
Slice-Based Code Change Representation Learning
Fengyi Zhang, Bihuan Chen, Yufei Zhao, Xin Peng

School of Computer Science and Shanghai Key Laboratory of Data Science, Fudan University, China

Abstract—Code changes are at the very core of software develop-
ment and maintenance. Deep learning techniques have been used
to build a model from a massive number of code changes to solve
software engineering tasks, e.g., commit message generation and
bug-fix commit identification. However, existing code change rep-
resentation learning approaches represent code change as lexical
tokens or syntactical AST (abstract syntax tree) paths, limiting the
capability to learn semantics of code changes. Besides, they mostly
do not consider noisy or tangled code change, hurting the accuracy
of solved tasks. To address the above problems, we first propose a
slice-based code change representation approach which considers
data and control dependencies between changed code and un-
changed code. Then, we propose a pre-trained sparse Transformer
model, named CCS2VEC, to learn code change representations
with three pre-training tasks. Our experiments by fine-tuning our
pre-trained model on three downstream tasks have demonstrated
the improvement of CCS2VEC over the state-of-the-art CC2VEC.

Index Terms—code change, code slice, representation learning

I. INTRODUCTION

The source code of software systems is continuously evolving
by adding new features, fixing bugs, improving performance, or
conducting refactoring, often in the form of commits. Therefore,
code changes are at the very core of software development and
maintenance. They usually need to be understood by developers
when performing daily software development and maintenance
tasks [44]. To ease the burden of developers, deep learning tech-
niques have been used to build a model from a massive number
of code changes. This model can be used to automate software
engineering tasks, commit message generation [22, 28, 29], bug-
fix commit identification [19], security patch identification [33,
61, 64], just-in-time defect prediction [17], to name but a few.

Code change representation learning plays a key role in these
deep learning-based approaches. On one hand, general-purpose
code change representation learning approaches have been pro-
posed to solve multiple software engineering tasks [4, 18, 34,
38, 48]. While some of their models [4, 34] can be fine-tuned to
solve different tasks, others [18, 38, 48] need to be retrained for
different tasks. On the other hand, task-specific code change rep-
resentation learning approaches have been widely explored, e.g.,
commit message generation [22] and just-in-time defect predic-
tion [17]. They often lack the generality to solve other tasks.

One common problem of the two types of approaches is that
they represent code change as a sequence of code tokens or AST
(abstract syntax tree) paths, and hence have limited capability to
learn semantics of code change with respect to control and data
dependencies. However, these dependencies are important for
understanding code change and solving tasks. For example, the
control flow between the definition and a newly-added usage of
a variable helps to determine whether the newly-added variable

usage introduces a null pointer defect. Another common prob-
lem is that they mostly do not take into account noisy or tangled
code change [16, 23], and hence impact the accuracy of solved
tasks. For example, bug-fix code change and irrelevant refactor-
ing code change are tangled in one commit, which may impact
bug-fix commit identification models. The other problem is the
lack of labeled data of code changes, especially for bug-related
tasks (e.g., just-in-time defect prediction), although the data of
code changes is actually massive from open-source projects.

To overcome these problems, we propose a slice-based code
change representation approach which further takes into account
the unchanged code that has control or data dependencies to the
changed code. In particular, we conduct forward and backward
slicing on the program dependence graph (PDG) of the code
before (resp. after) the change according to the removed (resp.
added) code. Then, we represent the code before (resp. after)
the change as a sequence of slice, control flow paths, statements,
and code tokens with hierarchical structure. In other words, the
control flow paths are from the slice, the statements are from the
control flow paths, and the code tokens are from the statements.
Based on this representation, we propose a pre-trained sparse
Transformer model CCS2VEC for code changes. Specifically, we
follow the sparse Transformer [27] to incorporate the hierarchi-
cal structure of code changes, i.e., we use the hierarchical struc-
ture to decide the sparse pattern. We pre-train the model using
three pre-training tasks to learn code change representations.
Based on our pre-trained model, we fine-tune it to solve various
downstream tasks. For a commit-level task, we adopt a Multiple
Instance Learning pooling layer [20] before the task model to
learn commit representations from multiple code changes in
commits. In this way, noisy code changes in a commit can have
a small contribution to the final commit representation.

We have conducted a set of experiments to evaluate the effec-
tiveness of our pre-trained model, which is learned from 2,917K
code changes from 234K commits from 109 open-source Java
projects. We compare CCS2VEC with the state-of-the-art code
change representation learning approach CC2VEC [18] on three
downstream tasks. Our results have demonstrated that CCS2VEC
outperforms CC2VEC by 25.2% in BLEU-4 score on the task of
commit message generation, and 4.5% and 20.8% in F1-score
respectively on the task of bug-fix commit identification and
just-in-time defect prediction. Besides, we conduct an ablation
study to reveal the contribution of the design decisions in our
approach, as well as a sensitivity analysis to measure the sen-
sitivity of our approach to its configurable parameters.

In summary, this work makes the following contributions.
• We proposed a slice-based code change representation ap-

proach, which considers the data and control dependencies

between changed code and unchanged code.
• We proposed a pre-trained sparse Transformer model, named

CCS2VEC, to learn code change representations.
• We learned the pre-trained model, and fine-tuned it on three

downstream tasks to show its improvement over CC2VEC.

II. PRELIMINARIES AND MOTIVATION

We first introduce preliminary knowledge related to our ap-
proach, then present a motivating example to illustrate our ideas.

A. Preliminaries

Vanilla Transformer. The vanilla Transformer [50] follows
an encoder-decoder architecture using stacked self-attention and
point-wise, fully connected layers for the encoder and decoder.
The information fusing with self-attention can be viewed as
message passing on a fully connected graph, where the input to-
kens are viewed as nodes and the attentions as edges. Such a per-
spective provides us with a chance to encode different graph
structures by incorporating the inductive bias of self-attention.

Sparse Transformer. In the default self-attention, each token
attends to all other tokens in the input sequence. However, it is
observed that in well-trained Transformers, the learned attention
matrix tends to be sparse [8], i.e., most of the data points in the
matrix are not attended over. This observation leads to a line of
work on sparse Transformers that aim to reduce the computation
complexity by incorporating structural bias to limit the number
of query-key pairs that each query attends to [27]. Most of the
existing sparse Transformers reduce the number of attending
pairs through a pre-defined or random sparse pattern.

Multiple Instance Learning. Multiple Instance Learning
(MIL) [20] refers to the task of predicting a label Y given a bag
of instances X = {x1, x2, ..., xK}, where the instances exhibit
neither dependency nor ordering among each other. The process
that maps representations of X to Y is referred to as MIL pool-
ing. A typical approach to solve the task is the embedding-based
approach, which first learns the representation of each instance,
then uses MIL pooling to obtain a bag representation that is in-
dependent of the permutation of instances in the bag, and finally
leverages a bag-level classifier to produce the final prediction.
An attention mechanism is often adopted in MIL pooling to aid
learning and provide weights among the instances, indicating
the contribution of each instance to the final prediction.

B. A Motivating Example

We present an actual commit in Fig. 1 to illustrate the motiva-
tion of our approach. This commit contains three hunks starting
at Line 54, 57 and 63, respectively. Each hunk is a span of con-
secutive lines of changed code, and we refer to a hunk as a code
change. The first hunk replaces variable name startNode to
brNode. The second hunk replaces variable startNode to
brNode, and adds an empty check on variable firstLevel.
The last hunk replaces variable name startNode to node.

A comprehensive semantic understanding is needed to cap-
ture the intention behind these code changes. At Line 57, both
variables startNode and brNode are linked to the same def-
inition at Line 54 by data flow, which suggests that the hunk is a

Fig. 1: A Motivating Example of Code Changes

variable renaming rather than a variable replacement. However,
at Line 63, variables startNode and node are lined to differ-
ent definitions at Line 54 and 61 by data flow, which suggests
that the hunk is about variable replacement rather than variable
renaming. Besides, there is no validation in the control flow path
between the definition and usage of variable firstLevel, it
suggests a potential risk and an empty check before the usage of
firstLevel is needed. We can also observe that not all the
hunks correspond to the commit message “bug fix: variable
misuse”. In fact, only the last hunk is relevant to the commit
message, while the other two hunks are tangled code changes.

This example shows the obstacles of existing code change
representation learning approaches (e.g., [17, 18, 22, 38]) in
learning semantics under code changes. They use lexical code
tokens or syntactical AST paths to represent code changes, and
hence it is non-trivial for them to learn the control and data
dependencies between changed code and unchanged code.

