
Enhancing Field Tracking and Interprocedural
Analysis to Find More Null Pointer Exceptions

Dongfang Xie, Bihuan Chen, Kaifeng Huang, Yu Wang, Linghao Pan, Zhicheng Chen, Xin Peng
School of Computer Science and Shanghai Key Laboratory of Data Science, Fudan University, China

Abstract—Null pointer dereference raises Null Pointer Excep-
tions (NPEs). There are two groups of approaches to detect
NPEs. Type-based approaches carry out strict type-based null
safety checking. They heavily rely on annotations, and thus pro-
duce many false positives. Dataflow-based approaches leverage
static forward and/or backward dataflow analysis. They mostly
have a limited capability in tracking fields and interprocedural
analysis, and introduce false positives and false negatives.

To address these drawbacks, we propose WHEELJACK to detect
NPEs for Java. It does not rely on annotations, and hence can work
effectively under a lack of annotations. It leverages our novel ab-
straction of nullness status to enhance field tracking, and our novel
invocation analysis (capturing change to return value and side ef-
fect of an invocation) to enhance interprocedural analysis. Our
evaluation on 28 Java projects has demonstrated that WHEELJACK
can mostly outperform the four state-of-the-art NPE detectors in
recall without sacrificing precision. 5 and 2 new NPEs have been
confirmed and fixed by developers after we submit 8 issues.

Index Terms—null pointer exception, program analysis

I. INTRODUCTION

Null pointer dereference (a.k.a. CWE-476 [20]) is a common
and serious type of bug in all application domains from mobile
apps to web systems. It is ranked 11th in the “2022 CWE Top 25
Most Dangerous Software Weaknesses list” [19]. A null pointer
dereference occurs when the program dereferences a pointer or
an object that is not initialized or is explicitly set to a null value,
thereby a Null Pointer Exception (NPE) is raised. Hereafter, we
use null pointer dereferences and NPEs interchangeably. NPEs
can result in serious consequences such as undefined behaviors.

While there exist many studies to empirically evaluate the
effectiveness of static bug detectors [10, 24, 26] and developers’
perception about static bug detectors [6, 14], only some studies
have been conducted to investigate NPE detectors [1, 28]. As
classified by a recent study [28], there are two groups of ap-
proaches to detect NPEs, i.e., type-based approaches [2, 8, 22]
and dataflow-based approaches [3, 4, 12, 17, 18, 21].

In particular, type-based approaches verify null safety with
a type system by ensuring that a @Nullable variable is never
assigned to a @NonNull variable and a @Nullable variable
is never dereferenced. These approaches suffer from two main
drawbacks. First, they [8, 22] carry out strict type-based null
safety checking for field initialization, argument passing and
return value, and consequently generate a large number of false
positive warnings which overwhelm users. Second, they [2, 8,
22] heavily rely on annotations, and hence produce many false
positives when users do not use or provide annotations.

Dataflow-based approaches leverage static forward and/or
backward dataflow analysis to find NPEs. One difference from

type-based approaches is that they can work without the need of
user-provided annotations. These approaches usually have dif-
ferent favors over scalability and effectiveness. They mostly
have a limited capability in tracking fields and interprocedural
analysis; e.g., complicated structures are not supported, and side
effects of invocations are not precisely tracked. Consequently,
they introduce false positives and false negatives.

To address the drawbacks, we propose WHEELJACK, a novel
approach for detecting NPEs for Java. WHEELJACK employs no
type-checking policy, which enables it to work effectively under
a lack of annotations. WHEELJACK introduces instance status
and constant status to abstract the nullness status of a variable in
a way similar to the reference type variable and primitive type
variable in Java. For two variables that share one particular
instance status, the change to the instance status can be reflected
on both variables. This mechanism not only binds the nullness
status of two variables together, but also tracks the nullness
status of fields. It enables us to track field initialization in a
different way and reduces the number of false positive warnings.

Apart from that, we enhance the way of handling invocation,
which focuses on not only the return value but also the side
effect (including the change to arguments and receiver object)
of an invocation. This mechanism brings benefit in recalling
NPEs related to an invocation and reducing false positives. In
addition, our appropriate usage of call graph information assists
WHEELJACK in tracking the nullness status of arguments passed
among methods, which further decreases false positives.

We conduct large-scale experiments to evaluate WHEELJACK.
To evaluate the recall of WHEELJACK, we compare it with four
state-of-the-art tools, i.e., CFNULLNESS [22], NULLAWAY [2],
INFER-ERADICATE [4] and SPOTBUGS [12], on 57 NPEs from
the DEFECTS4J [15] and BUGSWARM [27] datasets. WHEEL-
JACK achieves a recall of 22.8%, which is 8.8% higher than the
best of the state-of-the-art. To evaluate the precision of WHEEL-
JACK, we manually inspect 50 NPE warnings produced by each
tool. WHEELJACK has a 8% lower precision than the best of
the state-of-the-art, with many more NPE warnings generated.
Further, we measure the time overhead of WHEELJACK, and
observe an approximately linear growth with the increase of
project size, which is acceptable. Moreover, we submit 8 NPE
issues for 8 open-source projects, and 5 and 2 of them have
been confirmed and fixed by developers.

In summary, this paper makes the following contributions.
• We propose WHEELJACK to detect NPEs, with a novel ab-

straction of nullness status and a novel invocation analysis
to enhance field tracking and interprocedural analysis.

• We evaluate WHEELJACK on 28 projects to demonstrate its
recall, precision and efficiency in detecting NPEs. 5 and 2
new NPEs have been confirmed and fixed.

II. RELATED WORK AND MOTIVATION

NPE detection approaches for Java can be basically classified
into two groups, i.e., type-based approaches and dataflow-based
approaches. We first introduce these approaches (Sec. II-A and
II-B), then compare their capabilities with respect to seven pro-
gram analysis properties (Sec II-C), and finally use motivating
examples to demonstrate their limitations (Sec. II-D).

A. Type-Based NPE Detector

The @NonNull and @Nullable annotations are the corner
stones of type-based NPE detectors. In the type system con-
structed by these annotations, @NonNull T is a subtype of
@Nullable T for any Java type T. With this type system, type-
based NPE detectors [2, 8, 22] ensure null safety via verifying
two type rules: (1) any value of @Nullable type must not
be assigned to a variable qualified by @NonNull; and (2) any
value of @Nullable type should never be dereferenced.

Papi et al. [22] introduced a nullness checker CFNULLNESS,
implemented with the Checker Framework [7], to detect NPEs
by finding violations of the two type rules. The key components
of CFNULLNESS includes: (1) an intraprocedural flow-sensitive
type checker to verify the safety of pointer dereferences, (2) a
strict field initialization checker to ensure every field is initial-
ized legitimately, and (3) a checker to analyze iterations over
possibly null collections and arrays.

Facebook developed a type checker ERADICATE [8] as part
of the INFER static analysis suite [3, 4]. It checks @Nullable
annotations via an intraprocedural flow-sensitive analysis to
propagate nullability through assignments and calls. It reports
errors for accesses to nullable values that could lead to NPEs.

Banerjee et al. [2] proposed a null safety checker NULLAWAY
with low time overhead and low annotation burden, based on the
Error Prone framework [9] and the Checker Framework [7]. To
reduce time overhead, it performs an intraprocedural analysis
over the AST of each source file in one single pass. To reduce
annotation burden and false positives, it assumes that methods
are pure and methods in unchecked codes can always handle
null parameters and will always return a non-null value.

Type-based NPE detectors are built on the belief that users
could provide enough annotations and use them properly. When
encountering a lack of annotations, they assume that unanno-
tated method parameters, return values and class fields are con-
sidered as @NonNull types, while local variables are treated as
@Nullable types. This assumption can cause false positives
related to argument passing, return value and field initialization.

