ;

printf (PARAM) ;

unsignedintVARIABLE , VARIABLE=0;

for (VARIABLE=0; VARIABLE<strlen (PARAM) ; VARIABLE ++)
if (PARAM [VARIABLE ] ==PARAM)

VARIABLE+=1;

printf ("$c%d", PARAM, VARIABLE) ;

return VARIABLE;

(d) Function Signature

L T N Y N

1[b603b5274b77a7e0343a2ceela2bf153 (b603b5),

2 19663da837da5adf57815a71e8c43cc8 (19663d)

3 22d46299807c89d38e4b7cd4allaad26l (22d462),

4 c8f314bf9eb06b4lc2cffc558ab3488d (c8f314),

5 ced8ce953b21675299199dd00dc54acl (ced8ce),

6 c6b080£731106c91040b8ca37a772ec8 (c6b080),

7 4ed4aab522d85d757afcbd2b05ce64041 (4edaab),

8 cdaadbb9d8591ad71d3475ebe23a60d3 (cdaadb)]

9

10[(22d462, c6b080, data), (22d462, 4edaab, data),
11 (22d462, cdaad6, data), (c6b080, 4edaab, data),
12 (c6b080, cdaad6, data), (c8f314, ced8ce, data),
13 (c8f314, ced8ce, control), (ced8ce, c6b080, control)]

Figure 3: An Example of Extracting Function Signature

a hash value. The syntactic signature of a function, f;yy,, is thus
represented as the set of computed hash values of statements.

Then, we extract data or control dependencies between two
statements from the PDG of a function. Each dependency is
denoted as a 3-tuple (hy,hy,type), where h; and hy denote
hash values of two statements (i.e., i1,/ € fy,), and type €
{data,control} denotes the statement whose hash value is /;
has a data or control dependency on the statement whose hash
value is h,. The semantic signature of a function, denoted as
fsems 18 thus represented as a set of extracted dependencies.
Our abstraction and normalization could lose some informa-
tion and lead to false positive in matching results. However,
taking semantic information (i.e., control or data dependency
between statements) into consideration can make up for the
deficiency of abstraction and normalization.

Given the function code in Fig. 3(a), Fig. 3(b) is the result
after our abstraction, where two formal parameters str and
target are replaced with PARAM, two variables i and num
are replaced with VARIABLE, and the string literal at Line 2



is replaced with STRING, while the string literal at Line 8 is
replaced with $c%d because it is a format string. Fig. 3(c) is
the result of our normalization on Fig. 3(b). Finally, Fig. 3(d)
gives the function signature, where Line 1-8 reports fjy, (i.e.,
Line 1 to 8 is the hash value of the statement at Line 1 to 8 in
Fig. 3(c)) and Line 10-13 reports fiep.

3.3 Extracting Vulnerability and Patch Signa-
tures

Given a pair of functions (f, py), and its patch P,, this section

explains how to generate the signatures to capture the key

statements related to vulnerability rather than include all the

statements in f and p. In this way, we have small but accurate

signatures for effective matching.

3.3.1 Identifying Code Changes

We first identify the changed files by parsing the header of a
security patch (i.e., the diff file), and record the commits from
which the vulnerable and patched versions of the changed files
are obtained. Then, to identify the changed functions, we lo-
cate the deleted and added statements and their line numbers
by parsing the diff file, and get all functions and their start
and end line numbers in the vulnerable and patched versions
of the changed files. As mentioned in Definition 3.2, there are
context lines, deleted lines and/or added lines in a patch. If
a statement includes one or more deleted (resp. added) lines,
we regard the statement as deleted (resp. added) statement.
Therefore, a partly modified statement is a deleted statement,
an added statement, or a deleted statement and an added state-
ment. By checking whether the line numbers of deleted (or
added) statements are in the range of the start and end line
number of a function in the vulnerable (or patched) version
of the changed files, we identify all changed functions; and
for each of them, we also extract Sy.; and Suqq, Sy and Spg;.
For example, as shown by the header in Fig. 1, the only
changed file is wma. c, and its vulnerable and patched version
can be obtained from commit Ocb2ab8bd and cac414969.
The line numbers of the three added statements are in the
range of the start and end line number of the function
WDA_TxPacket; and there is no deleted statement. Therefore,
WDA_TxPacket is the only changed function in this patch.

3.3.2 Computing Slices to Changed Code

Neither the changed statements alone (i.e., Sg.; and S,44) nor
all the statements in changed functions (i.e., S,,; and Sp,) can
precisely capture how a vulnerability is caused and fixed. Sy,
and S,44 may miss some statements that are relevant to a vul-
nerability through data or control dependencies; and S,,; and
Spar may include noisy statements that are not related to a vul-
nerability. Intuitively, slicing techniques [59] can be used to
include relevant statements and exclude irrelevant statements;
i.e., we can perform forward and backward slicing on the PDG

1 *sockaddr_len = sizeof (struct sockaddr_atmpvc);
2 addr = (struct sockaddr_atmpvc *)sockaddr;

3+ memset (addr, 0, sizeof (*addr));

4 addr->sap_family = AF_ATMPVC;

5 addr->sap_addr.itf = vcc->dev->number;

6 addr->sap_addr.vpi = vcc->vpi;

Listing 1: The Patch for CVE-2012-6546

of f, (resp. py), using the deleted statements S;,; (resp. the
added statements S,4;) as the slicing criterion.

For example, we set the added statement at Line 18 (i.e,
S1g')in Fig. | as the slicing criterion. The result of backward
slicing includes the Sg, S11 and Sy3, because Sig is data depen-
dent on Sg and S1; and control dependent on S3. The result
of forward slicing includes the statements at Line 1940 as
these statements are controlled by S;g directly/indirectly.

As shown in the above example, when a conditional state-
ment is set as the slicing criterion, the result of forward slicing
could contain too many statements where some of them are
noisy as they are not related to the vulnerability. In fact, it is
common to add a sanitizing check (i.e., conditional statement)
in a security patch. If we include in the result of forward slic-
ing only the statements which the conditional statement con-
trols directly (e.g., S>3 and Sp4 in Fig. 1, which are directly
affected by Sig), vulnerability-related statements (e.g., S23)
are not included, failing to capture the vulnerability. In sum-
mary, if we choose all statements affected by a conditional
statement, we may introduce much noise; and if we choose
statements directly affected by a conditional statement, we
may fail to capture the vulnerability.

Moreover, a patch can be just adding a function call without
using its return value. For example, Listing | shows the patch
for CVE-2012-6546, where a call to the function memset is
added at Line 3 to avoid information leak. If we do not model
the function memset, we cannot know that its first parameter
is changed. However, it is infeasible to specifically model all
function calls. As a result, if a function call statement is set
as the slicing criterion, we only have the backward slicing
result, but get no forward slicing result. Therefore, we fail
to capture the statements which are related to a vulnerability
with a traditional slicing method.