Motivated by these observations, we propose a pre-trained ap-
proach that leverages semantic structure of code changes to
learn code change representations. Our approach is built upon (i)
a slice-based code change representation to capture control and
data dependencies between changed code and unchanged code
(see Sec. III-B), (ii) a pre-trained sparse Transformer model to
learn code change representations (see Sec. III-C), and (iii) a
fine-tuning process that uses labeled datasets to solve down-
stream tasks while weighing the importance of multiple code
changes in a commit for commit-level tasks (see Sec. III-D).

III. METHODOLOGY

We first present an overview of our approach, and then ex-
plain each step of our approach in detail.

A. Approach Overview

At a high level, our goal is to represent a code change in such
a way that it can capture semantic information behind the code
change, enable learning across massive historical code changes,
and be used for different downstream tasks. To this end, we pro-
pose a pre-trained approach that leverages semantic structure
of code changes to learn their representations. Specifically, our
approach consists of the following three main steps.
• Slice-Based Code Change Representation. Given a commit,

for each changed method, we build a program dependence
graph (PDG) of the method before (resp. after) the change at
the statement level without the need of a build environment.
Then, for each hunk in each changed method, we conduct

(a) Code (b) PDG (c) Slice (d) Path
Fig. 2: An Example of Code Change Slice and Representation

slicing on the PDG before (resp. after) the change according
to the removed (resp. added) statements in the hunk. Finally,
we represent the hunk before (resp. after) the change as a se-
quence of slice, control flow paths in the slice, statements in
the control flow paths, and code tokens in the statements; i.e.,
we represent the hunk with hierarchical structure.

• Sparse Transformer Model Pre-Training. With our slice-
based representation, we propose a pre-trained sparse Trans-
former model CCS2VEC to learn code change representations.
In CCS2VEC, we use the hierarchical structure knowledge in
our code change representation to decide the sparse pattern of
the sparse Transformer, and use positional encoding to con-
sider the ordering information in the sequence. We pre-train
our model using three pre-training tasks.

• Downstream Task Fine-Tuning. We fine-tune our model to
solve various downstream tasks. Specifically, for a commit-
level task, we add a MIL pooling layer before the task model
to learn commit representations from multiple hunks in com-
mits. In this way, noisy hunks in a commit can have a small
contribution to the final commit representation.

B. Slice-Based Code Change Representation

For a code change, our interest is “which part of the program
is relevant to the changed part?”. To reveal this semantic, we
leverage data and control dependencies among statements inside
a program to track the relevant part, namely a code change slice.
We use two sub-steps, i.e., PDG construction and data and con-
trol dependency tracking, to produce such a slice. To better learn
the semantics under the slice, we further take advantage of the
hierarchical structure in the slice to represent a code change
(i.e., the last sub-step code change representation).

Step 1: PDG Construction. For each changed method m in
a commit, we construct a PDG Gold for the method before the
change (denoted as mold) and a PDG Gnew for the method after
the change (denoted as mnew). We define the PDG of a method
as a 11-tuple G = 〈N , ns,Ne,Nc, T , C,DD, CD, ι, τ, ψ〉. In
particular, N denotes a set of nodes, and each node n ∈ N
denotes a statement in the method source code. ns denotes the
entry node of G, and we use method declaration statement as the
entry node. For example, Fig. 2a shows the code of a method
mnew, where return x is the added code; and Fig. 2b shows
its PDG, where node 5 is the entry node.Ne denotes a set of exit
nodes of G. We regard return statement and throw statement as
exit nodes, and set an exit node at the end of method execution
if there is no return or throw statement. For example, node 13
in Fig. 2b is an exit node. Nc denotes a set of nodes that are

changed in the commit. Specifically, in Gold (resp. Gnew), Nc

corresponds to the statements that are removed (resp. added)
in mold (resp. mnew) in the commit. For example, node 13 is
the added node. T denotes a set of source code tokens in the
method. C : N ×N denotes a set of control flow edges, and
each edge c = n1 ↪→ n2 ∈ C denotes a control flow between n1
and n2. The dotted gray lines in Fig. 2b are control flow edges.
DD : N ×N denotes a set of data dependency edges, and each
edge dd = n1 ↪→ n2 ∈ DD denotes a data dependency between
n1 and n2. The black solid lines in Fig. 2b are data dependency
edges. CD : N ×N denotes a set of control dependency edges,
and each edge cd = n1 ↪→ n2 ∈ CD denotes a control depen-
dency, indicating that n1 is a control structure statement (e.g.,
a for loop) and n2 is a statement inside the control structure.
The red solid lines in Fig. 2b are control dependency edges. ι
denotes a function that maps each node n ∈ N to a sequence
of source code tokens ι(n) in the corresponding statement. τ
denotes a function that maps each node n ∈ N to a set of vari-
ables τ(n) that are defined in n. For example, node 8 in Fig. 2b
has a definition of variable y. ψ denotes a function that maps
each node n ∈ N to a set of variables ψ(n) that are used in n.
For example, node 8 in Fig. 2b has a usage of variable a.

We construct Gold and Gnew by a lightweight tool PROGEX
[14], which works at the source code level without the need of a
build environment. We use the out-degree of nodes with respect
to control flow edges to determine the exit node set Ne, and use
the diff in the commit to determine the changed node set Nc.

Step 2: Data and Control Dependency Tracking. After con-
structing Gold for mold and Gnew for mnew, we represent the
code changes in m in the commit as a set of hunks H, and each
hunk h ∈ H has a set of consecutive changed nodes (i.e., the re-
moved (resp. added) nodes Nrem (resp. Nadd) belong to Nc of
Gold (resp. Gnew). For each hunk h, we first track the nodes
N data

old (resp. N data
new) that have data dependency with the nodes

in Nrem (resp. Nadd) on Gold (resp. Gnew). Specifically, for
each removed (resp. added) node ni ∈ Nrem (resp. Nadd), we
conduct forward and backward reachability analysis on Gold
(resp. Gnew) with respect to the data dependency edges in DD,
and add the reached nodes to N data

old (resp. N data
new). Therefore,

N data
old (resp. N data

new) is a union of the reached nodes of all the
removed (resp. added) nodes in Nrem (resp. Nadd). Here we set
a threshold value Kdata to limit the maximum depth during
data dependency tracking. For example, for the added node 13
in Fig. 2b, we add nodes 5, 6 and 10 to N data

new .
Then, we track the nodes N ctrl

old (resp. N ctrl
new) that have con-

trol dependency with any node in N data
old ∪Nrem (resp. N data

new

∪ Nadd). Therefore, for each node n ∈ N data
old ∪ Nrem (resp.

N data
new ∪Nadd), we conduct backward reachability analysis on
Gold (resp. Gnew) with respect to the control dependency edges
in CD. For each reached node ncur, if there exists an edge
ncur ↪→ n ∈ CD, we add ncur to N ctrl

old (resp. N ctrl
new). It means

that ncur is the direct control structure that encapsulates n, and
hence we always take it into account. Otherwise, we calculate
the predecessor sibling nodes Npred of ncur (i.e., the nodes that
are executed before ncur and under the same residing control
structure of ncur). If there exists any node n′ ∈ Npred such that

τ(n′)∩ψ(n) 6= ∅, we add ncur to N ctrl
old (resp. N ctrl

new). It means
that for a higher-order control structure, if the control structure
has a predecessor sibling statement that has the definition of a
variable used at n, we consider the control structure as having
influence on n. Here we also set a threshold value Kctrl to
limit the maximum depth during tracking. For example, node
9 in Fig. 2b is a direct control structure of node 10, and hence
node 9 is added to N ctrl

new. However, node 7 is a higher-order
control structure of node 10, and its predecessor sibling node
6 does not define the variable b that is used in node 10, and
thus node 7 is not added to N ctrl

new.
Finally, for each hunk h, we remove from mold (resp. mnew)

the statements that are not included in N data
old ∪N ctrl

old ∪Nrem

(resp. N data
new ∪N ctrl

new ∪Nadd) (i.e., we remove the statements
that are not relevant to the changed code in h) to get the method
after slicing m′old (resp. m′new). We define m′old (resp. m′new)
as a code change slice Sold (resp. Snew) for the hunk h.

Step 3: Code Change Representation. Given a code change
slice Sold (resp. Snew), we represent it as a sequence Lold (resp.
Lnew) = (s, p1, ..., px, n1, ..., ny, t1, ..., tz).

In particular, s denotes a PDG of the code change slice. We
define s as a 8-tuple 〈N , ns,Ne, T , C,DD, CD, ι〉, where N ,
ns, Ne, T , C, DD, CD and ι share the same meaning to those
in G. Notice that N = N data

old ∪N ctrl
old ∪Nrem (resp. N data

new ∪
N ctrl

new ∪Nadd) in sold (resp. snew). Similar to G, we leverage
PROGEX [14] to generate s. For example, Fig. 2c shows the
PDG of the code change slice generated from Fig. 2a.