B. Dataflow-Based NPE Detector

Dataflow-based NPE detectors [3, 4, 12, 17, 18, 21] rely on
static dataflow analysis to find NPEs. Different from type-based
NPE detectors, they can work without annotations. They mainly
differ on the tradeoff between scalability and effectiveness.

Hovemeyer and Pugh proposed SPOTBUGS, the successor of
FINDBUGS [11, 13], to detect various bugs (e.g., infinite loops

and null pointer dereferences) by pattern matching and dataflow
analysis [12]. Specifically, it uses forward dataflow analysis to
find NPEs by identifying contradictory beliefs (e.g., a check of
a variable against null indicates the belief that the variable may
be null, but a dereference of that variable outside the scope of
the check indicates the belief that the variable may not be null).
In addition, it leverages backward dataflow analysis to compute
parameters that are unconditionally dereferenced, and reports an
NPE when a nullable argument is passed to such a parameter.

INFER is a static analyzer, which was first aimed at C code
and developed by Monoidics [3] and later extended to Java code
after the acquisition of Monoidics by Facebook [4]. It uses sep-
aration logic and bi-abduction analysis [5] to detect null pointer
dereferences and resource and memory leaks. As introduced in
Sec. II-A, ERADICATE is part of INFER, which can be enabled
by adding the option --eradicate to the checkers mode.

Besides, to verify the safety of pointer dereferences, Loginov
et al. [17] proposed a sound analysis, named SALSA, based on
abstract interpretation. It first uses an intraprocedural dataflow
analysis to prove the safety of certain dereferences, and for the
remaining unverified dereferences, it then gradually expands the
scope (i.e., the depth of call chains) of interprocedural analysis.
Nanda and Sinha [21] introduced an interprocedural backward
dataflow analysis, named XYLEM, to identify NPEs. While it is
context-sensitive and path-sensitive to reduce false positives, it
bounds the paths that are explored for a cost-accuracy tradeoff.
Further, Romano et al. [23] used genetic algorithm to generate
test input data in order to trigger the NPEs detected by XYLEM.
Madhavan and Komondoor [18] developed a sound, interproce-
dural context-sensitive backward dataflow analysis to verify the
safety of dereferences. Compared with SALSA and XYLEM, it
explicitly models aliasing relationships, soundly handles recur-
sion, and explores more and longer paths. However, all these
above approaches [17, 18, 21, 23] are not publicly available.

Dataflow-based NPE detectors mostly have limited capability
in tracking fields and interprocedural analysis; e.g., the side ef-
fects of invocations are not precisely tracked. The unsoundness
of their capability results in false positives and false negatives.

C. Approach Capability Comparison

We compare the capabilities of those approaches in Sec. II-A
and II-B with respect to seven program analysis properties that
are used in a recent study on NPE detectors [28]. The differ-
ences from the previous study [28] are that (1) we include three
more existing NPE detectors [17, 18, 21] and (2) we refine and
confirm all approaches’ capabilities by inspecting paper or doc-
umentation, and writing test programs if the approaches are pub-
licly available. The properties are (1) intraprocedural, (2) inter-
procedural, (3) field-sensitive, (4) object-sensitive, (5) context-
sensitive, (6) flow-sensitive, and (7) path-sensitive. Specifically,
an intraprocedural analysis is performed within the scope of an
individual method, and an interprocedural analysis is performed
across the boundaries of individual methods. Field-sensitivity
distinguishes different fields of the same object, whereas object-
sensitivity distinguishes different “host” objects for the same
field of a class. Context-sensitivity considers calling contexts of

TABLE I: Approach Capabilities (X= complete capabilities, × = no capabilities, ◦ = limited capabilities, – = N/A)
Category Approach Intraproc. Interproc. Field-Sens. Object-Sens. Context-Sens. Flow-Sens. Path-Sens.

Type CFNULLNESS [22] X ◦ ◦ × × X ◦
NULLAWAY [2] X ◦ ◦ × × X ◦

Combined INFER-ERADICATE [3, 4, 8] X ◦ ◦ X × X ◦

Dataflow

SPOTBUGS [11, 12, 13] X ◦ ◦ X × X ◦
SALSA [17] X ◦ – – X X ◦
XYLEM [21] X ◦ – – X X ◦
M&K [18] X ◦ – – X X ◦

WHEELJACK X ◦ ◦ X ◦ X ◦

the same method, flow-sensitivity considers the order of state-
ments, and path-sensitivity considers the feasibility of paths. As
ERADICATE is part of INFER, we use INFER-ERADICATE to
represent their combination, which can be considered as a rep-
resentative approach of combining type and dataflow analysis.

We present the capability comparison in Table I. First, these
approaches support intraprocedural analysis, but perform a lim-
ited interprocedural analysis. Type-based approaches emphasize
on passing arguments and returning values legitimately accord-
ing to the type rules in Sec. II-A. SPOTBUGS only ensures that a
nullable argument would never be passed to an unconditionally-
dereferenced unannotated parameter. While the other dataflow-
based approaches conduct a stronger interprocedural analysis
than SPOTBUGS, they often limit it to improve scalability.

Second, type-based approaches have limited field-sensitivity
because they only focus on legitimate field initialization (i.e.,
any @NonNull field should be initialized at its declaration, in
constructors or initialization blocks). Instead, dataflow-based
approaches provide limited tracking of fields, and hence they
can find NPEs caused by dereferences of uninitialized fields.
Besides, type-based approaches pay more attention on type ver-
ification rather than object-sensitivity, whereas dataflow-based
approaches are often able to distinguish different objects.

Third, all approaches are flow-sensitive to reduce false posi-
tives. Due to the concern of scalability, all approaches except for
[17, 18, 21] are context-insensitive. To be practically useful, all
approaches only provide limited path-sensitivity by handling
null check conditions. An exception is that INFER-ERADICATE
can also handle numerical conditions.

D. Motivating Examples

To illustrate the limitations of previous approaches, we iden-
tify six sources of unsoundness with respect to three properties
(i.e., field-sensitive, object-sensitive and interprocedural) with
motivating examples. Here we mainly focus on the three prop-
erties because the previous approaches differ more significantly
in them than in the other four properties. Besides, we do not in-
clude SALSA [17], XYLEM [21] and M&K [18] as they are not
publicly available for running our test programs. We report the
sources of unsoundness for each approach in Table II.

1) Field Initialization: Initializing fields properly is believed
to be a good way to prevent NPEs, and initialization checking is
a crucial part of type-based approaches [2, 8, 22]. In the ex-
ample in Fig. 1, fields f1 and f2 are not initialized in the con-
structor. f1 is dereferenced in method toString(), and f2 is
dereferenced only when it is not null. Type-based approaches

1 public class FieldInitializationCase {
2 private Object f1 = null, f2 = null;
3 public FieldInitializationCase() {}
4 @Override
5 public String toString() {
6 return "{field1:"+ f1.toString()+",field2:" // NPE
7 +(f2==null? "N/A":f2.toString())+'}';
8 }
9 }

Fig. 1: Example of Field Initialization

1 public class ObjectAliasingCase {
2 public void entry() {
3 Inited a = new Inited();
4 Inited b = a;
5 a.field = null;
6 b.field.toString(); // NPE
7 }
8 public static class Inited {
9 public Object field = new Object();

10 public Inited() {}
11 }
12 }

Fig. 2: Example of Object Aliasing

CFNULLNESS, NULLAWAY and INFER-ERADICATE warn that
f1 and f2 should be annotated @Nullable or initialized in
the constructor. However, the warning for f2 is a false positive
because it would never cause an NPE. Differently, SPOTBUGS
reports that only the dereference of uninitialized f1 at line 6 is
risky. Similarly, WHEELJACK tracks fields and thus reports the
NPE for f1 at line 6 while not emitting a warning for f2.