To address previous problems, we propose a novel slicing
method to better capture a vulnerability with less noise than
traditional slicing methods. In detail, we set each statement
in Sge (resp. Sqqq) as the slicing criterion, and (i) perform
normal backward slicing on the PDG of f, (resp. p,), obtain-
ing all statements that have influence on the slicing criterion
with respect to data and control dependencies, and (ii) per-
form customized forward slicing on the PDG of f, (resp. p,)
according to different statement types of the slicing criterion.

o Assignment statement. We conduct normal forward slicing
as there must be data flow from the assignment statement.
For example, if we take S»3 in Fig. | as slicing criterion
and perform forward slicing, S»4 is included.

IFor the ease of presentation, we represent S; as the statement at Line i.



o Conditional statement. We aim to include in the result of
forward slicing only the statements that use the variables
or parameters checked in the conditional statement. To this
end, 1) we conduct backward slicing on data dependencies
in the PDG to obtain the direct source for each variable or
parameter in the conditional statement; e.g., in Fig. 1, the
direct source for the used local variable vdev_id at Line 18
is S11; 2) we set each statement in the previous backward
slicing result as the slicing criterion, and perform normal
forward slicing on data dependencies; e.g., the result of for-
ward SliCing on S11 includes Slg, 519, Szg, 529, S32, S33, S34,
S35 and S37; and 3) only if the previous forward slicing re-
sult is empty, we perform normal forward slicing on control
dependencies.

e Return statement. No dependency exists between the return
value and the statements after the return statement. There-
fore, there is no need for forward slicing. For instance, there
is no need to perform forward slicing on Spq in Fig. 1.

e Others. Other types include function call statements with
its return value not used. Similar to conditional statements,
we conduct forward slicing following the same first and
second steps for conditional statements.

We put the statements in Sge; (resp. Sqqq) and the statements
in their backward and forward slicing results together, denoted
as S (resp. S570). S5 (resp. S57) has the semantically-
related statements of all deleted (resp. added) statements in a

changed function in a security patch.

3.3.3 Generating Vulnerability and Patch Signatures

A target function can be regarded as potentially vulnerable if it
matches the vulnerability signature (i.e., how the vulnerability
is caused) and does not match the patch signature (i.e., how the
vulnerability is fixed). In other words, vulnerability signature
can be used to find potentially vulnerable functions, and then
patch signature can be used to distinguish whether they are al-
ready patched or not. In this way, we can reduce false positives.
Guided by the above principle, we compute the vulnerability
signature (i.e., Vyy, and Vi) and patch signature (i.e., Py,
and Py,,,;) at the syntactic and semantic level as follows.

Viyn = Sgei’ Y (Svur N Sga) )
Viem = {(s1,52,type) | 51,52 € Viyn } 2
Tsem = {(s1,52,2ype) | 51,52 € Sy} 3)
Poyn = Siril”g} \Svul “
Psem = Ts‘em \ vsuelm (5)
vl = {(s1,52,type) | 51,52 € Svur} (6)

We compute Vjy,, by Eq. 1. %} is the statements that are
related to deleted statements, thus it is directly related to how
a vulnerability is caused. However, S5 may not include all
the vulnerable statements, especially when Sj,; is empty (and

hence S} is empty; i.e., there are only added statements

in P,). Therefore, we need to further consider S,,; N S5,
i.e., the vulnerable statements in S,,; which are identified by
slices to added statements. Using Vjy,,, we compute V., by
Eq. 2, where (s1,s2,type) denotes a type € {data,control}
dependency between two statements in V,,. We compute
Py, by Eq. 4, which denotes statements that only exist in
patched function p,. We compute P, by Eq. 3, 5 and 6,
which represents data or control dependencies between the
two statement that only exist in patched function p,. Tsep, 1S
relations between statements in S5, With Py, and Py, we
can tell vulnerable function and patched function apart.

We observe that the number of statements in Vjy,, varies for
different patches. If the number of statements is very large,
Viyn may introduce noise and result in false negatives. For ex-
ample, after we set Sig in Fig. | as the slicing criterion in
our slicing method in § 3.3.2, Vjy, includes S¢, S11, S13, S2s,
S29, 832, 833, 834, S35 and S37. However, there are some noisy
statements (e.g., S35 and S37) in Vjy,, because they are hardly
related to the cause of the vulnerability.

Therefore, we try to remove such noisy statements as many
as possible. Based on our finding from vulnerabilities, the fur-
ther the distance between the deleted/added statements and the
statements in Vj,,, the smaller the correlation between the
statements in Vj,, and the cause of a vulnerability. Hence, we
propose an information entropy-based vulnerable statement
selection method; i.e., we apply information theory [57] to
use the information in each statement in Vjy, to refine V.

Specifically, let the total number of statements be N and the
number of a statement s € Vjy, be n in the target system. Then,
the probability of s’s occurrence in the target system, denoted
as p,is computed as p = . Based on information theory [57],
the amount of information of s, denoted as I(s), is computed
as I(s) = —log(p) = —log(%) =log(¥). Aslog(Y) is in the
range of (0,+4o0) and varies greatly, it is not easy to compare
the information. As log(%) o< %, we use I(s) = % to approxi-
mate /(s), making it in the range of (0, 1]. Then, we compute
the information in Vjy,, denoted as 7, as [ = ¥y, » I(s).

If [ is larger than a maximum threshold ¢/, , meaning that
Viyn includes too many statements that might be noisy, we it-
eratively remove from Vjy,, statements which are farthest from
the slicing criterion (i.e., Sg¢; and/or S,44) on the PDG until /
is less than #/,,, or all statements in Vy, are directly connected
with the slicing criterion on the PDG. Correspondingly, any
dependency that is relevant to the removed statements are ex-

cluded from V,,,.

Finally, for statements in Sger, Viyn, Viems Psyn and Pye, We
apply the same abstraction, normalization and hashing proce-
dures as introduced in § 3.2 on them, and replace the state-
ments with their corresponding hash values in Sge;, Viyn, Vem,
Py, and Py, for the ease of matching in § 3.4.



