
DeepAnna: Deep Learning based Java Annotation
Recommendation and Misuse Detection

Yi Liu1,2, Yadong Yan1,2, Chaofeng Sha∗1,2, Xin Peng1,2, Bihuan Chen1,2 and Chong Wang1,2
1School of Computer Science, Fudan University, Shanghai, China

2Key Laboratory of Data Science, Fudan University, Shanghai, China
{19212010005, 20212010127, cfsha, pengxin, bhchen, wangchong20}@fudan.edu.cn

∗Corresponding author

Abstract—Annotations have been widely used in Java pro-
grams to support additional compile-time, deployment-time, and
runtime processing. Developers use annotations to delegate repet-
itive logics such as object initialization and request forwarding to
compilers and runtime frameworks. Therefore, these annotations
are important for the correct execution of programs. In practice,
however, developers often find it hard to correctly use annotations
and the misuse of annotations has led to real bugs in Java
programs. In this paper, we conduct an empirical study on
Stack Overflow questions to investigate the major development
frameworks that are involved in questions about Java annotations
and the main problems encountered by developers in the use
of Java annotations. Based on the findings of the study, we
propose DeepAnna, a deep learning based Java annotation rec-
ommendation and misuse detection approach. Based on a corpus
of Java programs with intensive use of annotations, DeepAnna
trains a deep learning based multi-label classification model by
considering both the structural and textual contexts of source
code. DeepAnna can recommend annotations at both class level
and method level. Our evaluation with a large corpus of open-
source Java projects shows that DeepAnna outperforms state-
of-the-art text multi-label classification approaches in annotation
recommendation and can effectively detect annotation misuses.
Based on our analysis, we submit 85 bug-fixing pull requests for
annotation misuses in open-source projects and 20 of them have
been accepted and merged.

Index Terms—code; Java annotation; deep learning; multi-
label classification;

I. INTRODUCTION

Since introduced in JDK 5, annotations have been widely
used in Java programs. Annotations provide a convenient
way to implement additional compile-time, deployment-time,
and runtime processings [1]. Developers can use annotations
to delegate repetitive logics such as object initialization and
request forwarding to compilers and runtime frameworks. In
this way, the complexity of programming can be reduced and
the efficiency of development can be improved. Due to these
advantages, some popular Java frameworks, such as Spring [2]
and Hibernate [3] (two mainstream frameworks for back-end
application development), provide a rich set of well-designed
annotations to implement various characteristics. For example,
@Autowired is one of the most important annotations in
Spring, which controls where and how object dependencies
are injected implicitly. Therefore, correctly understanding and
using these annotations has been a premise for using the
frameworks.

In practice, however, developers often find it hard to cor-
rectly use annotations and the misuse of annotations has
led to real defects in Java programs. As a framework may
define many annotations, the developers often have difficulties
determining when annotations should be used and which
one to choose among similar annotations. For example, the
Spring framework defines over 300 annotations and just about
network request there are 14 annotations. Therefore, develop-
ers may misuse annotations and introduce annotation-related
defects. For example, Figure 1 shows two commits that fix
Spring annotation misuse defects in open-source projects. The
commit in Figure 1(a) fixes an annotation defect by replacing
@Service with @Repository. These two annotations are
both used to implement the feature of inverse of control
(IOC), but they work at different layers (service layer and
persistence layer respectively). The commit in Figure 1(b)
fixes an annotation defect by adding a @Service annotation.
This missing annotation defect makes the framework not able
to manage the service and implement the feature of IOC.
These annotation misuse defects will cause the programs
to malfunction. Therefore, it is quite helpful if a tool can
automatically recommend suitable annotations for developers
based on code context and detect annotation misuse defects in
the programs.

To investigate the requirements for annotation recommen-
dation and misuse detection, we first conduct an empirical
study on Stack Overflow questions about Java annotations.
The purposes of the study are twofold, i.e., investigating the
major development frameworks that are involved in questions
about Java annotations (i.e., RQ1) and collecting the main
problems encountered by developers in the use of Java anno-
tations (i.e., RQ2). The results show that the most frequently
mentioned frameworks in the questions are Spring, Hibernate,
Junit, Jakarta EE, Guice, Jackson, and Lombok. Based on
263 manually labelled Stack Overflow questions, we identify
7 categories of Java annotation problems encountered by
developers, including “how to use a specific annotation”, “how
to define a custom annotation”, “which annotation to use”,
“how to resolve the used annotations”, “what is the difference
between annotation and XML”, “what is annotation”, and
others. Most of the problems are related to annotation usage,
for example “how to use a specific annotation” and “which
annotation to use”, thus may result in difficulties and even