2) Object Aliasing: Effective analysis of object aliasing is es-
sential in nearly all non-trivial program analyses [25]. In the ex-
ample in Fig. 2, b is the alias of a, and a.field is initialized
when a is created by the constructor at line 3 and then assigned
null at line 5. As field is not annotated, it is considered as a
@NonNull type in type-based approaches. Hence, CFNULL-
NESS, NULLAWAY and INFER-ERADICATE report a warning at
line 5 because a null value is assigned to a @NonNull field.
INFER-ERADICATE and SPOTBUGS correctly detect the NPE at
line 6 caused by the dereference of b.field, which indicates
their capability in handling aliases. WHEELJACK also supports
aliasing and warns the NPE at line 6.

3) Complicated Structure: Field- and object-sensitivity can
be challenged by complicated structures. Fig. 3 presents a recur-
sive data structure NotInited. It contains field that is also an
object of class NotInited. obj1 is assigned to obj2.field

at line 5. As obj1.field, which is also obj2.field.field,
is not initialized, the dereference at line 6 triggers an NPE.
CFNULLNESS, NULLAWAY and INFER-ERADICATE warn that
field should be intialized or annotated @Nullable. Except

TABLE II: Sources of Unsoundness (X= complete capabilities, × = no capabilities, ◦ = limited capabilities)
Capability CFNULLNESS NULLAWAY INFER-ERADICATE SPOTBUGS WHEELJACK

Field- and
Object-Sensitive

Field Initialization ◦ ◦ ◦ X X
Object Aliasing × × X X X

Complicated Structure × × × × X

Interprocedural
Return Value ◦ ◦ X × X

Argument Passing ◦ ◦ X ◦ X
Side-Effect of Invocation × × ◦ × X

1 public class ComplicatedStructureCase {
2 public void entry() {
3 NotInited obj1 = new NotInited();
4 NotInited obj2 = new NotInited();
5 obj2.field = obj1;
6 obj2.field.field.toString(); // NPE
7 }
8 public static class NotInited {
9 public NotInited field = null;

10 public NotInited() {}
11 }
12 }

Fig. 3: Example of Complicated Structure

1 public class ReturnValueCase {
2 public void entry() {
3 Object obj1 = m1();
4 obj1.toString(); // NPE
5 Object obj2 = m2();
6 if (obj2 != null) obj2.toString();
7 }
8 public Object m1() { return null; }
9 public Object m2() { return null; }

10 }

Fig. 4: Example of Return Value

for that, no approach reports the NPE at line 6. Instead, WHEEL-
JACK, by enhancing field tracking, detects the NPE at line 6.

4) Return Value: Analyzing return value is a crucial part of
interprocedural analysis. In the example in Fig. 4, methods m1
and m2 return a null value, but only m1’s return value causes an
NPE at line 4. Type-based approaches CFNULLNESS, NULL-
AWAY and INFER-ERADICATE report warnings at line 8 and 9
as they assume that without a @Nullable annotation, m1 and
m2 should not return a null value. However, the warning for m2
at line 9 is a false positive because it would not cause an NPE.
Besides, INFER-ERADICATE also reports the NPE at line 4, but
SPOTBUGS does not provide any NPE warning. WHEELJACK
determines the return values of these invocations through our
invocation analysis and only reports the NPE warning at line 4.

5) Argument Passing: Analyzing argument passing is also a
crucial part of interprocedural analysis. In the example in Fig. 5,
an NPE is triggered at line 13 because method entry passes a
null value to parameter p1 of method m2 at line 4 and p1 is di-
rectly dereferenced at line 13. The null value passed to p2 and
p3 of m2 does not cause an NPE because p2 is not used and the
dereference of p3 is guarded by a null check. Besides, as a non-
null value is passed to m1 at line 3, it does not cause any NPE.
CFNULLNESS, NULLAWAY and INFER-ERADICATE warn that
the three null values should not be passed to m2 at line 4 because
the three parameters of m2 are not annotated @Nullable.
Besides, INFER-ERADICATE also reports the NPE at line 13.
SPOTBUGS not only reports the NPE at line 13, but also falsely
reports an NPE warning at line 10 because it is confused by the

1 public class ArgumentPassingCase {
2 public void entry() {
3 m1(new Object());
4 m2(null, null, null);
5 }
6 private void m1(Object obj) {
7 if (obj == null) {
8 System.out.println();
9 }

10 obj.toString();
11 }
12 private void m2(Object p1, Object p2, Object p3) {
13 p1.toString(); // NPE
14 if (p3 == null) return;
15 p3.toString();
16 }
17 }

Fig. 5: Example of Argument Passing

null check at line 7. WHEELJACK leverages argument passing
information properly and identifies the NPE at line 13.

6) Side Effect of Invocation: These approaches handle the
side effect of invocation differently. CFNULLNESS marks those
methods annotated @Pure as side-effect-free and deterministic
[7]. NULLAWAY makes a purity assumption that all methods are
side-effect-free and deterministic to reduce false positives [2].
SPOTBUGS assumes that any invocation can modify any field of
any object passed to the invocation. INFER-ERADICATE tracks
some side effects of methods. For example, if a method contains
this.field = null, the side effect will be tracked at the in-
vocation. In the example in Fig. 6, obj.field is not initialized
at first, and thus an NPE is introduced at line 4. obj.field is
then set to a non-null value by the invocation of setField at
line 5. Then, obj.field is set to a null value by the invocation
of setField at line 7, and hence an NPE is caused at line 8.
CFNULLNESS, NULLAWAY and INFER-ERADICATE warn that
field should be initialized or annotated @Nullable, and a
null value should not be passed to setField at line 7. SPOT-
BUGS reports no NPE warning. WHEELJACK makes no purity
assumption and is able to handle side effects by our invocation
analysis, and thus it reports two NPE warnings at line 4 and 8.

III. METHODOLOGY

Based on the insights from Sec. II-C and II-D, we propose an
automated approach, named WHEELJACK, to identify NPEs for
Java programs. WHEELJACK leverages our novel abstraction of
nullness status to track nullness information (Sec. III-A). Gener-
ally, WHEELJACK takes as inputs entry methods and jar files of
a Java project, and returns a set of detected NPE warnings. If no
entry method is provided by users, WHEELJACK uses all public
and protected non-deprecated methods as the entry methods.

Given the entry methods, WHEELJACK uses Soot [29] to gen-
erate a call graph. We enable SPARK [16] in Soot for a more

1 public class SideEffectCase {
2 public void method1() {
3 NotInited obj = new NotInited();
4 obj.field.toString(); // NPE
5 obj.setField(new Object());
6 obj.field.toString(); // Safe
7 obj.setField(null);
8 obj.field.toString(); // NPE
9 }

10 public static class NotInited {
11 public Object field = null;
12 public NotInited() {}
13 public void setField(Object field) {
14 this.field = field;
15 }
16 }
17 }

Fig. 6: Example of Side Effect of Invocation

Status :: = ConstantStatus | InstanceStatus
ConstantStatus :: = Null | NonNull | Unknown

InstanceStatus :: = NonNullInstance | UnknownInstance

NonNullInstance :: = {f : Status | f is a field of an object}
Fig. 7: Nullness Status Abstraction

precise call graph. Then, WHEELJACK performs interprocedural
analysis to visit the methods in the call graph in a topological
order and propagate calling context information from callers to
their callees (Sec. III-C). During this procedure, each method
is visited via performing intraprocedural analysis (Sec. III-B),
which consists of a nullness analysis and a reachability analysis
to generate nullness information, reachability information, and
calling context information. The nullness information and reach-
ability information are used to produce NPE warnings, while the
calling context information is used in interprocedural analysis.
To balance scalability and accuracy, we bound our analysis with
two configurable parameters (Sec. III-D).