Table 1: Statistics about Target Systems and Security Patches

[ Target System [[ Version | Line (#) [ Function (#) | Domain [[ NVD #) [ Commit(#) [ Total #) [ Changed Function (#) |
Linux kernel v4.18 18,298,218 435,734 Operating System Kernel 1,628 17,618 18,495 19,904
FreeBSD 12.0 7,460,955 140,163 Operation System Kernel 160 3,656 3,716 7,703
ImageMagick 7.0.8-27 461,843 4,229 Image Processing 79 628 704 915
OpenJPEG 2.3.0 245,113 4,390 Image Processing 17 137 142 309
LibTIFF v4-0-9 82,985 1,413 Image Processing 46 175 193 343
Libarchive v3.3.3 194,050 3,283 Compression 15 141 152 353
Libming 0.4.8 73,888 2,375 Flash Processing 17 39 53 147
Libav 12.3 607,326 11,277 Video Processing 80 763 813 1,467
Asterisk 16.6.0 995,874 19,202 Communication Toolkit 7 556 533 2,080
Qcacld-2.0 le.4.0.4 490,638 7,541 WLAN Driver 44 561 576 1,157
[ Total I — [ 28910890 [ 629,607 | — [[ 2093 [ 24274 | 25377 ]| 34,378 |

3.4 Detecting Vulnerability through Matching

Given the function signature (fiyn, fsem) of every function in
a target system as well as the deleted statements Sy,;, the vul-
nerability signature Vjy,, and Vi, and the patch signature Py,
and P, in each changed function in a patch, we determine
whether a function in the target system is potentially vulnera-
ble based on the principle that its signature matches the vul-
nerability signature but does not match the patch signature.
Specifically, a target function is potentially vulnerable if it
satisfies the following five conditions, i.e., C1 to CS.

o CI1. The target function must contain all deleted statements,
if any; i.e., Vh € Syo1,h € fsyn~

e (2. The signature of the target function matches the vulner-

[Visyn N\ fsyn| >1.

. . ‘ VS}‘n |

e (3. The signature of the target function does not match the

1 . s PS u syn
patch signature at the syntactic level; i.e., % <.
n

ability signature at the syntactic level; i.e.,

Syi

o C4. The signature of the target function matches the vulner-

ability signature at the semantic level; i.e., % > 3.

e CS. The signature of the target function does not match the

‘Psemmfxem‘ < t4
|P seml - :

C1 is to ensure that the deleted statements, which are di-

rectly related to how a vulnerability is caused, are retained

. . VonNfsvnl - VeemN s, .
in the target function. WoynOfiml 31y €2 and WeenDsenl 1 €4 re-
‘ stn ‘ |Vsem |

spectively measure the degree of signature matching between
target function and vulnerable function at the syntax and se-

patch signature at the semantic level; i.e.,

mantic level. W in C3 and W in C5 respectively
measure the degree of signature matching between target func-
tion and patched function at the syntax and semantic level.
According to our principle, if we set the threshold in #; and
13 to 1, and the threshold in #, and #4 to O, the matching con-
straint is very strict, which would cause many false negatives.
According to our sensitivity analysis in § 4.4, we believe that
0.8 (resp. 0.2) are empirically good values for #; and 3 (resp.
t; and #4). These thresholds can be configured by users.

4 Evaluation

4.1 Evaluation Setup

Research Questions. Our evaluation aims to answer the fol-
lowing research questions.

e RQI1. How is the accuracy of MVP in detecting recurring
vulnerabilities compared to state-of-the-art approaches?

e RQ2. How is the scalability of MVP in detecting recurring
vulnerabilities compared to state-of-the-art approaches?

e RQ3. How is the sensitivity of the thresholds configurable
in the matching component of MVP?

e RQ4. How does the adoption of statement abstraction and
statement information contribute to the accuracy of MVP?

e RQS. How is the performance of general-purpose vulnera-
bility detection on detecting recurring vulnerabilities?

Dataset. We chose target systems that satisfied the follow-
ing criteria. First, they are C/C++ open-source projects since
MVP is designed to search vulnerabilities in C/C++ source
code. Second, they contain sufficient security patches so that
we can detect whether the vulnerabilities fixed by these secu-
rity patches recur in the corresponding target systems. Third,
they cover diverse application domains so that the generality
of our approach can be evaluated.

Using the three criteria, we chose ten open-source projects.
Table | reports their statistics. The lines of code range from
73,888 to 18,298,218, while the number of functions ranges
from 1,413 to 435,734, which are large enough to show the
scalability of MVP. The application domain includes operat-
ing system kernel, image processing, compression, flash pro-
cessing, video processing, communication toolkit and WLAN
driver, which is diverse enough to show MVP’s generality.

For each project, we collected its security patches from
National Vulnerability Database (NVD) [4]. The number of
collected patches is reported in the column NVD of Table 1.
Moreover, as software companies may tend to patch the vul-
nerabilities secretly instead of applying for CVE [72], a large
number of security patches hide in commit history. To enrich
the dataset, we obtained the commits which contain secretly
patched vulnerabilities from our industrial collaborator. The
number of security commits is reported in the column Commit
of Table 1. The column Total presents the total number of
security patches after removing duplicated cases. The column
Changed Function reports the number of functions that are
changed in security patches. In total, we collected 25,377
security patches, which result in 34,378 changed functions.

State-of-the-Art Approaches. To evaluate the accuracy
of MVP, we selected state-of-the-art approaches from two
categories. First, we selected clone-based recurring vulnera-



bility detection approaches, ReDeBug [28] and VUDDY [34],
because ReDeBug is a common baseline and VUDDY is
the most effective work in this direction. Second, we picked
function matching-based approaches, SourcererCC [56] and
CCAligner [65]. While not designed for recurring vulnerabil-
ity detection, they were compared with MVP to demonstrate
the importance of considering vulnerability characteristics.

Besides, to evaluate the worthwhileness of MVP, we se-
lected state-of-the-art general-purpose vulnerability detection
approaches from two categories. First, we selected learning-
based vulnerability detection approaches, VulDeePecker [41]
and Devign [77], because they are the most effective work to
detect potentially vulnerable functions by learning from vul-
nerable functions. Second, we selected widely-used commer-
cial static analysis-based vulnerability detection tools, Cover-
ity [2] and Checkmarx [1]. While these general-purpose vul-
nerability detection approaches target a different problem than
recurring vulnerability detection, we included them to demon-
strate their incapability in detecting recurring vulnerabilities
and the worthwhileness of MVP.

Evaluation Configuration. We have implemented MVP
in 6,500 lines of Python code. Our experiments were run on a
machine with 2.40 GHz Intel Xeon processor and 32G RAM,
running Ubuntu 14.04. All the state-of-the-art approaches
compared in the experiments were configured with the same
setting as reported in their original papers.

4.2 Accuracy Evaluation (RQ1)

We compare MVP with with state-of-the-art approaches on
the selected ten projects. The following section discuss each
of the comparison in detail. We have conducted evaluation on
six more projects, and the results are listed in Appendix A.
Here, we adopt two widely used metrics, positive predictive
value (a.k.a. precision) and true positive rate (a.k.a. recall),
to evaluate the accuracy of different approaches. Eq. 7 and
8 show the equations to compute precision and recall, where
TP, FP and FN denote true positive, false positive and false
negative, respectively.

TP
Precision = ——— 7
TP+FP
TP
Recall = —— 8
T TPYFN ®

4.2.1 Ground Truth

We evaluated the accuracy by comparing false positives and
false negatives. However, it is impossible to enumerate all vul-
nerabilities in a project. To have a fair ground truth, we used
all the vulnerabilities that were detected by M VP and the state-
of-the-art approaches in our evaluation; i.e., we manually an-
alyzed potentially vulnerable functions detected by each ap-
proach and confirmed whether they were true positives.