(a) Commit 11f3d9f343ff0460172e12d8abaaf238a6cca1d3 in TicketService

(b) Commit a8c588b8e00f510e63a0c351edf9f59bddeb015b in spring5-jokes-
app-v2

Fig. 1. Two Commits that Fix Annotation Misuses in Open-Source Projects

defects in annotation usage.
Based on the findings of the study, we propose a deep

learning based approach (called DeepAnna) for Java anno-
tation recommendation and misuse detection. We model the
problem of annotation recommendation and misuse detection
as a multi-label classification task, which takes source code
as input and produces annotations as classification labels.
DeepAnna includes a training phase and a prediction phase.
In the training phase, DeepAnna constructs a training set
based on a corpus of Java programs with intensive use of
annotations. Each training sample in the set consists of a
code snippet and its corresponding Java annotations. Given
a training sample DeepAnna extracts structural and textual
contexts for the code snippet from its abstract syntax tree
(AST) and identifiers repetitively. These code contexts are then
fed into a classification model with two encoding modules,
a fusion layer, and a output layer. The output of the model
is the probabilities of all the candidate annotations. Based
on the probabilities, the model is continuously optimized to
maximize the probabilities of the true annotations of the code
snippet and minimize the probabilities of the false annotations.
In the prediction phase, DeepAnna extracts code contexts
from a given code snippet in the same way and uses the
trained model to predict the probabilities of all the candidate
annotations based on the code contexts. Based on the prob-
abilities DeepAnna selects a set of annotations for the code
snippet. It can then recommend the predicted annotations to
developers directly or detect annotation misuses by comparing
the currently used annotations with those suggested. Note
that DeepAnna supports the annotation recommendation and
misuse detection at both class level and method level by
adopting different structural code context extraction methods.

We conduct a series of experimental studies to evaluate the
effectiveness of DeepAnna. We construct a dataset containing
1,000 open-source Java projects using the seven most popular
frameworks identified in the empirical study. Based on the

dataset, we train an annotation prediction model and use
it to evaluate the accuracy of annotation recommendation.
The results show that DeepAnna achieves 85.14% of average
precision and 83.54% of F1 for annotation recommendation at
the class level and 72.22% of average precision and 67.55%
of F1 for annotation recommendation at the method level,
outperforming the state-of-the-art text multi-label classification
approaches on the dataset. Our evaluation also confirms the
usefulness of both the structural context and textual context for
annotation prediction. Moreover, we use the trained model to
detect annotation misuse defects in Java open-source projects.
Based on the results, we submit 85 bug-fixing pull requests
for annotation misuse defects in open-source projects and 20
of them have been accepted and merged.

This paper makes the following contributions.
• We conduct an empirical study on the major development

frameworks involved in annotation related questions and
the main problems encountered by developers in the use
of Java annotations.

• We propose a deep learning based annotation recommen-
dation and misuse detection approach based on both the
structural and textual context of code.

• We evaluate the effectiveness of the approach based
on a set of Java open-source projects by analyzing the
average precision and F1 of annotation recommendation
and detecting real annotation misuse defects in open-
source projects.

II. EMPIRICAL STUDY

To investigate the requirements for annotation recommen-
dation and misuse detection, we conduct an empirical study
to answer the following two research questions.
• RQ1: What are the major development frameworks that

are involved in questions about Java annotations?
• RQ2: What are the main problems encountered by de-

velopers in the use of Java annotations?

A. Dataset

We select a set of annotation related questions from Stack
Overflow as the subjects of the study in the following way. We
select the questions with both “java” and “annotations” tags
from Stack Overflow. To ensure the quality of Stack Overflow
posts to be analyzed, we eliminate questions based on two
criteria, the first is that the post must have an answer accepted
by the questioner, and the second is that the post has no less
than 20 likes. A question with a high number of votes reflects
that it is common and helpful to programmers. The process
results in 263 Stack Overflow questions as the dataset.