Further, p1...px denotes all possible control flow paths from
ns to a node inNe in s. To produce finite control flow paths, we
restrict that no control flow path contains a cycle. For example,
there are two possible control flow paths in Fig. 2c, and one of
them is shown in Fig 2d. n1...ny denotes nodes inN ordered by
the line number of the corresponding statements. t1...tz denotes
source code tokens in all nodes (i.e., statements).

We can observe that we represent a code change slice in such
a way that it contains multiple types with rich hierarchical struc-
ture relations for the ease of semantic understanding. Specifi-
cally, we define the following eight types of relation sets.
• R1 denotes the relations between the graph of a code change

slice s and the control flow paths p1...px. Each relation s ↪→
pi ∈ R1 indicates that a control flow path pi is contained in s.

• R2 denotes the relations between p1...px and the statement
nodes n1...ny . Each relation pi ↪→ nj ∈ R2 indicates that a
statement node nj is contained in a control flow path pi.

• R3 denotes the relations between any two changed nodes in
Nrem (resp. Nadd). Each relation nich ↪→ njch indicates a
weight between two changed nodes nich and njch.

• R4 denotes the relations between Nrem (resp. Nadd) and
N data

old (resp. N data
new). Each relation nch ↪→ ndata indicates

a data dependency between a changed node nch and ndata.
• R5 denotes the relations between two nodes in N data

old (resp.
N data

new). Each relation nidata ↪→ njdata indicates a data de-
pendency between two nodes nidata and njdata.

• R6 denotes the relations between Nrem ∪ N data
old (resp.

Nadd ∪N data
new) and N ctrl

old (resp. N ctrl
new). Each relation n ↪→

nctrl indicates a control dependency between n and nctrl.

Bidirectional Encoder

Autoregressive Decoder

ℒ!"#

ℒ$%&

$! $$ %! %% &! &&… … …

$! $$ %! %% &! &&… … …

output

Cross Attention

Fig. 3: Model Architecture of CCS2VEC

• R7 denotes the relations between two nodes in N ctrl
old (resp.

N ctrl
new). Each relation nictrl ↪→ njctrl indicates a control de-

pendency between two nodes nictrl and njctrl.
• R8 denotes the relations between n1...ny and t1...tz . Each

relation ni ↪→ tj indicates that the statement node ni contains
a source code token tj .
Therefore, L can be considered as a graph B whose nodes are

all the input tokens in L and whose edges are R1∪R2∪...∪R8.
The nodes and edges in B have various types.

C. Sparse Transformer Model Pre-Training

With our slice-based code change representation, i.e., Lold

and Lnew, for each hunk, we develop a pre-trained sparse Trans-
former model CCS2VEC to learn a representation for each hunk.

Model Architecture. Fig. 3 shows the model architecture of
CCS2VEC, which adopts an encoder-decoder Transformer as the
overall architecture. The encoder is a bidirectional model, and
the decoder is an autoregressive model. The sequence Lold is en-
coded with the bidirectional encoder, and then the likelihood of
the sequence Lnew is computed with the autoregressive decoder.
Each layer of the decoder performs a cross-attention over the
final hidden layer of the encoder. Overall, our approach follows
the design of BART architecture [24].

Specifically, the encoder and decoder share a similar Trans-
former module which takes a sequence L as input. It first con-
verts the sequence into an initial input embedding H0, where
the embedding of each token in the sequence is calculated by
adding up the initial token embedding and the positional embed-
ding. Then, it applies N Transformer layers on H0, where each
Transformer is identical in structure that applies a multi-head
graph self-attention layer followed by a feed forward layer. The
output of the n-th Transformer layer Hn is obtained by Eq. 1,
where norm(·) denotes a layer normalization, GSA(·) denotes
the multi-head graph self-attention, and FFN(·) denotes a two-
layer feed forward network.

Gn = norm(GSA(Hn−1) +Hn−1)

Hn = norm(FFN(Gn) +Gn)
(1)

For the n-th Transformer layer, GSA(·) is obtained by Eq. 2,
where the previous Transformer layer’s output Hn−1 is linearly
projected into the queries matrix by learnable parameter matrix
WQ

i . Another output of the previous Transformer layer An−1 is
linearly projected into the keys and values matrixes by learnable
parameter matrixes WK

i and WV
i respectively. An−1 denotes

data
dependency

nodes

control
dependency

nodes
source code

tokens
changed
nodes

ℛ1
a code change slice
contains a control flow path

ℛ2
a control flow path contains
a statement node

ℛ3
weight among changed
statement nodes

ℛ4, ℛ5 data dependency

ℛ6, ℛ7 control dependency

ℛ8
a statement node contains
a source code token

statement nodes

Region Representscontrol
flow paths)

)

*!… *"

control
flow paths

,!… ,#
-!… -$

changed
nodes

data
dependency

nodes

control
dependency

nodes

source code
tokens

Fig. 4: The Mask Matrix

the neighborhood representations in the previous Transformer
layer. For each node u in B, we calculate An−1

u by concatenat-
ing the hidden state of u’s neighborhoods A(u) in B (i.e., A(u)
contains the nodes in B which u has a relation to). M denotes
a mask matrix and PE denotes the relative positional encoding
of all the nodes in B, which are introduced in the following
sections. i ∈ [1, a] and a denotes the number of attention heads;
and WO

n denotes a learnable parameter matrix.

An−1 = [An−1
1 ; ...;An−1

|L|]

An−1
u = concat({hn−1v | v ∈ A(u)})

Qi = Hn−1WQ
i ,Ki = An−1WK

i , Vi = An−1WV
i

headi = softmax(
Qi(Ki + PE)T√

dk
+M)Vi

GSA(B, Hn−1) = [head1, ..., heada]W
O
n

(2)

Finally, we use the hidden state of s in Lnew at the final de-
coder layer as the representation of the hunk. Here we choose to
use s in Lnew rather than Lold as the representation because
it is updated by Lold in the pre-training tasks.

Masked Self-Attention. As introduced in Sec. III-B, L con-
tains rich hierarchical structure relations. We aim to incorporate
such relations in L into the Transformer layer through the mask
matrix M , resulting in a sparse Transformer. Specifically, we
define the mask matrix M (i.e., the sparse pattern) by allowing
each token in L to only attend over the tokens which it has a
relation to. Specifically, we define M by Eq. 3,

Mi,j =

{
0 ∃ ei,j ∈ R1 ∪R2 ∪ ... ∪R8

−∞ otherwise
(3)

where ei,j denotes a relation between the i-th token and j-th
token in L. If ei,j belongs toR1,R2, ..., orR8, Mi,j is set to 0,
which means that the i-th token in L is allowed to attend over
the j-th token. Otherwise, Mi,j is set to −∞, which means the
i-th token in L is not allowed to attend over the j-th token. As
visually presented in Fig. 4, each defined relation locates to a
region in M , and the blank regions indicate no relation between
tokens, and thus the attention is forbidden. Self-attention of a
token over its own is not shown for simplicity in Fig. 4.

Positional Encoding. We further consider the orders of the
tokens in L. As L contains multiple relation types, it is not feasi-
ble to use the vanilla absolute positional encoding. As suggested

by Shaw et al. [43], introducing the relative distances between
tokens helps capture their relative orders. We draw an analogy
on the underlying graph B of L, and define multiple latent
distance representations for different relation types.

Specifically, for each token v in A(u), we consider the rel-
ative positional difference in B between u and v, and assign
multiple latent representations ru,v on such difference accord-
ing to the relation type, as formulated in Eq. 4,

ru,v =

rch ∃ eu,v ∈ R3

rdata ∃ eu,v ∈ R4 ∪R5

rctrl ∃ eu,v ∈ R6 ∪R7

rsrc ∃ eu,v ∈ R8

(4)

where eu,v denotes a relation between token u and token v, and
rch, rdata, rctrl and rsrc are trainable parameters. Here we do
not assign ru,v for s and p1, ..., px in L because there is only
one code change slice in L and the control flow paths do not
embody any order information. Finally, we define the relative
positional encoding PE by Eq. 5,

PEu = concat({ru,v | v ∈ A(u)})
PE = [PE1;PE2; ...;PE|L|]

(5)

where concat(·) denotes a concatenating operation.
Pre-Training Tasks. We construct a sparse Transformer that

incorporates different node types and edge types in B into self-
attentions. To capture semantics of such a structure in B, we use
three pre-training tasks, i.e., node reconstruction, edge recon-
struction and code change translation. Before explaining how to
update learnable parameters by these pre-training tasks, we in-
troduce the embedding initialization of each node in B.