2 int6d_t 1;

3 int digit;

4-

5+

6+ if (char_cnt == 0)

7+ return (0);

8+

9 1 =0;

10 while (char_cnt-- > 0

)
11 if (*p >= '0’ && *p <= '7")
Listing 2: The Patch for CVE-2017-14166
4.2.2 Comparison with ReDeBug and VUDDY

We ran MVP, ReDeBug and VUDDY by using each security
patch in a project as an input to search recurring vulnerabil-
ities in the project itself. Table 2 shows the accuracy of the
three approaches. The first and second columns present the
name of each project and the number of vulnerabilities in the
ground truth respectively. The rest columns show the accuracy
measurement for each of the three approaches.

Overall Results. MVP detected 116 potentially vulnerable
functions with a precision of 83.6%. It missed 14 vulnera-
bilities, having a recall of 87.4%. Significantly, MVP had
no false positive in two projects and no false negative in
three projects. On the other hand, ReDeBug and VUDDY
respectively reported 549 and 301 potentially vulnerable func-
tions with a precision of 9.1% and 8.0%. Moreover, ReDeBug
and VUDDY achieved a low recall of 45.0% and 21.7%. In
summary, MVP significantly outperformed ReDeBug and
VUDDY with respect to precision and recall in detecting re-
curring vulnerabilities; i.e., it improved precision of ReDeBug
and VUDDY by 74.5% and 75.6%, while improving recall by
42.4% and 65.8%.

False Positive Analysis for MVP. We analyzed all false
positives in MVP, and summarized three reasons. First, call-
ing context is missing as we do not use inter-procedure analy-
sis when we extract signatures at the semantic level. It caused
9 false positives. This is also one of the reasons for false posi-
tives in ReDeBug and VUDDY. For example, Listing 2 shows
the patch for CVE-2017-14166, which is a heap-based buffer
over-read vulnerability since the parameter char_cnt of func-
tion atol8 in file archive_read_support_format_xar.c
can be zero. Thus, the patch adds a check for char_cnt. MVP
discovered a potentially vulnerable function atol8 in file
archive_write_add_filter_uuencode.c; but its param-
eter char_cnt cannot be zero because there exists a check
before atol8 is called. Inter-procedure analysis can be help-
ful but may hinder the scalability of MVP.

Second, semantic equivalence is not modeled; i.e., there can
be different semantic-equivalent patches to fix a vulnerability,
and thus we may falsely identify a target function as vulnera-
ble when the target function contains a semantic-equivalent
patch. It caused 4 false positives. For example, the patch in
Listing 3 fixed kernel information leakage (i.e., CVE-2018-
17155) in function freebsd32_swapcontext; i.e., it added
a call to bzero to initialize variable uc with zeros before the



Table 2: Accuracy (i.e., True Positive, False Positive and False Negative) of ReDeBug, VUDDY and MVP

Target System GT [ ReDeBug H VUDDY H MVP
’ @ |[ TP [ FP [ FN [ Precision [ Recall [| TP | FP [ FN [ Precision | Recall || TP [ FP [ FN | Precision | Recall |
Linux kernel 32 12 286 20 4.0% 37.5% 9 49 23 15.5% 28.1% 25 6 7 80.6% 78.1%
FreeBSD 11 7 86 4 7.5% 63.6% 2 29 9 6.5% 18.2% 11 2 0 84.6% 100.0%
ImageMagick 16 7 14 9 33.3% 43.7% 0 5 16 0.0% 0.0% 14 2 2 87.5% 87.5%
OpenJPEG 16 10 7 6 58.8% 62.5% 2 1 14 66.7% 12.5% 16 1 0 94.1% 100.0%
LibTIFF 8 6 11 2 35.3% 75.0% 4 4 4 50.0% 50.0% 6 0 2 100.0% 75.0%
Libarchive 5 1 6 4 14.3% 20.0% 1 3 4 25.0% 20.0% 5 3 0 62.5% 100.0%
Libming 3 0 5 3 0.0% 0.0% 1 3 2 25.0% 33.3% 2 0 1 100.0% 66.7%
Libav 6 2 10 4 16.7% 33.3% 2 12 4 14.3% 33.3% 6 1 0 86.7% 100.0%
Asterisk 7 4 30 3 11.8% 57.1% 3 20 4 13.0% 42.9% 5 1 2 83.3% 71.4%
Qcacld-2.0 7 1 44 6 2.2% 14.3% 0 151 7 0% 0.0% 7 3 0 70.0% 100.0%
[ Total H 111 H 50 [ 499 [ 61 [ 9.1% [ 45.0% H 24 [ 277 [ 87 [ 8.0% [ 21.6% H 97 [ 19 [ 14 [ 83.6% [ 87.4% ]
1 if (uap->ucp == NULL) 1 static int ufs_qgcom_phy_cfg_vreg (struct device *dev,
2 ret = EINVAL; struct ufs_gcom_phy_vreg *vreg, bool on)
3 else { 2 |
4+ bzero (&uc, sizeof (uc)); 3 int ret = 0;
ia32_get_mcontext (td, &uc.uc_mcontext, 4 struct regulator *reg = vreg->reg;
GET_MC_CLEAR_RET) ; 5 const char *name = vreg->name;
6 PROC_LOCK (td->td_proc) ; 6 e
7 uc.uc_sigmask = td->td_sigmask; 7 if (regulator_count_voltages(reg) > 0) {
8
Listing 3: The Patch for CVE-2018-17155 9 }
10 }
1 int freebsd32_getcontext (struct thread *td, struct L. . .
freebsd32_getcontext_args *uap) | Listing 6: A Falsely Identified Vulnerable Function
2 -
3 else { 1 @@ -2416,8 +2416,6 @@ static void nfsrvd_mkdirsub (
4 memset (&uc, 0, sizeof (uc)); 2 if (!nd->nd_repstat)
5 get_mcontext32 (td, &uc.uc_mcontext, 3 nd->nd_repstat = nfsrv_lockctrl (vp, &stp, &lop, &
GET_MC_CLEAR_RET) ; cf, clientid, &stateid, exp, nd, p);
6 PROC_LOCK (td->td_proc) ; 4- if (stp)
7 5- FREE ((caddr_t)stp, M_NFSDSTATE);
8 } 6 if (nd->nd_repstat) {
9 return (ret); 7 if (nd->nd_repstat == NFSERR_DENIED) ({
10} 8 NFSM_BUILD (tl, u_int32_t *, 7 * NFSX_UNSIGNED);
9 @@ -2439,6 +2437,8 @@ static void nfsrvd_mkdirsub (
Listing 4: A Falsely Identified Vulnerable Function 10 }
11 }
data field of uc is assigned. The function in Listing 4 is de- vput (vp) ;
: : : 13+ if (stp)
tected as potentially vulnerable as it does not call bzero, but it s FREE ( (caddr_t) stp, M_NFSDSTATE);
is a false positive as it calls memset to initialize uc with zeros. 15 NFSEXITCODE2 (0, nd);
Third, extracted vulnerability or patch signature is not able 1 Fetwr (00

to capture the characteristics of a vulnerability due to the var-
ious root causes of vulnerabilities. This caused 6 false pos-
itives. For example, BUG_ON (!vreg) at Line 7 in Listing 5,
only put after Line 2 and 3, causes a vulnerability. MVP can-
not include it into the vulnerable signature as it does not have
any data/control dependency on the deleted statements at Line
2 and 3. Hence, the function in Listing 6 is falsely detected as
it does not put BUG_ON (! vreg) after Line 4 and 5.