B. RQ1: Major Frameworks involved in Annotation Related
Questions

By extracting and analyzing the framework names that
appear in the question tags, we identify seven major Java
frameworks that are most frequently mentioned in the 263
annotation related Stack Overflow questions as shown in



Fig. 2. Major Frameworks Involved in Annotation Related Questions

Fig. 3. Main Problems Encountered by Developers

Figure 2. These frameworks account for 90% of the frame-
works discussed in the questions. The most popular framework
discussed in these questions is Spring, which includes basic
Spring Framework, Spring Boot, Spring MVC, and Spring
Data. This result is consistent with the popularity of Spring in
Java development. In addition, Hibernate, Junit, Jakarta EE,
Lombok, Guice, and Jackson are also frequently mentioned in
the questions. We consider the seven Java frameworks as the
targets of annotation recommendation and misuse detection in
our current implementation and evaluation.

C. RQ2: Main Problems Encountered by Developers

To answer RQ2, we manually identify a set of question
categories from the questions in the dataset using open coding
and then classify the questions into different categories. Three
authors of the paper conduct the coding together, starting from
a seed code “how to use an annotation”. For each question,
they decide which code the question can be classified into by
discussion. If a question cannot be classified into an existing
code, they create a new code or modify the name and definition
of an existing code to accommodate the question. If a new code
is created or an existing code is modified, they re-annotate
all the questions that have been annotated. The open coding
process ends when all the questions have been classified into a
question type (i.e., code). Based on the question categories, we
invite two master students who are familiar with Java annota-
tions (not involved in the open coding process) to classify the
263 questions in the dataset into the categories independently.
If their classifications of a question are different, a third master
student familiar with Java annotations is assigned to resolve
the conflict using the majority-win policy. We calculate the
Cohen’s Kappa coefficient [4] of the classifications of the two
students before conflict resolution and the result is 0.858 (i.e.,
almost perfect agreement).

The resulting question categories and the percentages of
different categories are shown in Figure 3. The categories

Fig. 4. An Overview of DeepAnna

include “how to use a specific annotation”, “how to define
a custom annotation”, “which annotation to use”, “how to
resolve the used annotations”, “what is the difference be-
tween annotation and XML”, “what is annotation”, and others.
Among them, two categories “which annotation to use” and
“how to use a specific annotation” are related to the correct
usage of annotations in Java programs, accounting for 53.6%
of the questions. For example, the questions in the category
“which annotation to use” often ask about how to select a
suitable annotation from a set of relevant annotations (e.g.,
@Service and @Repository); those in the category “how
to use a specific annotation” ask the correct way of using a
given annotation (e.g., the position where a @Component
annotation needs to appear).

Based on the above results, we can conclude that more
than half of the StackOverflow questions related to Java
Annotations ask how to use annotations properly. Therefore,
there is a need for recommending proper annotations for
developers based on a given code snippet.

III. APPROACH

DeepAnna treats the problem of annotation recommendation
and misuse detection as a multi-label classification task. It
takes the source code of a class or method as input and
produces class- or method-level annotations as output (i.e.,
recommended annotations). When used for annotation misuse
detection, DeepAnna compares the recommended annotations
with the annotations currently used by the developers. In this
section, we first present an overview of DeepAnna and then
detail the steps involved in it.

A. Overview

An overview of DeepAnna is shown in Figure 4. It consists
of two phases, i.e., training and prediction.

The training phase trains an annotation prediction model
based on a given code corpus. It includes two steps, i.e.,
training set construction and model training. Training set
construction constructs a set of training samples based on the
code corpus. It extracts code snippets (i.e., classes/methods)
and their annotations from the code corpus and treats each
code snippet together with its annotations as a training sample.
For each training sample it further extracts structural and
textual contexts from the code snippet. Model training trains
an annotation prediction model based on the training samples.
The model is a deep learning based classification model which
predicts the probabilities of all the candidate annotations.
Based on the training loss, the model is continuously opti-
mized to maximize the probabilities of the true annotations of



Fig. 5. Annotation Declaration

the code snippet and minimize the probabilities of the false
annotations.

The prediction phase recommends a set of annotations for
a given class or method. It first extracts structural and textual
contexts from the code of the class or method in the same way
of model training. It then uses the trained model to predict the
annotations for the class or method based on the extracted code
contexts. It can recommend the predicted annotations to the
developers directly or detect annotation misuses by comparing
the predicted annotations with the annotations currently used
by the developers.

B. Training Set Construction

Given a Java code corpus, DeepAnna constructs a training
set in three steps.