Node Embedding Initialization. Following BP-Transformer
[58], we divide the nodes in B of L into two disjoint sets, token
nodes and span nodes. Token nodes correspond to source code
tokens t1...tz , and span nodes correspond to the PDG of a code
change slice s, control flow paths p1...px, and statement nodes
n1...ny . The representations of span nodes are initialized with
all zeros, and the representations of token nodes are initialized
with their corresponding word embeddings.

Node Reconstruction Task. This task aims to update the repre-
sentation of each node in B of the sequence L, and is analogous
to the masked language modeling task in BERT [9]. The differ-
ence is that we regard the sequence L as its underlying graph B
and a node in B only accepts messages passed from its neighbor-
hood nodes in B. In this task, each region in R1∪R2∪ ...∪R8

serves as an bridge of message passing between nodes such that
a node is only updated by nodes in specified regions. We ran-
domly sample 15% of the nodes in B, replace them with the
[MASK] token 80% of the time, replace them with a random
token 10% of the time, and leave them unchanged 10% of the
time. The objective of this task is a cross entropy loss between
the predicted tokens and the original masked tokens.

Edge Reconstruction Task. This task aims to incorporate in-
formation from different edge types in the underlying graph B
of L. While we define eight types of relations in B, we only use

a subset of them, i.e., R4 and R5 that correspond to data depen-
dency, and R6 and R7 that correspond to control dependency.
We believe data and control dependency are of the most impor-
tance in understanding code change semantics, and hence they
need specialized pre-training tasks. We first sample 20% of the
edges from R4 and R5 for data dependency prediction and
from R6 and R7 for control dependency prediction, then mask
the sampled edges by adding a negative infinity value in the
mask matrix, and predict the original edges. Specifically, we
follow GraphCodeBERT [15] to define the objective of this task,
as formulated by Eq. 6,

loss = −
∑

ei,j∈EC

[σ(ei,j ∈ Emask) log pei,j+

(1− σ(ei,j ∈ Emask) log(1− pei,j))]
(6)

where ei,j is an edge from the i-th token to the j-th token in L;
Emask is the masked edges; EC is a set of candidate edges for
edge prediction, and we set EC as edges in R4 and R5 for data
dependency prediction and set EC as edges in R6 and R7 for
control dependency prediction; σ(e) is 1 if e ∈ Emask, other-
wise σ(e) is 0; the probability pei,j of existing an edge from
the i-th token to the j-th token in L is calculated by Eq. 7,

pei,j = sigm(hi) · sigm(hj) (7)

where sigm(·) is a sigmoid non-linearity, and hi and hj are rep-
resentations of the i-th and j-th token.

Code Change Translation Task. This task aims to capture se-
mantics of the code change from Lold to Lnew, and we use a
translation task to achieve this goal. As illustrated in Fig. 3, the
encoder and decoder are connected by a cross attention, and we
restrict the cross attention to only the changed statement nodes
such that the changed statement nodes in Lnew attend over the
changed statement nodes in Lold. The motivation is to encour-
age our model to infer how statement nodes change in a hunk.
The training objective is the cross entropy loss between the
decoder’s output and the changed statement nodes in Lnew.

D. Downstream Task Fine-Tuning

CCS2VEC is a pre-trained model for each hunk in a commit.
However, downstream tasks are often conducted at the level of
a commit which can include multiple hunks. To fill this gap, we
add an extra fusion layer in the fune-tuning process to learn the
representation of commit by considering the importance of each
hunk to a given downstream task.

Specifically, we formulate the fusion of hunks in a commit as
a Multiple Instance Learning (MIL) [20] problem which aims to
learn a bag representation given a bag of independent instances.
In our case, we treat each hunk as an instance. To learn the rep-
resentation of a commit, we adopt a MIL pooling layer, which
is formulated by Eq. 8,

Z =

K∑
k=1

αkhk

αk =
exp{w>tanh(V h>k)� sigm(Uh>k)}∑K
j=1 exp{w>tanh(V h>j)� sigm(Uh>j)}

(8)

where hk denotes the representation of the k-th hunk after pre-
training; w, V and U are learnable parameters; � is an element-
wise multiplication and tanh(·) and sigm(·) are non-linearities.

The MIL pooling can be seen as a special version of attention
mechanism between the final output and input instances. Thus,
αk weights the contribution of k-th hunk in representing Z. We
choose to put the MIL pooling layer in fine-tuning rather than in
pre-training because an attention weight matrix is dependent to
a specific task, e.g., the k-th hunk might be of high importance
in generating commit messages but of low importance in pre-
dicting defects. The final output Z is then fed into different
downstream models for specific tasks.

IV. EVALUATION

We have implemented our approach in 2.7K lines of Python
code and 8.6K lines of Java code, using PyTorch for deep learn-
ing and PROGEX for PDG construction. We have released the
source code of our approach at https://ccs2vec.github.io/ with
the dataset used in our evaluation.

A. Evaluation Setup

Data Collection and Model Pre-Training. To pre-train our
model, we first collect commits from high-quality open-source
Java projects. To this end, we collect open-source Java projects
by the following criteria to ensure their quality: (1) the projects
must have more than 500 stars and forks; (2) the projects must
have more than 1,000 commits; and (3) the projects must have
more than 50 bug-fix commits. Here we use the keyword-based
approach [39] to identify bug-fix commits. Finally, we collect
109 high-quality Java projects which have 234K commits and
38K bug-fix commits. From these 234K commits, we construct
a data set of 2,917K hunks, and split this data set into training,
validation and testing sets by 7:1:2 for pre-training.

Research Questions. To evaluate the effectiveness of our
pre-trained model, we fine-tune the model on three downstream
tasks, i.e., commit message generation, bug-fix commit identifi-
cation and just-in-time defect prediction, which are commonly
used in literature. Then, we compare the results of these tasks
with the state-of-the-art code change representation learning
approaches. Specifically, we design our evaluation to answer
the following research questions.
• RQ1: What is the effectiveness of CCS2VEC in downstream

tasks, compared with the state-of-the-art approaches?
• RQ2: What is the contribution of each component in

CCS2VEC to the achieved effectiveness?
• RQ3: What is the sensitivity of CCS2VEC’s effectiveness to

its configurable parameters?
State-of-the-Art Approaches. We select CC2VEC [18] as the

state-of-the-art approach of general-purpose code change repre-
sentation learning. This approach has been empirically demon-
strated to outperform the existing work on all three tasks. How-
ever, it is not a pre-trained model, and thus needs to be retrained
with specific tasks. We follow the same experimental settings in
CC2VEC on the three tasks. Moreover, we select the recent state-
of-the-art approaches of task-specific code change representa-
tion learning, i.e., FIRA [11] for the task of commit message

https://ccs2vec.github.io/

TABLE I: Results on Commit Message Generation
Approach Original Data Set Cleaned Data Set
CC2VEC 32.2 16.2

FIRA 37.6 20.5
CCS2VEC-SIM 40.3 24.7

CCS2VEC-TRAN 42.4 26.2

generation, and JITLINE [36] and LAPREDICT [60] for the
task of just-in-time defect prediction.

B. Task 1: Commit Message Generation (RQ1)

Problem Formulation. Commit messages are important for
software maintenance and program understanding. However, as
reported by Dyer et al. [12], developers are not inclined to write
commit messages that are standard and of high quality, and 14%
of commit messages in projects on SourceForge were empty.
Therefore, the task of automated commit message generation is
needed, which aims to generate a message that summarizes the
code changes in a given commit.

State-of-the-Art Approaches. We compare CCS2VEC with
two state-of-the-art approaches, i.e., CC2VEC [18] and FIRA
[11]. We further select FIRA because it is the most recent work
in this topic and achieves the best performance. CC2VEC uses
the learned representations to find a most relevant commit in the
training set, and reuses its commit message as prediction. FIRA
treats this task as a sequence-to-sequence translation problem.

Our Approach. To use CCS2VEC in this task, we first cal-
culate the commit representation Z by the process described in
Sec. III-D. Then, we use Z following the setting of each com-
parison approach for a fair comparison. In particular, to com-
pare with CC2VEC, we use Z to find a most similar commit in
training set by calculating cosine similarity, and reuse the found
commit message as prediction. We name this version of our
approach as CCS2VEC-SIM. To compare with FIRA, we feed Z
as the final output of an encoder to a newly added decoder. The
newly added decoder is identical to FIRA’s, which is in charge
of generating new commit message tokens. We name this ver-
sion of our approach as CCS2VEC-TRAN.