A. Nullness Status Abstraction

Fig. 7 presents our abstraction of nullness status Status. In-
spired by the philosophy of primitive variable and reference
variable in Java, we distinguish Status between constant status
ConstantStatus and instance status InstanceStatus. In a
typical nullness analysis, nullness status has three types, Null,
NonNull or Unknown. Hence, we model ConstantStatus as
Null, NonNull or Unknown, which can be seen as constants
of the three corresponding types. Like primitive variables, if
two variables have the same constant status, they do not share
the same nullness status, i.e., the nullness status change of one
variable will not change the nullness status of the other variable.
Besides, we model InstanceStatus as NonNullInstance or
UnknownInstance, which can be considered as instances of
the NonNull and Unknown type. Like reference variables, if
two variables have the same instance status, they share the same
nullness status, i.e., the nullness status change of one variable
(if the change is not caused by an assignment to the variable)
will cause the same nullness status change of the other variable.
However, if the change is caused by an assignment, the nullness
status of the other variable will not be affected. Naturally there
is no NullInstance because null by itself is a constant. We
define NonNullInstance as a map whose key is a field and

whose value is the nullness status of the field. We abstract
nullness status in such a way to achieve field-sensitivity and
object-sensitivity for our NPE detection.

B. Intraprocedural Analysis

In general, our intraprocedural analysis is forward and con-
ducted on the control flow graph of a method. It consists of two
analyses: Nullness Analysis and Reachability Analysis.

1) Preliminary Settings: As will be introduced in Sec. III-C,
before our intraprocedural analysis is performed on a method,
our interprocedural analysis has visited all callers of the method,
and thus has already collected and merged all the calling context
information for the method. In other words, it has obtained the
nullness status of the method’s parameters and this variable.
If the method has no caller, we assign NonNullInstance to
the status of this, and conservatively assume Unknown to
the status of the parameters and this’s fields.

2) Nullness Analysis: Our nullness analysis aims to track the
nullness information of variables in the method. We first intro-
duce the transfer function. For each statement of the method,
we maintain the nullness status that flows in the statement (i.e.,
in-status) and the nullness status that flows out of the statement
(i.e., out-status) after applying the transfer functions in Table III.
Therefore, our approach achieves flow-sensitivity.

i) Assignment. For an assignment statement x = y, if the in-
status of y is Null, the out-status of x becomes Null. If the in-
status of y is NonNull or Unknown, the out-status of x and y

becomes a NonNullInstance or UnknownInstance. If the
in-status of y is a NonNullInstance or UnknownInstance,
this status is assigned to the out-status of x. In the latter two
cases, we create a binding between x and y by making them
sharing an instance status. As a result, any change to the null-
ness status of the fields in one variable (e.g., x) is simultane-
ously reflected in the other variable (e.g., y). Only when another
assignment to x or y happens, this binding no longer holds.

This transfer function, together with our abstraction of null-
ness status, empowers WHEELJACK to track nullness informa-
tion passed among variables and fields as well as the binding
among them. It is also worth mentioning that the key difference
of our approach from points-to analysis [16] is that even when
the in-status of y is unknown, we still create an instance status
to bind x and y. In essence, we focus on the status of a variable
rather than a memory object.

ii) Field Load and Store. WHEELJACK is naturally enabled
to track both field load and field store, using our abstraction of
NonNullInstance. For a load statement x = obj.f, if the
in-status of obj is a constant status, its out-status becomes a
NonNullInstance. Notice that if the in-status of obj is Null,
an NPE warning will be reported, but its out-status still becomes
a NonNullInstance because our analysis continues to suc-
cessor statements whose execution implies no exception for the
load statement. In this way, we can avoid generating redundant
NPE warnings due to the same root cause (i.e., the dereference
of the null obj in successor statements). Besides, the out-status
of the field obj.f and the out-status of x share an instance

TABLE III: Transfer Functions (status0, status1, status2, status3, status4, status5 ∈ Status, status1, status2,
status3 6= Null, status2, status3 /∈ NonNullInstance; statusc1 ∈ ConstantStatus; statusi1 ∈ InstanceStatus;
statusni1, statusni2, statusni3 ∈ NonNullInstance; status′ni2 and status′ni3 denote that the nullness status of fields
in statusni2 and statusni3 are updated; statusui1 ∈ UnknownInstance)

Kind Statement In-Status Out-Status

Assignment x = y x : status0, y : Null x : Null, y : Null
x : status0, y : status1 x: statusi1, y : statusi1

Field Load x = obj.f x : status0, obj : statusc1 x : statusi1, obj : {f : statusi1}
x : status0, obj : {f : status1} x : statusi1, obj : {f : statusi1}

Field Store obj.f = x x : status1, obj : statusc1 x : statusi1, obj : {f : statusi1}
x : status1, obj : {f : status0} x : statusi1, obj : {f : statusi1}

New Assignment x = new Type() x : status0 x : statusi1

Invocation x = obj.m(arg) x : status0, obj : status2, arg : status3 x : status4, obj : statusni1, arg : status5
x : status0, obj : statusni2, arg : statusni3 x : status4, obj : status′ni2, arg : status′ni3

Null Check if (x == null) x : statusui1
x : Null (True Branch)

x : statusni1 (False Branch)

instanceof Check if (x instanceof Type) x : statusui1
x : statusni1 (True Branch)
x : statusui1 (False Branch)

Array Assignment x = a[i] x : status0, a : status2 x : Unknown, a : NonNull

status in the same way in Assignment. The same principle is
applied for a store statement, and hence we omit the details.

iii) New Assignment. For a new assignment statement x =

new Type(), no matter what the in-status of x is, we set the
out-status of x to a NonNullInstance.

iv) Invocation. Our invocation analysis is context-sensitive,
which aims to analyze the return value and side-effect of an in-
vocation. For an invocation statement x = obj.m(arg), the
return value of m is assigned to x, which changes the nullness
status of x. The side-effect includes the nullness status change
of the arguments (e.g., arg) passed to the callee (e.g., m) as
well as the receiver (e.g., obj) on which the callee is called.

As an invocation can contain other invocations, we conduct
our invocation analysis iteratively until reaching an invocation
depth for the sake of scalability (Sec. III-D). In that sense, our
intraprocedural analysis also involves limited interprocedural
analysis. To start an invocation analysis, we pass the calling
context information to the callee. The transfer function in our
invocation analysis is the same as in our intraprocedural analy-
sis. The difference of invocation analysis from intraprocedural
analysis is that we conclude the status of return value and the
status change of arguments and receiver only when there is a
reachable return statement (Sec. III-B3). When there is no
reachable return statement, this invocation is marked as dead.

When our invocation analysis finishes, we apply the nullness
status change to arguments and receiver and assign the nullness
status of the return value as long as the invocation is not dead.
Specifically, for the arguments and receiver, if their in-status
is not a NonNullInstance and not Null, their out-status is
changed to the ones obtained from our invocation analysis. Even
if the in-status of receiver is Null, the out-status of receiver is a
NonNullInstance due to the same reason in Field Load and
Store. If their in-status is already a NonNullInstance, we
update its fields’ status. We currently do not support invocations
to third-party methods whose code is not available.

v) Null and instanceof Check. Null check is a common

mechanism to implement defensive programming and prevent
NPEs. For a null check statement if (x == null), if the in-
status of x is an UnknownInstance, its out-status is set to
Null in the true branch, and a NonNullInstance in the false
branch. For any variable sharing the same UnknownInstance
with x, its out-status is also changed to Null in the true branch,
and the same NonNullInstance in the false branch. Besides,
if the in-status of x is NonNull or a NonNullInstance, the
true branch is marked as unreachable (Sec. III-B3), and its out-
status is not changed in the false branch. If the in-status of x is
Null, the false branch is marked as unreachable (Sec. III-B3),
and its out-status is not changed in the true branch. Note that
WHEELJACK is also able to evaluate negation of null checks.