False Positive Analysis for ReDeBug and VUDDY. We
analyzed all the false positives in ReDeBug and VUDDY. For
ReDeBug, apart from missing calling context (leading to 2

1 int ret = 0;
2- struct regulator
3- const char *name

*reg vreg->reg;
vreg->name;

4+ struct regulator *reg;

5+ const char *name;

3 int min_uV, ulA_load;

7 BUG_ON (!vreqg);

8+ reg = vreg->reg;

9+ name = vreg->name;

10 if (regulator_count_voltages (reg) > 0) {

11 min_uV = on ? vreg->min_uV 0;

12 ret = regulator_set_voltage (reg, min_uV, vreg->
max_uV) ;

Listing 5: A Patch for FreeBSD

Listing 7: A Patch for Use After Free in FreeBSD

false positives), there are three major reasons. First, ReDeBug
leverages each of the hunks in a changed function separately
to match potentially vulnerable functions, and thus it suffers
local matching, especially when the hunk has changes only
to blank line, comment, header information, macro, or struct.
It caused 421 false positives. For example, Listing 7 shows a
patch for a use after free vulnerability in FreeBSD; i.e., vari-
able stp is accessed after function FREE is called at Line 35,
and the patch was to move the call to FREE after stp is ac-
cessed. The patch involves two hunks, i.e., one deletes the call
to FREE and the other adds the call to FREE. ReDeBug may
detect a target function matching the second hunk, causing
false positives as stp is not accessed.

Second, ReDeBug uses a sliding window (of 4 lines of code
by default) to match potentially vulnerable functions. As a
result, when the last few added statements are the same to the
statements before the added ones, the patched function might
still be detected as potentially vulnerable. It caused 52 false
positives. The example discussed in § 2.2 is such a case.

Third, ReDeBug does not use the semantics information,



1 @@ -2244,8 +2246,8 @@ set_regs (struct thread *td, struct
reg *regs)

2 tp->tf_fs = regs->r_fs;

3 tp->tf_gs = regs->r_gs;

4 tp->tf_flags = TF_HASSEGS;

5- set_pcb_flags (td->td_pcb, PCB_FULL_IRET);

7+ set_pcb_flags (td->td_pcb, PCB_FULL_IRET);
8 return (0);

Listing 8: The Patch for CVE-2014-4699

1 static int ubifs_dir_release (struct inode *dir, struct
file *file)
{
kfree (file->private_data);
file->private_data = NULL;
return 0;

= T SRR

Listing 10: A Falsely Identified Vulnerable Function
Table 3: Distribution of Vulnerabilities Detected by Different
Approaches w.r.t. Similarity to Vulnerable Functions

[ Approach [ 10%*[ 20%[ 30%[ 40%[ 50%[ 60%[ 70%[ 80%[ 90%[ 100%]

1 int cifs_close (struct inode *inode, struct file *file) { MVP ) 1 7 3 3 10 14 13 76 3
2- cifsFileInfo_put (file->private_data); ReDeBug 0 1 3 ) 1 3 3 1 16 3
3- file->private_data = NULL; VUDDY 0 0 0 0 0 0 2 3 13 6
4 if (file->private_data != NULL) | SourcererCC | 0 | 0 | 0 | 0 | 0 | 0 | 16| 18|30 | 8
5+ cifsFileInfo_put (file->private_data); CCAligner 0 1 2 1 1 3 6 14 29 6
ot file->private_data = NULL; VulDeePecker 0 0 1 0 0 1 1 0 5 0
7 ! Devign 0 0 0 2 4 4 4 6 16 4
$  return (; Coverity o lo|lo| 1t |lo|2]o0o]o]|o0] 1
o} Checkmarx 0 0 0 0 0 0 0 0 0 0

Ground Truth 2 4 7 8 8 10 16 18 30 8

Listing 9: The Patch for CVE-2011-1771

which caused 24 false positives. For example, the statement
at Line 5 was moved out of a conditional statement in the
patch in Listing 8, changing the control dependency. However,
ReDeBug cannot distinguish the vulnerable and patched func-
tions. As we work at the function level and consider semantics
information, we effectively prevent such false positives.

For VUDDY, apart from missing calling context (causing 8
false positives), another major reason is abstraction, which re-
places formal parameters, local variables, data types and func-
tion calls with specific symbols. When some vulnerabilities
are patched by only these abstracted items, VUDDY fails to
distinguish the vulnerable and patched functions as they have
the same hash value after abstraction. Besides, the hash values
of unrelated functions might collide due to over-abstraction in
VUDDY. These caused 269 false positives. For example, the
patch in Listing 9 patched a null pointer dereference, caused
by a missing null check for file->private_data before it
was passed to cifsFileInfo_put. A target function in List-
ing 10 has the same hash value to this vulnerable function due
to over-abstraction, but kfree can receive a null argument.
However, VUDDY detects the target function as vulnerable.
We do not apply abstraction on function calls and data types
while using semantics to reduce such false positives.

False Negative Analysis. We analyzed all the false nega-
tives in each approach. For MVP, it missed 3, 3 and 8 vul-
nerabilities, which were respectively detected by ReDeBug,
VUDDY and our threshold sensitivity analysis in § 4.4. The
reason is that MVP does not work at the hunk level but at
the function level, which can bring noise into extracted signa-
tures. Moreover, it does not apply abstraction on data types
and function calls so that the signature is not generalized
enough to capture some vulnerable cases. However, there is a
trade-off between precision and recall. Our approach tries to
maximize the precision, while maintaining a reasonably high
recall.

For ReDeBug, it applies exact matching and does not apply
abstraction. As a result, some renamed variables or parameters

* x% denotes the similarity score between vulnerable function and its
corresponding matched target function.
may make exact matching fail, which caused 11 false nega-
tives in ReDeBug. Besides, the context information around the
deleted/added statements may be not related to the cause of a
vulnerability, which caused 42 false negatives. Moreover, if
the number of lines in a hunk is less than the sliding window
size after blank lines, comments and braces are removed, Re-
DeBug will directly skip the hunk, leading to 8 false negatives.
For VUDDY, it also uses exact matching. Thus, it may miss
target functions with vulnerability-irrelevant differences from
a vulnerable function. This caused all the 87 false negatives
in VUDDY. Instead, we adopt partial matching and program
slicing to reduce such false negatives.