Experimental Settings. To fine-tune our model as well as to
train CC2VEC and FIRA, we extract commit messages from the
234K commits collected in Sec. IV-A. Specifically, we follow
the same pre-processing approach in CC2VEC to remove merge
and rollback commits, and commits that are too long. After the
filtering, we collect an original data set of 175K commits and
their messages. Furthermore, we adopt the method proposed by
Liu et al. [30] to remove bot and trivial commit messages. After
this filtering, we collect a cleaned data set of 87K commits
and their messages. We use both the original and cleaned data
sets for our evaluation, and split them into training, validation
and testing sets by 7:1:2. Besides, we adopt BLEU-4 score to
evaluate the quality of generated commit messages because
BLEU-4 score has been widely used in previous work.

Results. We report the performance of CCS2VEC and state-of-
the-art methods in Table I. CCS2VEC significantly outperforms
the compared approaches in both settings. On the original data
set, CCS2VEC-SIM outperforms CC2VEC by 25.2% in BLEU-4
score when it uses the same generator with CC2VEC. CCS2VEC-

TRAN outperforms FIRA by 12.8% when it uses the same gen-
erator with FIRA. On the cleaned data set, CCS2VEC achieves a
performance improvement of 52.5% comparing with CC2VEC
and 27.8% comparing with FIRA, which are larger than on the
original data set. These results indicate that CCS2VEC produces
more semantic-aware representations than prior approaches.

CCS2VEC outperforms the state-of-the-art general-purpose
code change representation learning approach CC2VEC by
at least 25.2% in BLEU-4 score on the task of commit mes-
sage generation, while outperforming the state-of-the-art
task-specific approach FIRA by at least 12.8%.

C. Task 2: Bug-Fix Commit Identification (RQ1)

Problem Formulation. Bug-fix commits provides the base
for various bug-related software maintenance tasks, e.g., bug-fix
backporting from the latest version to older versions, bug predic-
tion, and bug repairing. However, it is often hard to distinguish
bug-fix commits from other commits such as feature addition or
refactoring commits. Therefore, the task of automated bug-fix
commit identification is needed. We regard this task as a binary
classification problem, where each commit is labeled as a bug-
fix commit or not based on the code changes in the commit.

State-of-the-Art Approaches. We compare our approach
with CC2VEC [18], which first learns a meaningful representa-
tion, and then integrates the learned representations with two
state-of-the-art task-specific approaches, i.e., PATCHNET [19]
and LPU-SVM [47]. To use PATCHNET with CC2VEC, two addi-
tional embeddings are extracted from the commit message and
code changes by PATCHNET, the vectors are concatenated with
the embedding extracted by CC2VEC to form a new embedding,
and the new embedding is fed into PATCHNET’s classification
module to predict whether a given commit is a bug-fix commit.
To use LPU-SVM with CC2VEC, we pass the vectors produced
by CC2VEC into the SVM classfier in LPU-SVM as features.
Notice that the above setting is the same to the one in CC2VEC.
As CC2VEC has already outperformed these two task-specific
approaches, we do not compare our approach with them.

Our Approach. To use CCS2VEC in this task, we first calcu-
late the commit representation Z by the process in Sec. III-D,
and then feed Z to a commit classifier. To fairly compare with
prior works, we use the same classfiers with CC2VEC, namely
the PATCHNET and the LPU-SVM. Notice that our approach
does not need extra embedding on commit messages.

Experimental Settings. To fine-tune our model as well as to
train CC2VEC, we use the 38K bug-fix commits collected in Sec.
IV-A as the positive data set, and randomly select the same
number of commits from the remaining commits (i.e., the 234K
commits − the 38K commits) as the non-bug-fix commits (i.e.,
the negative data set). We also split the data set into training,
validation and testing sets by 7:1:2. Besides, following prior
works, we use the following four commonly-used metrics to
measure the effectiveness of bug-fix commit classification.

• Accuracy: the ratio between the number of correct predictions
and the number of total predictions.

TABLE II: Results on Bug-Fix Commit Identification
Approach Acc. Prec. Rec. F1

CC2VEC + PATCHNET 78.2 77.9 72.1 74.9
CC2VEC + LPU-SVM 65.1 64.5 62.6 63.4

CCS2VEC + PATCHNET 76.5 78.4 78.2 78.3
CCS2VEC + LPU-SVM 69.1 71.9 70.2 71.5

• Precision: the ratio between the number of correct predictions
on bug-fix commits and the total number of bug-fix commit
predictions.

• Recall: the ratio between the number of correct predictions
on bug-fix commits and the total number of bug-fix commits.

• F1-score: the harmonic mean between precision and recall.
Results. We show the performance of CCS2VEC and CC2VEC

with two classifiers PATCHNET and LPU-SVM in Table II. We
can see that when using PATCHNET as the classifier, CCS2VEC
outperforms CC2VEC by help improving bug-fix commit iden-
tification by 0.6%, 8.4% and 4.5% in terms of precision, recall
and F1-score, but suffers a slight decrease by 2.1% in accuracy.
When using LPU-SVM as the classifier, CCS2VEC outperforms
CC2VEC by 6.1%, 11.5%, 12.1% and 12.8% in terms of accu-
racy, precision, recall and F1-score. These results demonstrate
that CCS2VEC is more capable of learning and understanding
commit-level semantics than prior approaches.

CCS2VEC outperforms the state-of-the-art general-purpose
code change representation learning approach CC2VEC by
improving the state-of-the art bug-fix commit identification
approaches by at least 4.5% in F1-score.

D. Task 3: Just-in-Time Defect Prediction (RQ1)

Problem Formulation. Just-in-time defect (JIT) defect pre-
diction aims to identify commits that may potentially introduce
a bug when the commits are submitted. In this way, developers
can be notified about the potential bug in their commits at the
very first place, and hence the overall testing and debugging ef-
fort can be reduced. Therefore, the task of automated JIT defect
prediction is need. We formulate this task as a binary classifica-
tion problem where each commit is labeled as bug-introducing
or not given the code changes in the commit.

State-of-the-art Approaches. We compare our approach
with three state-of-the-art approaches, i.e., CC2VEC [18], JIT-
LINE [36] and LAPREDICT [60]. We further select JITLINE
and LAPREDICT because they are the most recent work in this
topic and achieve the best performance. Specifically, CC2VEC
first learns a distributed representation of code changes, and
then integrates the learned representation with an existing JIT
defect prediction approach DEEPJIT [17]. The embedding ex-
tracted from CC2VEC is concatenated with two additional em-
beddings extracted from commit message and code changes by
DEEPJIT, and the overall embedding is fed into DEEPJIT’s
classification layer to make the prediction. JITLINE uses the fre-
quency of code tokens as code change feature, and LAPREDICT
simply uses the number of added lines as code change feature.
While being simple, they achieve competitive performance.

Our Approach. To use CCS2VEC in this task, we first calcu-
late the commit representation Z by the process in Sec. III-D,

TABLE III: Results on Just-in-Time Defect Prediction
Approach Acc. Prec. Rec. F1
CC2VEC 60.5 66.8 58.9 62.6
JITLINE 60.3 62.9 55.6 59.0

LAPREDICT 66.4 72.7 68.5 70.5
CCS2VEC 78.2 79.5 72.1 75.6

and then feed Z to a commit classifier. For a fair comparison,
we leverage the same classifier used in CC2VEC and JITLINE,
namely the DEEPJIT classifier.

Experimental Settings. To fine-tune our model as well as to
train CC2VEC, JITLINE and LAPREDICT, we use the data set of
defective commits from Zeng et al.’s work [60]. Specifically, we
use the defective commits from the three Java projects (i.e., JDT,
Platform and Gerrit) in their data set as our fine-tuning data set.
As a result, we collect a total of 23K defective commits. We
further randomly select the same number of commits from the
remaining commits in the three Java projects as non-defective
commits. We also split the data set into training, validation and
testing sets by 7:1:2. Besides, similar to the previous task, we
use accuracy, precision, recall and F1-score to measure the
effectiveness of JIT defect prediction.

Results. We give the performance of CCS2VEC and state-of-
the-art approaches in Table III. We can observe that CCS2VEC
outperforms all the state-of-the-art approaches. In particular,
CCS2VEC outperforms CC2VEC by 29.3%, 19.0%, 22.4% and
20.8% in terms of accuracy, precision, recall and F1-score. In
addition, CCS2VEC outperforms JITLINE by 29.7%, 26.4%,
29.7% and 28.1% in terms of accuracy, precision, recall and
F1-score, while outperforming LAPREDICT by 17.8%, 9.4%,
5.3% and 7.2%. These results show that CCS2VEC is effective
in learning semantics under code changes.

CCS2VEC outperforms the state-of-the-art general-purpose
code change representation learning approach CC2VEC by
20.8% in F1-score on the task of JIT defect prediction,
while outperforming the state-of-the-art task-specific ap-
proaches JITLINE and LAPREDICT by at least 7.2%.