Besides, instanceof check is used to cast an object safely. For
an instanceof check statement if (x instanceof Type), if
the in-status of x is an UnknownInstance, its out-status is set
to a NonNullInstance in the true branch, and is not changed
in the false branch because we do not store type information.
Any variable that shares the same UnknownInstance with x

still shares the status with x in both branches. Besides, if the in-
status of x is a NonNullInstance or NonNull, its out-status
is not changed. If the in-status of x is Null, the true branch is
marked as unreachable (Sec. III-B3), and its out-status is not
changed in the false branch.

Based on our null check and instanceof check analysis, our
approach achieves limited path-sensitivity.

vi) Array Assignment. An array is also a kind of object, but
our way to handle it is different from other reference type ob-
jects. For an array assignment statement x = a[i], we only
infer that a is NonNull and assume x to be Unknown. Since
array is frequently used with loop iterations and mutable in-
dexes, it could be costly to track array element status accurately.

In summary, there are four situations to generate Null status.
(1) NullFromAssign: the assignment statement, e.g., a = null,
makes the status of a become Null. (2) NullFromReturn: the
statement returning a null value, e.g., return null, makes the

status of the return value become Null. (3) NullFromAnno-
tation: when invocation analysis cannot determine the status
of return value and arguments and an explicit @Nullable is
declared, the annotated return value or argument is assigned
Null. (4) NullFromNullCheck: a variable can be inferred as
Null by a null check. These four situations have a decreasing
confidence of being Null. As these four situations of how and
where Null is generated can be helpful for developers to debug
NPEs, we record them in our null analysis while also recording
the class name and line number that generates Null.

Apart from how and where Null is generated, we also record
where Null is passed and returned (i.e., the class name and line
number that Null is passed to or returned from a method) until
it becomes NonNull or NonNullInstance or it is derefer-
enced. Such a trace can help developers to debug NPEs.

Then, we introduce how control flows are joined. Specifically,
when two Null statuses are merged, the one with a high confi-
dence of being Null is preserved preferentially. For unknown
statuses including Unknown and UnknownIstance, they are
designed to be carriers for Null. Concerning space issue, these
unknown statuses carry one or no Null status. In detail, an un-
known status that carries no Null status starts to carry a Null
status when it is merged with a Null status. When two un-
known statuses that both carry a Null status are merged, the
two Null statuses are merged, and an unknown status with the
merged Null status is generated. When a Null status is merged
with an unknown status that carries a Null status, an unknown
status is generated with a Null status merged by the two Null
statuses. Moreover, for a non-null status including NonNull
and NonNullInstance, when it is merged with a Null status,
an unknown status that carries the Null status is generated.
When it is merged with an unknown status, the unknown status
is preserved. When it is merged with a non-null status, a non-
null status is generated through merging the status of the fields
if the non-null status is a NonNullInstance.

3) Reachability Analysis: Our reachability analysis and null-
ness analysis interact and interweave with each other. Reacha-
bility analysis focuses on the reachability of a statement in order
to ensure that data flow in our nullness analysis is not affected
by an unreachable statement. Reachability analysis leverages
the nullness information from nullness analysis to identify
unreachable statements. For a null check, if a variable in the
check is already known as null or non-null, one of the two
branches will be marked as unreachable. Similarly, for an
instanceof check, if a variable in the check has a null status,
one of the two branches will be marked as unreachable. Besides,
for dead invocations identified in our invocation analysis, as
they will never return unexceptionally, the successor statements
of the dead invocations will be marked as unreachable.

One statement can have several predecessor statements, and
as long as one predecessor marks it as reachable, it is assumed
reachable; otherwise, it is unreachable. In our nullness analysis,
the out-status will be marked as dead if the statement is a dead
invocation or is unreachable. When a dead status is merged with
another status, it makes no change (i.e., the another status is
preserved). This protects the data flow from being polluted by

Call Graph Cases

1

2

3

Root 1

2

3

Root
1

2 3

Root public

protected

private

Case 1 Case 2 Case 3
Fig. 8: Cases of Call Graph

unreachable statements. In addition, those invocations in un-
reachable statements are excluded in both intraprocedural
analysis and interprocedural analysis.

4) NPE Warning Generation: With the nullness information
and reachability information, we detect possible risks related
to variable dereferences. In particular, when a variable with a
Null status or an unknown status that carries a Null status is
dereferenced, we generate an NPE warning if the statement is
reachable. Other unknown status is less risky because no evi-
dence indicates that it could be null.

The warning information contains the dereference location
(i.e., the class, method and line number), the dereferenced vari-
able, and the method or field it is dereferenced for. Moreover,
the warning information also includes how and where the Null
status is generated, and where it is passed and returned.

C. Interprocedural Analysis

Our interprocedural analysis aims to visit the methods in
the call graph in such an order that all the calling context in-
formation is collected when visiting each method. To this end,
we visit the methods in the call graph in a topological order
according to their invocation relationship. However, when the
call graph contains loops, this strategy fails. Therefore, we first
break the loops before we apply topological visit.

To better illustrate how we break loops, we show three cases
of call graph in Fig. 8, where each node denotes a method and
each edge denotes an invocation relationship from a caller to its
callee. We define those methods without any caller as roots. For
example, method 1 in case 1 and 2 in Fig. 8 is the root method.
Then, for such cases, we conduct a depth-first visit from root
methods, and break a loop at the first method that enters the
loop (which is also defined as the entry method of the loop).
For example, method 2 in case 2 is the entry method of a loop.
For breaking a loop, we remove the invocation to the entry
method of the loop. For example, the invocation from method
3 to method 2 in case 2 is removed for breaking the loop. For a
cyclic call graph without any root, e.g, case 3 in Fig. 8, we select
a public method (or a protected method when there is no public
method) as the root, and break a loop with the above strategy.

We conservatively set the calling context of the entry method
of loops in our intraprocedural analysis to unknown; i.e., the
nullness status of its parameters and this variable is assumed
Unknown. This is because the number of loops are limited
and setting the calling context to unknown could only cause a
limited number of false negatives. Compared to a fixed-point
strategy that stops when the calling context remains stable, our
strategy is more practical and less expensive.

After breaking loops, we visit each method in the call graph
in a topological order. For each method, we first merge all the
calling context information from its callers by the same strategy
in joining control flows (Sec. III-B). In other words, we collect
the nullness status of each parameter by merging the nullness
status of the argument passed from all callers, and the nullness
status of this variable by merging the nullness status of the
receiver of all callers. Then, we run our intraprocedural analysis
to obtain its nullness information, reachability information, and
calling context information for its callees. The nullness in-
formation and reachability information are used to generate
NPE warnings (Sec. III-B4). The calling context information is
passed to its callees for their intraprocedural analysis and for
the invocation analysis in the current intraprocedural analysis.

D. Balancing Scalability and Accuracy

To balance scalability and accuracy, we bound our analysis
with two configurable parameters.

1) Field Depth: NonNullInstance is designed to record
the nullness status of each field of an object (Sec. III-A), and
each field can be an object and its nullness status can be a
NonNullInstance that records the nullness status of fields as
well. To avoid large memory consumption, we introduce a con-
figurable parameter, field depth, to bound the depth of tracking
fields. When reaching the field depth, we set the nullness status
of a field to Unknown, which may hurt the accuracy. In that
sense, our approach achieves limited field-sensitivity.

2) Invocation Depth: Our invocation analysis in nullness
analysis (Sec. III-B2) leverages an depth-first strategy to ana-
lyze each invocation it encounters. As the invocation chain can
be deep, we introduce a configurable parameter, invocation
depth, to bound the depth of our invocation analysis for the sake
of scalability. When reaching the invocation depth, we do not
explore any further and conservatively assume that the invoca-
tion is not dead, the nullness status of return value and fields of
the receiver is Unknown, and the nullness status of arguments’
fields is Unknown if the nullness status of arguments is a
NonNullInstance, which may sacrifice the accuracy. In that
sense, our approach achieves limited context-sensitivity.

IV. EVALUATION

We have implemented and tested a prototype of WHEELJACK
in 8.17K lines of non-test Java code and 6.25K lines of test Java
code. We have also released all the source code at our website
https://wheeljack23.github.io/ with our experimental data.