4.2.3 Comparison with SourcererCC and CCAligner

We compared MVP against SourcererCC and CCAligner to
indicate that code clone detection alone without consider-
ing any vulnerability characteristics is not suitable for recur-
ring vulnerability detection. We used the vulnerable functions
(derived from security patches in the column 7otal in Table 1)
in each project as the input for SourcererCC and CCAligner,
and considered the function clones to these vulnerable func-
tions in each project as potentially vulnerable functions.

In total, SourcererCC and CCAligner respectively detected
15,555 and 23,889 function clones. Since all security patches
we collected have been applied to the target systems used in
our experiment, all function clones which have the same fully
qualified name to vulnerable functions are actually patched
functions and thus are false positives. After removing such
false positives, we still had 2,982 and 10,033 function clones.
Due to the large manual effort to analyze all these functions
clones, we randomly sampled 15% of them to perform manual
analysis. Our results show that the precision for SourererCC
and CCAligner is respectively 0.5% and 0.3%. Besides, we
computed recall by checking whether those 111 vulnerable
functions are in their function clones. It turns out that Sour-



Table 4: Performance Overhead of ReDeBug, VUDDY and MVP

Target System ReDeBug VUDDY MVP

System Ana. | Patch Ana. [ Matching || System Ana. [ Patch Ana. | Matching System Ana. [ Patch Ana. [ Matching

Linux kernel 1,883 s 0.68 ms 0.01 ms 6,974 s 3,846.17 ms 83.10 ms 37,545 s 7,178.31 ms 89.43 ms
FreeBSD 1,008 s 0.94 ms 0.03 ms 6,868 s 4,966.36 ms 63.24 ms 14,868 s 25,266.15 ms 63.24 ms
ImageMagick 35s 1.27 ms 0.01 ms 221s 7,228.69 ms 8.52 ms 595s 20,859.38 ms 1.42 ms
OpenJPEG 11s 1.40 ms 0.01 ms 251's 5,697.18 ms 84.51 ms 574 s 15,640.85 ms 7.04 ms
LibTIFF Ts 3.62 ms 0.01 ms 53s 6,036.26 ms 108.81 ms 136's 14,036.27 ms 0.51 ms
Libarchive 20s 1.31 ms 0.01 ms 121 s 5,263.15 ms 39.47 ms 335 s 17,381.58 ms 1.97 ms
Libming 9s 3.77 ms 0.01 ms 47 s 3,981.13 ms 113.21 ms 191 s 18,396.23 ms 1.89 ms
Libav 414 s 1.11 ms 0.01 ms 206 s 3,569.50 ms 29.52 ms 361 s 11,149.51 ms 2.21 ms
Asterisk 455s 3.94 ms 0.01 ms 156 s 7,335.83 ms 125.70 ms 514 s 26,109.18 ms 6.00 ms
Qcacld-2.0 26s 1.04 ms 0.01 ms 57s 5,499.53 ms | 517.36 ms 253s 21,019.81 ms 3.04 ms

ererCC and CCAligner had a recall of 64.9% and 56.8%. Thus,
MVP outperformed SourcererCC and CCAligner by improv-
ing precision by 83.1% and 83.3%, and recall by 22.5% and
30.6%.

4.2.4 Similarity of Vulnerable and Target Function

We measured the similarity score between the target functions
detected as truly vulnerable by all the approaches in § 4.2 and
their matched vulnerable functions (i.e., Sim(V,T) as intro-
duced in § 2.1). The results in Table 3 show that MVP can
detect recurring vulnerabilities no matter 7 is similar or not
similar to V, while other approaches tend to find recurring
vulnerabilities only when T is similar to V.

4.3 Scalability Evaluation (RQ?2)

To evaluate the scalability of MV P, we compared it against
the two clone-based vulnerability detection approaches (i.e.,
ReDeBug and VUDDY) because they are the most closely re-
lated approaches to MVP which share similar processes. For
the other clone detectors, as they work differently from MVP,
we believe it is not fair to compare with them.

MVP, ReDeBug and VUDDY are all composed of three ba-
sic components: system analysis to extract the information of
each target function in a target system, patch analysis to gener-
ate the signature of a vulnerability, and matching to search for
vulnerability in target functions. As VUDDY only released
the source code of the system analysis component, we had to
implement the other two components based on their paper.

Table 4 reports the performance overhead of each compo-
nent in each approach. Overall, the time consumption of the
system analysis is approximately proportional to the size of
the project. As VUDDY is syntax-based (i.e., it needs to use a
parser to analysis the source code), it spent 8.4 times as much
as ReDeBug (which is token-based) did in system analysis.
Because M VP is semantics-based (i.e., it performs program
analysis), it spent 3.2 times as much as VUDDY did in system
analysis; e.g., MVP spent 10.4 hours for Linux kernel. How-
ever, system analysis is a one-time job, and its results can be
reused for different security patches. In addition, we might re-
duce the time by using a demand-driven semantic analysis as
most target functions do not match a vulnerable function at the

syntactical level and thus semantics matching is not needed.
Similar to system analysis, ReDeBug spent the least time in
patch analysis. MVP took 3.3 times as much as VUDDY did
in patch analysis. On average, MVP took 17,272.82 millisec-
onds to extract the signature of a vulnerability from a security
patch. For matching, all three approaches were fast.

In summary, MVP is slower than ReDeBug and VUDDY,
but it still scales to large systems. However, MVP has much
higher precision, which significantly reduces the time used
to manually validate potentially vulnerable functions. We
believe M VP can save more time as manual validation often
consumes most of the time in vulnerabilities analysis.

4.4 Threshold Sensitivity Analysis (RQ3)

Four thresholds (i.e., 11, f2, 13, t4) are configurable in the match-
ing step of MVP (§ 3.4). The default configuration is 0.8, 0.2,
0.8 and 0.2, which is used in the experiment in § 4.2. To evalu-
ate the sensitivity of these thresholds to the accuracy of MVP,
we reconfigured one threshold and fixed the other three, and
ran MVP against the ten target systems. As #; and 3 are used
to determine whether a function signature matches the vulner-
ability signature, they were reconfigured from 0.1 to 1.0 by a
step of 0.1. As 7, and #4 are adopted to determine whether a
function signature does not match the patch signature, they
were reconfigured from 0.0 to 0.9 by a step of 0.1. In total, 35
(i.e.,4 x 9 - 1) configurations of MVP were run. We analyzed
their detection results, and found 8 vulnerabilities that were
not detected by the default configuration in § 4.2.