E. Ablation Study (RQ2)

We conduct an ablation study to understand the contribution
of each step in constructing a code change slice to the achieved
effectiveness, i.e., data dependency, control dependency and
control flow path. We intentionally focus on these three aspects
because we believe they play the key role in capturing semantics
of code changes. Since these steps in constructing a code change
slice have a sequential dependency order, i.e., one step relies on
the result of its previous step, an ablation study is hard to con-
duct in the slice construction phase. Instead, we choose to set
the values in the corresponding region in the mask matrix M in
CCS2VEC to −∞ to achieve the ablations of data dependency,
control dependency and control flow path. Moreover, we also
conduct an ablation study to show the contribution of the MIL
pooling layer in fine-tuning because we adopt it to solve the
noisy code change problem in downstream tasks.

For the first commit message generation task, we conduct our
ablation study on the cleaned data set with the CCS2VEC-TRAN

TABLE IV: Results of Ablation Study

Approach Task 1 (BLEU-4) Task 2 (F1) Task 3 (F1)
Abl. Drop Abl. Drop Abl. Drop

w/o data 16.7 36.3% 55.1 29.6% 66.1 12.6%
w/o control 20.1 23.3% 64.9 17.1% 63.2 16.4%

w/o path 21.1 19.5% 58.5 25.3% 69.5 8.1%
w/o MIL 16.5 37.0% 57.6 26.4% 63.0 16.7%
CCS2VEC 26.2 – 78.3 – 75.6 –

approach. For the second bug-fix commit identification task,
we conduct our ablation study with the CCS2VEC + PATCHNET
approach, and present the results on F1-score. For the third JIT
defect prediction task, we also report the results on F1-score.
The results of our ablation study are shown in Table IV, where
the column Abl. is the performance of the reduced version of
our approach, and Drop is the performance degradation.

Removing Data Dependency. To remove data dependencies,
we set the green region in M (see Fig. 4) to −∞. We can see
that after removing data dependencies, the performance of three
tasks is dropped by 36.3%, 29.6% and 12.6%.

Removing Control Dependency. To remove control depen-
dencies, we set the yellow region in M (see Fig. 4) to −∞. We
can observe that after removing control dependency, the perfor-
mance of three tasks is dropped by 23.3%, 17.1% and 16.4%.

Removing Control Flow Path. To remove control flow paths,
we set the orange and pale blue regions in M (see Fig. 4) to
−∞. This ablation leaves the slice node s an orphan node. To
avoid it, we allow the slice node s to attend over all statement
nodes. We find that after removing control flow paths, the per-
formance of three tasks is dropped by 19.5%, 25.3% and 8.1%.

Removing MIL Pooling Layer. The MIL pooling layer aims
to learn the commit representation Z by weighing the impor-
tance of hunks in the commit. To evaluate its effectiveness, we
remove the MIL pooling layer in our model, and simply cal-
culate Z by averaging the representations of the hunks in the
commit. After removing the MIL pooling layer, the performance
of three tasks is dropped by 37.0%, 26.4% and 16.7%.

Overall, data dependency, control dependency, and control
flow path have a significant contribution to capture the se-
mantics of code changes. MIP pooling layer is effective
in solving the noisy code change problem.

F. Sensitivity Analysis (RQ3)

Our approach relies on two configurable parameters, Kdata

and Kctrl in our slice-based code change representation ap-
proach (see Sec. III-B). Specifically, to determine the depth
of data dependency tracking Kdata, we set Kdata = |N |

a + 1,
where |N | is the number of PDG nodes and a is a manually-
set parameter. The definition indicates that Kdata should be
proportional to the length of the changed method, i.e., the longer
the method is, the deeper we should track its data dependency.
To determine the depth of control dependency tracking Kctrl,
we simply set Kctrl as a threshold value. This is because the
depth of control dependency is often not directly dependent on
the method length. We evaluate the sensitivity of our approach
to these parameters on all the three tasks with the same exper-
imental setting of CCS2VEC as in RQ2.

TABLE V: Sensitivity Analysis Results of Kdata = |N |/a+1

Setting Task 1 (BLEU-4) Taks 2 (F1) Task 3 (F1)
a = 1 22.4 73.3 73.3
a = 2 25.5 74.6 74.7
a = 4 26.2 78.3 75.6
a = 8 20.1 70.9 72.6

TABLE VI: Sensitivity Analysis Results of Kctrl

Setting Task 1 (BLEU-4) Taks 2 (F1) Task 3 (F1)
Kctrl = 2 25.2 76.6 72.9
Kctrl = 3 26.2 78.3 75.6
Kctrl = 4 25.7 74.1 73.0

Sensitivity to Kdata. We set a to 1, 2, 4 and 8 while fixing
Kctrl to 3. The result is shown in Table V. Notice that a = 1 in-
dicates there is no limit on data dependency tracking depth. As
a increases from 1 to 4, Kdata decreases, and the performance
of CCS2VEC improves in all the three tasks. This is potentially
because a long data dependency path might fail to capture local
semantics since it may introduce noises from less relevant data
dependencies. On the other hand, as a increases from 4 to 8,
the performance of CCS2VEC also degrades in all the three
tasks. This indicates that a short data dependency path might
capture incomplete or fragmented semantics. Therefore, we
suggest to set a to 4, which is used in RQ1 and RQ2.

Sensitivity to Kctrl. We set Kctrl to 2, 3 and 4 while fixing a
to 4. The result is presented in Table VI. We can observe that as
Kctrl increases from 2 to 3, there is a performance improvement
in all the three tasks, which potentially owes to a more complete
capture of control dependencies. However, as Kctrl increases
from 3 to 4, the performance drops in all the three tasks. This
may indicate that deeply nested control structures may not have
positive impact on prediction but may introduce noises. Hence,
we suggest to set Kctrl to 3, which is used in RQ1 and RQ2.

A relatively short or long data and control dependency
tracking depth can degrade the performance of CCS2VEC.

G. Threats to Validity

One threat to our evaluation is the size of pre-training data set.
However, our data set is already large if compared to prior ap-
proaches. We plan to further realize a large pre-trained model by
incorporating commits from different programming languages.
Another threat is the potentially imperfect data set of non-bug-
fix commits in RQ2 and non-defective commits in RQ3. How-
ever, we actually follow prior approaches to prepare these fine-
tuning data sets, and this threat is shared with prior approaches.
Data cleaning methods are needed to further improve CCS2VEC.

V. RELATED WORK

Code representation learning techniques have been widely ex-
plored to learn code representations from a massive code corpus.
They represent code at the level of tokens, AST, CFG, DFG or
execution traces, and have been applied to various programming
language and software engineering tasks. We refer the readers
to surveys [1, 2, 13, 55] for a comprehensive review of learning
code representations. Here, we specifically focus our review on
code change representation learning and its applications.

Code Change Representation Learning. Tufano et al. [48]
used neural machine translation to transform the method before
code change to the method after code change. Nie et al. [34] fur-
ther considered binary file changes. These methods represented
the method code at the token level. Different, Qureshi et al. [38]
and Lozoya et al. [4] represented the method code at the level of
AST paths, and learned a vector representation of code changes.
Lozoya et al. [4] only used changed AST paths to represent the
source code before and after changes, while Qureshi et al. [38]
also included unchanged AST paths. Hoang et al. [18] modeled
the hierarchical structure (from words to a line and from lines to
a hunk) of code changes with a hierarchical attention network.
They represented removed and added code at the token level for
supporting unparseable code, and learned the differences be-
tween removed and added code as vectors. Different from these
approaches, Brody et al. [3] completed code changes given a
partially changed code snippet. They represented code changes
as AST paths based on four edit operations (i.e., move, update,
insert and delete) on ASTs. These previous approaches model
code changes at the lexical or syntactical level, making them
difficult to learn code change semantics. In contrast, we use data
and control dependencies of code changes to ease the semantic
representation and learning of code changes.

Commit Message Generation. Jiang et al. [22] and Loyola
et al. [31] represented code changes of a commit as a sequence
of tokens of removed and added code. To address the problem of
out-of-vocabulary words in the above approaches, Liu et al. [28]
and Xu et al. [53] incorporated the copying mechanism [42].
Liu et al. [30] proposed an information retrieval-based approach,
which was simpler and faster than the above approaches. Wang
et al. [51] tried to combine token-level learning-based approach
with information retrieval-based approach. Liu et al. [29] repre-
sented code changes of a commit as a sequence of AST paths,
and integrated their learning-based approach with information
retrieval by hybrid ranking. Dong et al. [11] enriched the ASTs
before and after code changes with sub-token information, code
edit operations and code sequential information to form a graph
representation, and leveraged graph neural network to generate
commit messages. These approaches are specifically designed
for the single task of commit message generation, while our
work can support multiple tasks through fine-tuning. Moreover,
they only leverage lexical or syntactical information, but do not
consider semantic information like we do.