A. Evaluation Setup

To evaluate the effectiveness and efficiency of WHEELJACK,
we designed our evaluation to answer four research questions.
• RQ1 Recall Evaluation: How is the recall of WHEELJACK in

detecting NPEs, compared to the state-of-the-art tools?
• RQ2 Precision Evaluation: How is the precision of WHEEL-

JACK, compared to the state-of-the-art tools?
• RQ3 Efficiency Evaluation: How is the time overhead of

WHEELJACK in detecting NPEs for each project?

TABLE IV: Tool Recall (“Avg Warn.” denotes the average num-
ber of NPE warnings produced by a tool for each project;
“Found” denotes the number of benchmark NPEs found by a
tool; “Recall” denotes the recall of a tool; “Unique” denotes
the benchmark NPEs that could only be found by a tool)

Category Tool Avg Warn. Found Recall Unique

Type CFNULLNESS 1,299 7 12.3% 2
NULLAWAY 86 2 3.5% 1

Combined INFER-ERADICATE 1,354 8 14.0% 2

Dataflow
SPOTBUGSHT 4 3 5.3% 0
SPOTBUGSLT 38 7 12.3% 0
WHEELJACK 66 13 22.8% 8

• RQ4 Sensitivity Analysis: How is the sensitivity of each pa-
rameter to the effectiveness and efficiency of WHEELJACK?
State-of-the-Art Tools. For RQ1 and RQ2, we selected four

state-of-the-art publicly available tools, i.e., CFNULLNESS [22],
NULLAWAY [2], INFER-ERADICATE [4] and SPOTBUGS [12],
which are already introduced in Sec. II. We configured the tools
by following the recent empirical study on NPE detection [28].
Specifically, SPOTBUGS was configured in two settings, i.e.,
high and low confidence threshold setting, respectively denoted
as SPOTBUGSHT and SPOTBUGSLT.

Data Set. For RQ1, we started with the 102 benchmark NPEs
across 42 projects from the recent empirical study on NPE de-
tection [28]. However, we further excluded 45 NPEs for three
reasons: 19 NPEs cannot be reproduced when running project
tests; 17 NPEs are not caused by production code but by test
code; and 9 NPEs are from five projects that cannot be built suc-
cessfully. We collected a data set of 57 benchmark NPEs across
28 projects. Among these NPEs, 23 are from the DEFECTS4J
dataset [15] and 34 are from the BUGSWARM dataset [27]. For
RQ2, RQ3 and RQ4, we also used these 28 projects.

B. Recall Evaluation (RQ1)

We ran tests of each project to collect the stack traces of the
57 benchmark NPEs. As the recent study [28] provided detailed
NPE warning reports of the four state-of-the-art tools, we di-
rectly reused their warning reports for the 28 projects. Then, we
manually investigated the stack traces of benchmark NPEs and
the warning reports of each tool to decide whether benchmark
NPEs could be found by each tool. Table IV reports the recall of
each tool as well as the average number of NPE warnings gen-
erated by each tool for each project.

WHEELJACK generates 66 NPE warnings per project on av-
erage, and successfully detects 13 of the 57 benchmark NPEs,
achieving the highest recall of 22.8%. However, CFNULLNESS
and INFER-ERADICATE generate 18 times more NPE warnings
than WHEELJACK, but only achieve a recall of up to 14.0%. In
fact, CFNULLNESS and INFER-ERADICATE report a consid-
erable amount of NPE warnings related to passing a nullable
variable to an unannotated parameter, or an unannotated method
that returns a null value. Thus, facing a lack of annotations, they
could overwhelm users and have a poor usability. NULLAWAY
holds a different assumption, and generates much fewer NPE
warnings than CFNULLNESS and INFER-ERADICATE, but has

https://wheeljack23.github.io/

TABLE V: Tool Precision (“Avg Warn.” denotes the average
number of NPE warnings produced by a tool for each project;
“Sampled” denotes the number of NPE warnings randomly
sampled for our manual investigation; “precision” denotes the
sampled precision of a tool)

Category Tool Avg Warn. Sampled Precision

Type CFNULLNESS 1,299 50 18%
NULLAWAY 86 50 32%

Combined INFER-ERADICATE 1,354 50 8%

Dataflow
SPOTBUGSHT 4 50 60%
SPOTBUGSLT 38 50 46%
WHEELJACK 66 50 52%

the lowest recall of 3.5%. SPOTBUGSHT and SPOTBUGSLT
generate the fewest NPE warnings, but achieve a recall of 5.3%
and 12.3% which are both lower than WHEELJACK.

In addition, we investigate the overlap among the benchmark
NPEs found by different tools. In total, these tools find 22 of
the 57 benchmark NPEs, and most of the tools can find unique
benchmark NPEs that cannot be found by other tools. Specifi-
cally, WHEELJACK finds 8 unique benchmark NPEs, owing to
our enhanced field tracking and invocation analysis capability.
Besides, WHEELJACK can respectively find 3 of the 7, 0 of the
2, 2 of the 8, 2 of the 3, and 4 of the 7 benchmark NPEs found
by CFNULLNESS, NULLAWAY, INFER-ERADICATE, SPOT-
BUGSHT, and SPOTBUGSLT. These results indicate that these
tools have complementary capabilities with each other.

Summary. WHEELJACK outperforms the best of the state-
of-the-art tools in recalling NPEs by 8.8%, while generating a
moderate amount of NPE warnings on average.

C. Precision Evaluation (RQ2)

To measure the precision of each tool, we randomly sampled
for each tool 50 NPE warnings from all generated NPE warn-
ings across all projects, and manually investigated each NPE
warning by digging deep into the code to determine whether it
is indeed an NPE. We report the precision results in Table V.

WHEELJACK achieves the second highest precision of 52%
with an acceptable average number of NPE warnings. For tools
that use type analysis, CFNULLNESS and INFER-ERADICATE
achieve the lowest precision but generate the largest amount of
NPE warnings. As a result, the majority of their NPE warnings
are false positives. NULLAWAY has the highest precision among
type-based tools with the fewest NPE warnings generated, but
its precision is still 20% lower than WHEELJACK. The precision
of SPOTBUGSHT is 60%, which is the highest. However, it
only generates a very small number of NPE warnings, and thus
it may miss NPEs (as revealed by the low recall in Sec. IV-B).

We summarized three reasons of imprecision of the tools
that use type analysis. First, many unannotated fields that are
not initialized in the constructor could be initialized latter or
used within a defensive null check. However, type-based tools
would report the unannotated fields. Second, an invocation that
returns a null value is usually followed by a null check before
dereference or the return value is not dereferenced, which will
not cause any NPE consequently. If the invoked method is not
annotated, however, type-based tools would report it. Third,

1 public void m() {
2 if (getField() != null) {
3 getField().toString();
4 }
5 }
6

7 public Object getField() {
8 return field;
9 }

Fig. 9: Example of Getter

1 public void m(Object arg) {
2 requireNonNull(arg);
3 arg.toString();
4 }
5

6 public static void requireNonNull(Object arg) {
7 if (arg == null) throw new RuntimeException();
8 }

Fig. 10: Example of Argument after Invocation

1 public void m() {
2 Object obj = null;
3 // getOrientation only returns two kinds of values
4 Orientation ori = getOrientation();
5 if (ori == HORIZONTAL) {
6 obj = new Object();
7 }
8 else if (ori == VERTICAL) {
9 obj = new Object();

10 }
11 obj.toString();
12 }

Fig. 11: Example of Limited Kinds of Values

when a nullable argument is passed to an unannotated parameter
of a method, type-based tools would report an NPE warning.
However, the nullable argument could be used safely inside
the method, e.g., within a null check.