Fig. 4 and 5 present the impact of four thresholds on preci-
sion and recall, respectively, where x-axis denotes the value of
threshold, and y-axis denotes the precision or recall. Overall,
before 73 increased to 0.7, the precision and recall was almost
stable in most target systems. As #3 increased from 0.7 to 1.0,
the precision increased and recall decreased. As #; increased
from 0.1 to 0.8, the precision increased. Specifically, when
t1 and t3 were configured to 0.9, the recall greatly decreased
since many true positives were missed due to the strict match-
ing condition. Thus, we believe 0.8 is a good value for #|
and #3. On the other hand, as #, increased from 0.0 to 0.2, the
precision were changed slightly in most target systems. As
ty and 4 increased from 0.2 to 0.9, the precision decreased.
Hence, we believe 0.2 is a good value for #, and 4.
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Table 5: Comparison of Threshold ¢/,

| 84 [[ TP | FP [ FN [ Precision | Recall |
None* || 75 | 39 | 36 65.8% | 67.6%
4 91 | 18 | 20 83.5% | 82.0%
5 97 | 19 | 14 83.6% | 87.4%
6 93 | 20 | 18 82.3% 83.8%
7 87 | 25 | 24 777% | 78.4%
8 84 | 30 | 27 73.7% | 75.7%

* It denotes disabling the adoption of statement information.

4.5 Contribution of Statement Abstraction
and Statement Information (RQ4)

Contribution of Statement Abstraction. MVP uses state-
ment abstraction in generating function signature (§ 3.2). We
ran MVP by removing statement abstraction and analyzed the
detected potentially vulnerable functions. The only difference
was 11 more false negatives (i.e., 3 in Linux kernel, 5 in Im-
ageMagick and 3 in Qcacld-2.0). Thus, statement abstraction
improves MVP by detecting 12.8% more vulnerabilities.

Contribution of Statement Information. MVP adopts
the information of statements in extracting the vulnerability
signature (§ 3.3.3). To evaluate how the adoption of state-
ment information contributes to the accuracy of MVP, and
how the threshold ¢/, impacts the accuracy of MVP, we
configured MVP by disabling the adoption of statement in-
formation, and changing ¢, from 4 to 8, respectively. Then,
we ran these six configurations of MVP against the ten target
systems. We analyzed all the potentially vulnerable functions
detected by them. Table 5 reports the true positives, false
positives and false negatives of these configurations. The re-
sults indicate that i) the adoption of statement information
improves the accuracy, and ii) 5 is empirically established as

a good value for !, .

4.6 Performance of General-Purpose Vulnera-
bility Detection (RQS5)

4.6.1 Performance of VulDeePecker and Devign

We directly used VulDeePecker’s and Devign’s model which
had been trained on their individual training dataset, and used
the ground truth as the testing dataset to determine whether
they can find any of 111 recurring vulnerabilities in the ground
truth. It is worth mentioning that we did not use all the func-
tions in the ten projects as the testing dataset. The reason is
that the detected potentially vulnerable functions are not ex-
plainable; i.e., we do not know which vulnerability they are
similar to, making it difficult and time-consuming to deter-
mine whether they are truly vulnerable or not.

The results show that VulDeePecker only detected 8 of the
111 vulnerabilities, having a recall of 7.2%; and Devign found
40 of them, achieving a recall of 36.0%. One main reason
for high false negatives in VulDeePecker is that it can only
handle functions that call specific library functions or APIs
such as strcpy. As for Devign, it can only process a function
whose nodes are less than 500 in AST, CFG or PDG. Be-
sides, their training data may not include all security patches
used in our experiment. Both approaches take vulnerable and
non-vulnerable functions in Linux kernel as the training data.
Nevertheless, VulDeePecker cannot detect any of the 32 recur-
ring vulnerabilities in Linux kernel (i.e., a recall of 0%), while
Devign can detect 19 of them (i.e., a recall of 59.3%). Thus,
learning-based approaches may not be effective in discovering
recurring vulnerabilities, and MVP is worthwhile.

4.6.2 Comparison with Coverity and Checkmarx

We ran Coverity and Checkmarx against the ten projects, and
analyzed whether they could detect any of the 111 recurring



vulnerabilities in the ground truth. Not surprisingly, Coverity
only detected four of them, i.e., one in FreeBSD, one in Im-
ageMagick, one in OpenJPEG, and one in Libarchive, while
Checkmarx cannot detect any of them. These results show that
static scanners might not be effective in discovering recurring
vulnerabilities, and M VP is worthwhile.

4.7 Limitations

MVP has a few underlying assumptions, which may limit its
application. First, we focus on detecting recurring vulnera-
bilities which are Type-1, Type-2 and Type-3 clones [53]. In
MVP, a target function is regarded as potentially vulnerable
only if its function signature matches the vulnerability signa-
ture and does not match the patch signature at both syntactic
and semantic level. As Type-4 is syntactically different, MVP
cannot handle Type-4, which requires more semantic-based
techniques like symbolic execution or dynamic analysis. How-
ever, this may significantly affect the scalability. ReDeBug
handles Type-1, Type 2 and Type 3, while VUDDY handles
Type-1 and Type-2.

Second, MVP uses Joern [74] to generate code property
graph. We assume it is correct. Traditional approaches for
generating data/control dependency graph need a working
build environment to compile the project. For each pair of
vulnerable and patched functions, we need to compile the
whole project, which is time-consuming. To make MVP suffi-
ciently general in practice, we use Joern, which can generate
a combination of DDG, CDG and AST without compilation
and support partial code. Experimental results demonstrate
Joern can give good performance and acceptable precision.

Third, we cannot detect vulnerabilities whose patches are
out of functions. Some vulnerabilities are fixed by only chang-
ing struct or macro, which are out of functions. MVP takes
a function as an basic unit, therefore, any changes out of
functions cannot be handled by MVP.

Besides, our accuracy evaluation has revealed some root
causes that are not well handled. On the one hand, as dis-
cussed in § 4.2.2, there are three reasons for false positives
in MVP: missing calling context, semantic equivalence, and
improper signature extraction. For missing calling context, it
can be addressed by inter-procedure analysis. However, as the
analysis introduces additional time cost, the trade-off needs to
be carefully explored. For semantic equivalence, we can adopt
the methods proposed in [43], i.e., renaming variables, rewrit-
ing expressions, and rearranging control structures. However,
they can only solve the problem partially because they cannot
cover all types of the semantic equivalent code snippets. For
improper signature extraction, one major reason is that we do
not expand macros in functions. We can take the advantage
of mature compilers to compile source files to expand macros.
However, to expand macros for one function, compilers need
to compile the whole project, which can be time-consuming.
Therefore, the cost and benefit should be investigated.

On the other hand, as we only apply abstraction on formal
parameters, local variables and strings, we cannot discover
potentially vulnerable functions that have similar function
calls or data types to the known vulnerable functions. Actu-
ally, we could take a two-step way to detect such potentially
vulnerable functions without introducing many false positives.
First, we tokenize each token in the source code of all the
target systems, and learn a vector representation of each token
through word embedding. Then for each statement, we apply
abstraction, i.e., replacing formal parameters, local variables,
strings, function calls and data types with symbols, followed
by normalization and hashing. Thus, during matching, we can
first match a target function’s signature with the vulnerability
signature using hashing values; if they match, we then com-
pute the similarity of the two statements that have the same
hashing value after replacing each token in the two statements
with its vector representation. If the similarity is higher than
a threshold, we treat the two statements as similar, and con-
tinue with other matching procedures in MVP to determine
whether the target function is potentially vulnerable. In this
way, we can improve M VP to detect the vulnerable functions
that were detected by VUDDY in the experiment.