Commit Classification. Tian et al. [47] defined and extracted
features from commit messages and code changes, and learned a
binary classification model to identify bug-fix commits. Zafar et
al. [59] fine-tuned the pre-trained BERT model to solve the bug-
fix commit identification task. However, they only used commit
messages, but did not consider code changes. Hoang et al. [19]
used CNN to learn a representation of commit messages and 3D-
CNN to learn a representation of code changes with hierarchical
information (i.e., hunks, lines and words) for identifying bug-fix
commits. However, they also target one single task, and do not
consider semantic information. Another similar task is security
patch identification (i.e., to identify commits that fix security
bugs), which is addressed by program analysis [54], machine

learning [6, 41, 63] and deep learning [33, 52, 61, 64]. However,
these learning-based approaches shared the same limitation with
those bug-fix commit identification approaches. It is interesting
to fine-tune our model to solve security patch identification.

Just-In-Time Defect Prediction. Yang et al. [57] used deep
belief network to generate and integrate advanced features from
a set of basic features, and learned a machine learning classifier
to predict defective commits. To avoid manually defining fea-
tures, Hoang et al. [17] represented commit messages and code
changes as a sequence of words and code tokens to automati-
cally extract features via deep learning. Pornprasit et al. [36]
used the frequency of each code token in a commit as features to
learn a classification model, which achieved better performance
than deep learning-based approaches. They further ranked de-
fective code lines by LIME [40]. Similarly, Zeng et al. [60]
adopted one simple feature (i.e., the number of added lines)
with the logistic regression classifier, and outperformed deep
learning-based approaches. Zhou et al. [62] tried to combine
complex deep learning-based approaches and simple machine
learning-based approaches. However, previous approaches lack
semantic understanding of code changes, which might hinder
their prediction effectiveness. In addition, Pornprasit et al. [35]
proposed a local rule-based model-agnostic technique to gener-
ate explanations of JIT defect models, while Yan et al. [56] and
Qiu et al. [37] took a step further to localize defective lines.
These approaches are orthogonal to ours.

Program Repair. Tufano et al. [49] adopted neural machine
translation to translate the buggy code to the fixed code. Chen et
al. [7] further leveraged the copying mechanism [42] to address
the unlimited vocabulary problem. These two approaches rep-
resented buggy/fixed code as a sequence of tokens. Lutellier et
al. [32] distinguished buggy lines and their surrounding context
code so as to learn the representation of the transformation from
buggy lines with context to fixed lines. Similarly, Li et al. [25]
modeled the context code at the level of ASTs. Jiang et al. [21]
leveraged a pre-trained programming language model and fine-
tuned Lutellier et al.’s model [32], and designed a code-aware
beam search strategy to find more correct fixes. Differently,
Ding et al. [10] and Chakraborty and Ray [5] used neural ma-
chine translation to generate code edits rather than the whole
fixed code. Besides, several approaches leveraged code change
representation to predict the correctness of patches in program
repair [26, 45, 46]. These approaches also do not consider the
semantics under code changes. We plan to fine-tune our model
to support program repair related tasks.

VI. CONCLUSIONS

We have developed a slice-based code change representation
approach which takes into account data and control dependen-
cies. We have also developed a pre-trained sparse Transformer
model CCS2VEC to learn code change representations on three
pre-training tasks. We have also conducted experiments by fine-
tuning our pre-trained model on three downstream tasks, which
have demonstrated the improvement of CCS2VEC over the state-
of-the-art approaches. The source code of our approach and
data set are available at https://ccs2vec.github.io/.

https://ccs2vec.github.io/

ACKNOWLEDGMENT

This work was supported by the National Key R&D Pro-
gram of China (2021ZD0112903) and the National Natural
Science Foundation of China (61972098). Bihuan Chen is the
corresponding author of this paper.

REFERENCES

[1] M. Allamanis, E. T. Barr, P. Devanbu, and C. Sutton, “A survey of
machine learning for big code and naturalness,” ACM Computing Surveys,
vol. 51, no. 4, p. 81, 2018.

[2] P. Bielik, V. Raychev, and M. Vechev, “Programming with” big code”:
Lessons, techniques and applications,” in SNAPL, 2015, pp. 1–10.

[3] S. Brody, U. Alon, and E. Yahav, “A structural model for contextual
code changes,” Proceedings of the ACM on Programming Languages,
vol. 4, no. OOPSLA, pp. 1–28, 2020.

[4] R. Cabrera Lozoya, A. Baumann, A. Sabetta, and M. Bezzi, “Commit2vec:
Learning distributed representations of code changes,” SN Computer
Science, vol. 2, no. 3, pp. 1–16, 2021.

[5] S. Chakraborty and B. Ray, “On multi-modal learning of editing source
code,” in ASE, 2021, pp. 443–455.

[6] Y. Chen, A. E. Santosa, A. M. Yi, A. Sharma, A. Sharma, and D. Lo,
“A machine learning approach for vulnerability curation,” in MSR, 2020,
pp. 32–42.

[7] Z. Chen, S. Kommrusch, M. Tufano, L.-N. Pouchet, D. Poshyvanyk,
and M. Monperrus, “Sequencer: Sequence-to-sequence learning for end-
to-end program repair,” IEEE Transactions on Software Engineering,
vol. 47, no. 9, pp. 1943–1959, 2021.

[8] R. Child, S. Gray, A. Radford, and I. Sutskever, “Generating long
sequences with sparse transformers,” arXiv preprint arXiv:1904.10509,
2019.

[9] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “BERT: Pre-training
of deep bidirectional transformers for language understanding,” in NAACL,
2019, pp. 4171–4186.

[10] Y. Ding, B. Ray, P. Devanbu, and V. J. Hellendoorn, “Patching as
translation: the data and the metaphor,” in ASE, 2020, pp. 275–286.

[11] J. Dong, Y. Lou, Q. Zhu, Z. Sun, Z. Li, W. Zhang, and D. Hao, “Fira: Fine-
grained graph-based code change representation for automated commit
message generation,” in ICSE, 2022.

[12] R. Dyer, H. A. Nguyen, H. Rajan, and T. N. Nguyen, “Boa: A language
and infrastructure for analyzing ultra-large-scale software repositories,”
in ICSE, 2013, pp. 422–431.

[13] M. D. Ernst, “Natural language is a programming language: Applying
natural language processing to software development,” in SNAPL, 2017,
pp. 1–14.

[14] S. M. Ghaffarian and H. R. Shahriari, “Neural software vulnerability
analysis using rich intermediate graph representations of programs,”
Information Sciences, vol. 553, pp. 189–207, 2021.

[15] D. Guo, S. Ren, S. Lu, Z. Feng, D. Tang, S. Liu, L. Zhou, N. Duan,
A. Svyatkovskiy, S. Fu, M. Tufano, S. K. Deng, C. B. Clement, D. Drain,
N. Sundaresan, J. Yin, D. Jiang, and M. Zhou, “Graphcodebert: Pre-
training code representations with data flow,” in ICLR, 2021.

[16] K. Herzig and A. Zeller, “The impact of tangled code changes,” in MSR,
2013, pp. 121–130.

[17] T. Hoang, H. K. Dam, Y. Kamei, D. Lo, and N. Ubayashi, “Deepjit: an
end-to-end deep learning framework for just-in-time defect prediction,”
in MSR, 2019, pp. 34–45.

[18] T. Hoang, H. J. Kang, D. Lo, and J. Lawall, “Cc2vec: Distributed
representations of code changes,” in ICSE, 2020, p. 518–529.

[19] T. Hoang, J. Lawall, Y. Tian, R. J. Oentaryo, and D. Lo, “Patchnet:
Hierarchical deep learning-based stable patch identification for the linux
kernel,” IEEE Transactions on Software Engineering, vol. 47, no. 11, pp.
2471–2486, 2021.

[20] M. Ilse, J. Tomczak, and M. Welling, “Attention-based deep multiple
instance learning,” in ICML, 2018, pp. 2127–2136.

[21] N. Jiang, T. Lutellier, and L. Tan, “Cure: Code-aware neural machine
translation for automatic program repair,” in ICSE, 2021, pp. 1161–1173.

[22] S. Jiang, A. Armaly, and C. McMillan, “Automatically generating commit
messages from diffs using neural machine translation,” in ASE, 2017, pp.
135–146.

[23] D. Kawrykow and M. P. Robillard, “Non-essential changes in version
histories,” in ICSE, 2011, p. 351–360.