SPOTBUGS’s imprecision is mainly caused by its limited ca-
pability in analyzing invocations. It is a quite common practice
to use getters to access an object’s fields. For example, at line
3 of Fig. 9, the return value of getField would not be null
because of the null check at line 2. SPOTBUGS would report the
dereference as risky, but WHEELJACK could figure out that the
variable field is non-null after the null check. Another typical
case is that, after an invocation, an argument could become non-
null. For example, at line 3 of Fig. 10, arg is not null because
of the invocation of requireNonNull at line 2. SPOTBUGS
could not leverage the information brought by the invocation,
whereas WHEELJACK could distinguish the variable arg at line
3 as non-null. Besides, SPOTBUGS also introduces imprecision
in argument passing as type-based tools do, and it does not
have the capability to analyze instanceof checks.

WHEELJACK could misjudge a dereference as risky in two
major situations. First, when a variable has limited kinds of
values, but WHEELJACK does not know. For example, at line 11
of Fig. 11, the variable obj is indeed initialized because ori

only has two kinds of values, but WHEELJACK would falsely
report an NPE warning. Second, conditional checks are not fully
supported in WHEELJACK, which leads to a limited support in
path-sensitivity, and causes wrong NPE warnings.

Furthermore, we sampled 20 NPE warnings for submitting
issues. However, 6 of them have already been fixed in the latest

��� ������� ������� ������� ������� ������� �������

�3�U�R��H�F�W �6���H ��Q ���Q�H�V �R�I �&�R�G�H

��

������

������

������

�����

��������
�7
��P

�H
��6
�H�F
�R
�Q
�G
�

(a) Time Overhead w.r.t. Project Size

0 1 2 3

�)��H��G �'�H�S�W	

0

10

20

30

40

50

60

70

80

90

�5
�H�F
�D�
�
��

��
�3
�U�H
�F�
�V�
�R
�Q
��

�
�D�Q
�G
�$
�Y
�H�U
�D�
�H
�
�D�U
�Q
��Q
�
�1
�X
�P
�E
�H�U

��
�

�5�H�F�D��

�3�U�H�F��V��R�Q

�$�Y�H�U�D��H ��D�U�Q��Q� �1�X�P�E�H�U

�7��P�H

��

����

����

#��

������

������

������

��#��

������

�7
��P

�H
�6
�H�F
�R
�Q
�G
�

(b) Sensitivity of Field Depth

0 1 2 3

��Q�Y�R�F�D�W��R�Q �'�H�S�W�

0

10

20

30

40

50

60

70

80

90

�5
�H�F
�D�
�
���

��
�3
�U�H
�F�
�V�
�R
�Q
���

�
�D�Q
�G
�$
�Y
�H�U
�D�
�H
�
�D�U
�Q
��Q
�
�1
�X
�P
�E
�H�U

���
�

�5�H�F�D��

�3�U�H�F��V��R�Q

�$�Y�H�U�D��H ��D�U�Q��Q� �1�X�P�E�H�U

�7��P�H

��

����

����

#��

������

������

������

��#��

������

�7
��P

�H
��6
�H�F
�R
�Q
�G
�

(c) Sensitivity of Invocation Depth
Fig. 12: Results of Time Overhead and Parameter Sensitivity Analysis

project version, and 6 of them have been deleted or deprecated
in the latest project version. Therefore, we submitted 8 NPE
issues for 8 open-source projects, and 5 and 2 of them have
been confirmed and fixed by developers. The other 3 issues are
still waiting for confirmation. These results demonstrate the
usefulness of WHEELJACK in practice.

Summary. WHEELJACK achieves a 8% lower precision in
detecting NPEs than the best of the state-of-the-art tools, while
generating much more NPE warnings.

D. Efficiency Evaluation (RQ3)
We measured the lines of Java code of each project as well as

the time spent for each project by running WHEELJACK. Notice
that due to the way that benchmark NPEs were constructed [28],
some projects had multiple versions, and we had 57 project
versions for 28 projects. The result is shown in Fig. 12a. Overall,
we observe an approximately linear growth of time with the
increase of project size. We see two outliers that are caused by
complicated data structures or invocation relationships in two
project versions. Numerically, WHEELJACK takes less than 270
seconds for 55 of the 57 project versions with an average of 49
seconds. Besides, WHEELJACK takes 40 seconds for the largest
project version which has 574K lines of Java code.

Summary. The time overhead of WHEELJACK has an ap-
proximately linear growth with the increase of project size. It
scales to large projects with 574K lines of Java code.

E. Sensitivity Analysis (RQ4)
Two parameters, i.e., field depth and invocation depth, are

configurable in WHEELJACK (Sec. III-D). They are set to 2 and
2 by default, which is used for RQ1, RQ2 and RQ3. To evaluate
their sensitivity to the effectiveness and efficiency of WHEEL-
JACK, we re-configured one parameter and fixed the other one,
and re-ran WHEELJACK. Field depth and invocation depth were
configured from 0 to 3 by a step of 1. For each configuration, we
randomly sampled 30 NPE warnings to measure precision.

1) Field Depth: Fig. 12b presents the result of field depth. As
the field depth increased from 0 to 1, the nullness status of fields
became tracked. Hence, the average number of NPE warnings
greatly increased by 12.5%. Meanwhile, both precision and re-
call had a slight improvement, but the time overhead was nearly
doubled. As the field depth increased from 1 to 3, all the four
metrics were relatively stable, potentially because most projects’
data structures are not very complicated. Therefore, we suggest
a positive value for the field depth, and use 2 by default.

2) Invocation Depth: Fig. 12c shows the result of invocation
depth. When the invocation depth was set to 0, WHEELJACK did
not conduct invocation analysis, and conservatively handled the
return value, receiver and arguments (Sec. III-D2). Hence, the
average number of NPE warnings was small, but the precision
was high. As the invocation depth increased, the average num-
ber of NPE warnings first increased fast and then grew slowly.
At the same time, the time overhead grew rapidly (e.g., from
89.6 seconds at depth 2 to 186.6 seconds at depth 3). The recall
increased by 5.3% from depth 0 to 1, then by 1.7% from depth 1
to 2 and remained stable from depth 2 to 3. The recall increased
because invocation analysis assisted in detecting more NPEs
related with invocations. The precision suffered a decrease from
depth 1 to 2 because more NPE warnings were generated and
imprecision accumulated as the depth increased. Therefore, we
suggest 1 or 2 for the invocation depth, and use 2 by default.

Summary. Field depth and invocation depth can significantly
affect the number of NPE warnings. A configuration with a rea-
sonable tradeoff between scalability and accuracy can be setting
2 to both field depth and invocation depth.

F. Threats to Validity
One major threat to our evaluation is the size of benchmark

NPEs used in our recall evaluation. We believe they are good
representatives of NPEs as they are from a diverse set of 28
projects from two popular bug datasets. Another main threat is
our manual investigation to determine the recall and precision of
each tool in RQ1, RQ2 and RQ4. To mitigate the threat, four of
the authors conducted an independent analysis, while a fifth
author was involved to resolve disagreement.

V. CONCLUSIONS

We have proposed WHEELJACK, a practical tool to detect
NPEs for Java. WHEELJACK provides a new perspective of
nullness status abstraction as well as a new way for handling
invocations in order to reduce false positives and false negatives.
Our evaluation on 28 Java projects has demonstrated the effec-
tiveness and efficiency of WHEELJACK. We have released the
source code of WHEELJACK and our experimental data at our
website https://wheeljack23.github.io/.

ACKNOWLEDGMENT

This work was supported by the National Natural Science
Foundation of China (Grant No. 62332005 and 62372114). Bi-
huan Chen is the corresponding author of this work.

https://wheeljack23.github.io/

REFERENCES
[1] N. Ayewah and W. Pugh, “Null dereference analysis in practice,” in

Proceedings of the 9th ACM SIGPLAN-SIGSOFT Workshop on Program
Analysis for Software Tools and Engineering, 2010, p. 65–72.