5 Related Work

We review the most closely related work in four aspects,
i.e., code clone detection, clone-based vulnerability detec-
tion, learning-based vulnerability detection, and binary-level
vulnerability detection.

Code Clone Detection. To detect code clones in four dif-
ferent types[8, 51, 54], a variety of techniques have been
proposed. Some techniques focus on Type-I and Type-
II clones (e.g., [26, 27, 29, 32, 37, 55, 68]), some tech-
niques are designed to further detect Type-III clones (e.g.,
[7,12, 14, 23, 36, 56, 65]), and some techniques are designed
to detect Type-1V clones (e.g., [21, 30, 33, 35, 58, 66, 76]).
These techniques are specifically designed to detect general
code clones with high accuracy and scalability, but they do not
target for accurately finding vulnerable code clones because
vulnerabilities are often very subtle and context-sensitive.

Clone-Based Vulnerability Detection. Many approaches
have been proposed to use clone detection to find vulnerable
or buggy code clones. Zhou et al. [42] proposed CP-Miner, to
detect bugs that caused by inconsistent identifier renaming in
code clones. Jiang et al. [31] and Gabel et al. [22] proposed
enhancement to CP-Miner. These approaches rely on incon-
sistencies in code clones to detect bugs. Differently, MVP
aims to detect vulnerabilities with similar characteristics.

Nam et al. [50] proposed SecureSync to detect recurring
vulnerabilities due to code and library reusing. It adopts ex-
tended abstract syntax trees and graph-based usage models
to represent code fragments. Li and Ernst [38] developed a
semantics-based buggy code clone detection approach CBCD.
It generates the program dependence graph for buggy codes.



Then, it uses sub-graph isomorphism matching to discover
potentially buggy code. Zou et al. [78] proposed SCVD to
detect vulnerable code clones. It generates a program feature
tree. Then, it utilizes tree-based matching to detect vulnerable
code clones. Jang et al. [28] proposed a token-based approach
ReDeBug to find unpatched code clones. It extracts vulner-
able code files, tokenizes each of them by a sliding window
of n lines of code. It applies k hash functions on all tokens
and detects code clones via comparing the hashed tokens with
the targets. Kim et al. [34] proposed VUDDY to detect vul-
nerable code clones. It applies abstraction and then hashes
the normalized code body to generate fingerprints for each
function. Finally, it matches for the fingerprint in the target
system to detect vulnerable code clones. VUDDY is designed
to discover Type-I and Type-II clones.

These approaches [28, 34, 38, 50, 78] share the same goal
with ours. However, as they build vulnerability signature ei-
ther broadly (e.g., from a whole function) or locally (e.g.,
from only several lines of code), they fail to capture the pre-
cise context of the vulnerability, which results in low accuracy.
Instead, we leverage slicing to extract precise signatures from
both vulnerable and patched functions to improve accuracy.
Besides, signature-based clone detection approaches [28, 34]
do not take patch information into consideration. They fail
to differentiate the potentially small differences between vul-
nerable function and patched function. Instead, we not only
generate a vulnerability signature but also a patch signature
to capture how a vulnerability is caused and fixed.

Learning-Based Vulnerability Detection. Li et al. [40]
designed VulPecker to detect vulnerabilities using code sim-
ilarity analysis. It utilizes a set of features to characterize
patches, and trains a model to select one of the existing
code similarity analysis algorithms (e.g., [28, 38, 50]) for a
specific patch. Li et al. [41] also proposed VulDeePecker
to detect vulnerabilities using deep learning. For each pro-
gram, it computes slices of library/API function calls, as-
sembles them into code gadgets, and transforms code gad-
gets into vectors. Then, it trains a neural network model to
decide whether a target program contains vulnerable code
gadgets or not. Similarly, Lin et al. [44] developed a deep
learning-based framework for detecting potentially vulnerable
functions. Different from VulDeePecker, it encodes code frag-
ments at the level of abstract syntax trees but not slices about
functional calls. These learning-based approaches [40, 41, 44]
target for general-purpose vulnerability detection, which is a
different problem than recurring vulnerability detection.

Binary Level Vulnerability Detection. Several methods
have proposed to detect vulnerabilities via binary-level match-
ing techniques (e.g., [16, 18, 19, 20, 48, 49, 71]). These
methods are at the binary level, which have different features
and face different challenges. Therefore, we did not compare
MVP with them.

6 Conclusions

In this paper, we have proposed and implemented a novel
approach, named M VP, to discover recurring vulnerabilities
with both low false positives and low false negatives. Our
evaluation results have demonstrated that, MVP can signifi-
cantly outperform the state-of-the-art recurring vulnerability
detection approaches, and has detected 97 new vulnerabilities
with 23 CVE identifiers assigned.
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Table 6: Accuracy of MVP on Different Projects

[ Target System [[  Versions | Patches (#) [ TP (#) [ FP(#) |

7.39_0

Curl 7_50_0 556 4 1
7_66_0
n2.8.12

FFmpeg n3.3.6 2319 2 0
n4.2
VER-2-5-1

Freetype2 VER-2-6-2 368 3 2
VER-2-9-1
2.0.1

Radare2 2.7.0 618 5 1
3.2.1
1.3.0

VLC 3.0.0 1163 2 0
4.0.0
2.0.6

Wireshark 220 1181 3 1
3.0.1

[ Total I - [ 6205 [ 19 [ 5

Appendix

A Accuracy Evaluation on More Projects

To evaluate the accuracy of the default configuration of MVP
on the other open-source projects, we selected six additional

code detection. In Proceedings of the International

Conference on Detection of Intrusions and Malware,

and Vulnerability Assessment, pages 325-344, 2017.
projects and used three versions for each of them. With a total
of 6,205 security patches, MVP detected 24 potentially vul-
nerable functions, where 19 were true positives and 5 were
false positives. The detailed results are reported in Table 6.
These results indicate that M VP performs well on other target
systems, and thus has good generality.

B Vulnerability Types

MVP found 97 recurring vulnerabilities in RQ1, detected 8
more recurring vulnerabilities in RQ3 when configured to
set different thresholds. The types of these vulnerabilities are
listed in Table 7. These vulnerabilities covered a variety of
different types. Although MVP does not take credit for the
8 vulnerabilities in RQ3, we believe M VP is capable of dis-
covering recurring vulnerabilities of different types.

Table 7: Types of Detected Vulnerabilities

| Type of Vulnerability || RQI | RQ3 [ RQ4 |
Divide-by-Zero 3 0 0
Infinite Loop 7 0 0
Integer Overflow 8 0 0
Use-of-Uninitialized Value 9 1 0
Memory Leak 21 1 0
Null Pointer Dereference 14 3 0
Out-of-Bound Access 35 3 0
Total 197 ] 8 [ 0 |
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