[24] M. Lewis, Y. Liu, N. Goyal, M. Ghazvininejad, A. Mohamed, O. Levy,
V. Stoyanov, and L. Zettlemoyer, “BART: Denoising sequence-to-
sequence pre-training for natural language generation, translation, and
comprehension,” in ACL, 2020, pp. 7871–7880.

[25] Y. Li, S. Wang, and T. N. Nguyen, “Dlfix: Context-based code
transformation learning for automated program repair,” in ICSE, 2020,
pp. 602–614.

[26] B. Lin, S. Wang, M. Wen, and X. Mao, “Context-aware code change
embedding for better patch correctness assessment,” ACM Transactions
on Software Engineering and Methodology, vol. 31, no. 3, pp. 1–29,
2022.

[27] T. Lin, Y. Wang, X. Liu, and X. Qiu, “A survey of transformers,” arXiv
preprint arXiv:2106.04554, 2021.

[28] Q. Liu, Z. Liu, H. Zhu, H. Fan, B. Du, and Y. Qian, “Generating commit
messages from diffs using pointer-generator network,” in MSR, 2019, pp.
299–309.

[29] S. Liu, C. Gao, S. Chen, N. L. Yiu, and Y. Liu, “Atom: Commit message
generation based on abstract syntax tree and hybrid ranking,” IEEE
Transactions on Software Engineering, vol. 48, no. 5, pp. 1800–1817,
2022.

[30] Z. Liu, X. Xia, A. E. Hassan, D. Lo, Z. Xing, and X. Wang, “Neural-
machine-translation-based commit message generation: how far are we?”
in ASE, 2018, pp. 373–384.

[31] P. Loyola, E. Marrese-Taylor, and Y. Matsuo, “A neural architecture for
generating natural language descriptions from source code changes,” in
ACL, 2017, pp. 287–292.

[32] T. Lutellier, H. V. Pham, L. Pang, Y. Li, M. Wei, and L. Tan, “Coconut:
combining context-aware neural translation models using ensemble for
program repair,” in ISSTA, 2020, pp. 101–114.

[33] G. Nguyen-Truong, H. J. Kang, D. Lo, A. Sharma, A. E. Santosa,
A. Sharma, and M. Y. Ang, “Hermes: Using commit-issue linking to
detect vulnerability-fixing commits,” in SANER, 2022, pp. 51–62.

[34] L. Y. Nie, C. Gao, Z. Zhong, W. Lam, Y. Liu, and Z. Xu, “Coregen: Con-
textualized code representation learning for commit message generation,”
Neurocomputing, vol. 459, pp. 97–107, 2021.

[35] C. Pornprasit, C. Tantithamthavorn, J. Jiarpakdee, M. Fu, and P. Thong-
tanunam, “Pyexplainer: Explaining the predictions of just-in-time defect
models,” in ASE, 2021, pp. 407–418.

[36] C. Pornprasit and C. K. Tantithamthavorn, “Jitline: A simpler, better,
faster, finer-grained just-in-time defect prediction,” in MSR, 2021, pp.
369–379.

[37] F. Qiu, Z. Gao, X. Xia, D. Lo, J. Grundy, and X. Wang, “Deep just-in-
time defect localization,” IEEE Transactions on Software Engineering,
2021.

[38] S. A. Qureshi, S. Mehta, R. Bhagwan, and R. Kumar, “Assessing the
effectiveness of syntactic structure to learn code edit representations,”
arXiv preprint arXiv:2106.06110, 2021.

[39] B. Ray, V. Hellendoorn, S. Godhane, Z. Tu, A. Bacchelli, and P. Devanbu,
“On the ”naturalness” of buggy code,” in ICSE, 2016, p. 428–439.

[40] M. T. Ribeiro, S. Singh, and C. Guestrin, “” why should i trust you?”
explaining the predictions of any classifier,” in KDD, 2016, pp. 1135–
1144.

[41] A. Sabetta and M. Bezzi, “A practical approach to the automatic
classification of security-relevant commits,” in ICSME, 2018, pp. 579–
582.

[42] A. See, P. J. Liu, and C. D. Manning, “Get to the point: Summarization
with pointer-generator networks,” in ACL, 2017, pp. 1073–1083.

[43] P. Shaw, J. Uszkoreit, and A. Vaswani, “Self-attention with relative
position representations,” in NAACL, 2018, pp. 464–468.

[44] Y. Tao, Y. Dang, T. Xie, D. Zhang, and S. Kim, “How do software
engineers understand code changes? an exploratory study in industry,”
in FSE, 2012, pp. 1–11.

[45] H. Tian, Y. Li, W. Pian, A. K. Kabore, K. Liu, A. Habib, J. Klein, and
T. F. Bissyandé, “Predicting patch correctness based on the similarity
of failing test cases,” ACM Transactions on Software Engineering and
Methodology, vol. 31, no. 4, pp. 1–30, 2022.

[46] H. Tian, K. Liu, A. K. Kaboré, A. Koyuncu, L. Li, J. Klein, and
T. F. Bissyandé, “Evaluating representation learning of code changes
for predicting patch correctness in program repair,” in ASE, 2020, pp.
981–992.

[47] Y. Tian, J. Lawall, and D. Lo, “Identifying linux bug fixing patches,” in
ICSE, 2012, pp. 386–396.

[48] M. Tufano, J. Pantiuchina, C. Watson, G. Bavota, and D. Poshyvanyk,
“On learning meaningful code changes via neural machine translation,”

in ICSE, 2019, pp. 25–36.
[49] M. Tufano, C. Watson, G. Bavota, M. Di Penta, M. White, and

D. Poshyvanyk, “An empirical investigation into learning bug-fixing
patches in the wild via neural machine translation,” in ASE, 2018, pp.
832–837.

[50] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
Ł. Kaiser, and I. Polosukhin, “Attention is all you need,” in NIPS, 2017,
pp. 5998–6008.

[51] H. Wang, X. Xia, D. Lo, Q. He, X. Wang, and J. Grundy, “Context-aware
retrieval-based deep commit message generation,” ACM Transactions on
Software Engineering and Methodology, vol. 30, no. 4, pp. 1–30, 2021.

[52] B. Wu, S. Liu, R. Feng, X. Xie, J. Siow, and S.-W. Lin, “Enhancing
security patch identification by capturing structures in commits,” IEEE
Transactions on Dependable and Secure Computing, 2022.

[53] S. Xu, Y. Yao, F. Xu, T. Gu, H. Tong, and J. Lu, “Commit message
generation for source code changes,” in IJCAI, 2019, pp. 3975–3981.

[54] Z. Xu, B. Chen, M. Chandramohan, Y. Liu, and F. Song, “Spain: security
patch analysis for binaries towards understanding the pain and pills,” in
ICSE, 2017, pp. 462–472.

[55] E. Yahav, “Programming with “big code”,” in APLAS, 2015, pp. 3–8.
[56] M. Yan, X. Xia, Y. Fan, A. E. Hassan, D. Lo, and S. Li, “Just-in-time

defect identification and localization: A two-phase framework,” IEEE

Transactions on Software Engineering, vol. 48, no. 1, pp. 82–101, 2022.
[57] X. Yang, D. Lo, X. Xia, Y. Zhang, and J. Sun, “Deep learning for

just-in-time defect prediction,” in QRS, 2015, pp. 17–26.
[58] Z. Ye, Q. Guo, Q. Gan, X. Qiu, and Z. Zhang, “Bp-transformer:

Modelling long-range context via binary partitioning,” arXiv preprint
arXiv:1911.04070, 2019.

[59] S. Zafar, M. Z. Malik, and G. S. Walia, “Towards standardizing and
improving classification of bug-fix commits,” in ESEM, 2019, pp. 1–6.

[60] Z. Zeng, Y. Zhang, H. Zhang, and L. Zhang, “Deep just-in-time defect
prediction: how far are we?” in ISSTA, 2021, pp. 427–438.

[61] J. Zhou, M. Pacheco, Z. Wan, X. Xia, D. Lo, Y. Wang, and A. E. Hassan,
“Finding a needle in a haystack: Automated mining of silent vulnerability
fixes,” in ASE, 2021, pp. 705–716.

[62] X. Zhou, D. Han, and D. Lo, “Simple or complex? together for a more
accurate just-in-time defect predictor,” in ICPC, 2022, pp. 229–240.

[63] Y. Zhou and A. Sharma, “Automated identification of security issues from
commit messages and bug reports,” in ESEC/FSE, 2017, pp. 914–919.

[64] Y. Zhou, J. K. Siow, C. Wang, S. Liu, and Y. Liu, “Spi: Automated
identification of security patches via commits,” ACM Transactions on
Software Engineering and Methodology, vol. 31, no. 1, pp. 1–27, 2021.