[2] S. Banerjee, L. Clapp, and M. Sridharan, “Nullaway: Practical type-based
null safety for java,” in Proceedings of the 27th ACM Joint Meeting
on European Software Engineering Conference and Symposium on the
Foundations of Software Engineering, 2019, pp. 740–750.

[3] C. Calcagno and D. Distefano, “Infer: An automatic program verifier
for memory safety of c programs,” in Proceedings of the NASA Formal
Methods Symposium, 2011, pp. 459–465.

[4] C. Calcagno, D. Distefano, J. Dubreil, D. Gabi, P. Hooimeijer, M. Luca,
P. O’Hearn, I. Papakonstantinou, J. Purbrick, and D. Rodriguez, “Moving
fast with software verification,” in NASA Formal Methods Symposium,
2015, pp. 3–11.

[5] C. Calcagno, D. Distefano, P. O’Hearn, and H. Yang, “Compositional
shape analysis by means of bi-abduction,” in Proceedings of the
36th annual ACM SIGPLAN-SIGACT symposium on Principles of
programming languages, 2009, pp. 289–300.

[6] M. Christakis and C. Bird, “What developers want and need from program
analysis: An empirical study,” in Proceedings of the 31st IEEE/ACM
International Conference on Automated Software Engineering, 2016, pp.
332–343.

[7] W. Dietl, S. Dietzel, M. D. Ernst, K. Muşlu, and T. W. Schiller,
“Building and using pluggable type-checkers,” in Proceedings of the
33rd International Conference on Software Engineering, 2011, pp. 681–
690.

[8] Facebook, “Infer: Eradicate,” https://fbinfer.com/docs/next/
checker-eradicate/, 2022, accessed: 2022-05-05.

[9] Google, “Error Prone,” http://errorprone.info/, 2022, accessed: 2022-04-
27.

[10] A. Habib and M. Pradel, “How many of all bugs do we find? a study of
static bug detectors,” in Proceedings of the 33rd IEEE/ACM International
Conference on Automated Software Engineering, 2018, pp. 317–328.

[11] D. Hovemeyer and W. Pugh, “Finding bugs is easy,” ACM Sigplan
Notices, vol. 39, no. 12, pp. 92–106, 2004.

[12] ——, “Finding more null pointer bugs, but not too many,” in Proceedings
of the 7th ACM SIGPLAN-SIGSOFT workshop on Program analysis for
software tools and engineering, 2007, pp. 9–14.

[13] D. Hovemeyer, J. Spacco, and W. Pugh, “Evaluating and tuning a static
analysis to find null pointer bugs,” in Proceedings of the 6th ACM
SIGPLAN-SIGSOFT workshop on Program analysis for software tools
and engineering, 2005, pp. 13–19.

[14] B. Johnson, Y. Song, E. Murphy-Hill, and R. Bowdidge, “Why don’t
software developers use static analysis tools to find bugs?” in Proceedings
of the 35th International Conference on Software Engineering, 2013, pp.
672–681.

[15] R. Just, D. Jalali, and M. D. Ernst, “Defects4j: A database of existing
faults to enable controlled testing studies for java programs,” in
Proceedings of the International Symposium on Software Testing and
Analysis, 2014, p. 437–440.

[16] O. Lhoták and L. Hendren, “Scaling java points-to analysis using
spark,” in Proceedings of the 12th International Conference on Compiler
Construction, 2003, p. 153–169.

[17] A. Loginov, E. Yahav, S. Chandra, S. Fink, N. Rinetzky, and M. Nanda,
“Verifying dereference safety via expanding-scope analysis,” in Pro-
ceedings of the 2008 international symposium on Software testing and
analysis, 2008, pp. 213–224.

[18] R. Madhavan and R. Komondoor, “Null dereference verification via over-
approximated weakest pre-conditions analysis,” ACM Sigplan Notices,
vol. 46, no. 10, pp. 1033–1052, 2011.

[19] MITRE, “2022 CWE Top 25 Most Dangerous Software Weaknesses,”
https://cwe.mitre.org/top25/archive/2022/2022 cwe top25.html, 2022, ac-
cessed: 2022-08-12.

[20] ——, “CWE-476: NULL Pointer Dereference,” https://cwe.mitre.org/
data/definitions/476.html, 2022, accessed: 2022-08-12.

[21] M. G. Nanda and S. Sinha, “Accurate interprocedural null-dereference
analysis for java,” in Proceedings of the IEEE 31st International
Conference on Software Engineering, 2009, pp. 133–143.

[22] M. M. Papi, M. Ali, T. L. Correa Jr, J. H. Perkins, and M. D. Ernst,
“Practical pluggable types for java,” in Proceedings of the International
Symposium on Software Testing and Analysis, 2008, pp. 201–212.

[23] D. Romano, M. Di Penta, and G. Antoniol, “An approach for search based
testing of null pointer exceptions,” in Proceedings of the Fourth IEEE

international conference on software testing, verification and validation,
2011, pp. 160–169.

[24] N. Rutar, C. Almazan, and J. Foster, “A comparison of bug finding
tools for java,” in Proceedings of the 15th International Symposium on
Software Reliability Engineering, 2004, pp. 245–256.

[25] M. Sridharan, S. Chandra, J. Dolby, S. J. Fink, and E. Yahav, “Alias
analysis for object-oriented programs,” in Aliasing in Object-Oriented
Programming: Types, Analysis and Verification, 2013, pp. 196–232.

[26] F. Thung, Lucia, D. Lo, L. Jiang, F. Rahman, and P. T. Devanbu, “To what
extent could we detect field defects? an empirical study of false negatives
in static bug finding tools,” in Proceedings of the 27th IEEE/ACM
International Conference on Automated Software Engineering, 2012, p.
50–59.

[27] D. A. Tomassi, N. Dmeiri, Y. Wang, A. Bhowmick, Y.-C. Liu, P. T.
Devanbu, B. Vasilescu, and C. Rubio-González, “Bugswarm: Mining and
continuously growing a dataset of reproducible failures and fixes,” in
Proceedings of the IEEE/ACM 41st International Conference on Software
Engineering, 2019, pp. 339–349.

[28] D. A. Tomassi and C. Rubio-González, “On the real-world effectiveness
of static bug detectors at finding null pointer exceptions,” in Proceedings
of the 36th IEEE/ACM International Conference on Automated Software
Engineering, 2021, pp. 292–303.

[29] R. Vallée-Rai, P. Co, E. Gagnon, L. Hendren, P. Lam, and V. Sundaresan,
“Soot - a java bytecode optimization framework,” in Proceedings of the
1999 Conference of the Centre for Advanced Studies on Collaborative
Research, 1999.

https://fbinfer.com/docs/next/checker-eradicate/
https://fbinfer.com/docs/next/checker-eradicate/
http://errorprone.info/
https://cwe.mitre.org/top25/archive/2022/2022_cwe_top25.html
https://cwe.mitre.org/data/definitions/476.html
https://cwe.mitre.org/data/definitions/476.html

	Introduction
	Related Work and Motivation
	Type-Based NPE Detector
	Dataflow-Based NPE Detector
	Approach Capability Comparison
	Motivating Examples
	Field Initialization
	Object Aliasing
	Complicated Structure
	Return Value
	Argument Passing
	Side Effect of Invocation

	Methodology
	Nullness Status Abstraction
	Intraprocedural Analysis
	Preliminary Settings
	Nullness Analysis
	Reachability Analysis
	NPE Warning Generation

	Interprocedural Analysis
	Balancing Scalability and Accuracy
	Field Depth
	Invocation Depth

	Evaluation
	Evaluation Setup
	Recall Evaluation (RQ1)
	Precision Evaluation (RQ2)
	Efficiency Evaluation (RQ3)
	Sensitivity Analysis (RQ4)
	Field Depth
	Invocation Depth

	Threats to Validity

	Conclusions