1. Annotation Definition Extraction
DeepAnna supports the annotation recommendation and

misuse detection of a given set of Java frameworks. For ex-
ample, our current implementation of DeepAnna supports the
seven major Java frameworks identified in the empirical study.
For each framework, DeepAnna extracts all the annotations
that are defined by it. The annotations of a framework are
usually defined in its source code using the @interface
keyword. For example, Figure 5 shows the declaration of
the @Service annotation in the source code of the Spring
framework. Therefore, DeepAnna analyzes the source code
of each framework and identifies the defined annotations by
parsing the annotation declarations using the @interface
keyword.

2. Training Sample Extraction
DeepAnna parses the Java code corpus and extracts train-

ing samples from it. For class-level annotation prediction,
DeepAnna extracts classes and their annotations and treats
each class together with its annotations as a training sample.
For method-level annotation prediction, DeepAnna extracts
methods and their annotations and treats each method together
with its annotations as a training sample.

3. Code Context Extraction
For each training sample, DeepAnna further extracts code

contexts from the code snippet, which will be used to train the
model. For each code snippet (class or method), DeepAnna ex-
tracts its structural contexts and textual contexts repetitively.

1) Structural Context Extraction.

Fig. 6. Extracting Textual Contexts from Code

Fig. 7. Extracting Structural Contexts from Code

The structural contexts of a code snippet reflect its control
flow and syntactic features. They can be extracted from the
abstract syntax tree (AST) of the code snippet. Given a code
snippet (class or method), DeepAnna parses it into an AST
and removes the subtrees of annotations. It then generates an
AST node sequence by traversing the AST by pre-order. For
example, for the method shown in Figure 6 DeepAnna extracts
an AST and generates a node sequence as shown in Figure 7.

2) Textual Context Extraction.
The textual contexts of a code snippet reflect the latent

semantics implied in the identifies of the code. Given a
code snippet (class or method), DeepAnna parses the code
identifiers in it and extracts a token sequence from the code
identifiers. It first extracts a sequence of identifiers from the
code by the order of appearance. It then splits each code
identifier into tokens by camel case and underscore to generate
a token sequence. After that, it further filters out meaningless
tokens that are not included in GloVe vocabulary∗ [5] (which
contains more than 400,000 English words from Wikipedia
and Gigaword) from the sequence. The resulting token se-
quence is used as textual contexts of the code snippet. For
example, the token sequence extracted for the method in
Figure 6 is shown on the right of the figure.

C. Model Training

DeepAnna uses a deep learning based multi-label classifica-
tion model to predict the annotations of a class or method. The
architecture of the model is shown in Figure 8. It includes five
components, i.e., structural context encoder, textual context
encoder, representation fusion layer, fully connected layer, and

∗https://nlp.stanford.edu/projects/glove



Fig. 8. The Annotation Prediction Model of DeepAnna

sigmoid output layer. The input of the model includes the
structural contexts and textual contexts of code snippets, i.e.,
AST node sequences and token sequences.

For the code snippet of a training sample, its AST node
sequence is encoded into a distributed vector representation via
the structural context encoder, which includes three layers. The
first layer is an embedding layer that embeds each AST node
nj into a dense vector ej ∈ Rd through a projection matrix,
which is initialized randomly. After the vectors of all the AST
nodes are produced, the vector sequence e1, e2, · · · , el is fed
into a Bi-GRU layer. Formally, the forward hidden state hj is
recursively updated as hj = GRU(ej , hj−1) and the backward
hidden state h′j is calculated reversely. As the importance
of each AST node varies in different contexts, we weight
each AST node with an attention layer. After calculating the
attention weights and weighted hidden states as Eq 1, the
vector representation of the structural contexts of the code
snippet zn is obtained.

zn =
∑
j

αj [hj , h
′
j ] (1)

where the attention weights are computed as follows:

αj =
exp(aTuj)∑
j′ exp(a

Tuj′)
(2)

uj = tanh(Ws[hj , h
′
j ] + bs) (3)

where Ws, bs and a are learnable parameters.
The textual context encoder for token sequences has a

similar structure with the structural context encoder. We denote
the output (i.e., vector representation) of the textual context
encoder as zt.

The vector representations of the structural contexts and
textual contexts (i.e., zn and zt) of a code snippet are then
concatenated in the fusion layer, which is followed by a fully
connected layer and a sigmoid output layer.

Here we adopt first-order strategy to tackle multi-label
learning which decomposes the problem into N independent
binary classification problems [6]. We use the Binary Cross-
Entropy (BCE) loss function of the predicted probability and
the ground truth label of the training sample and use the Adam
optimization method to train the model.

TABLE I
THE NUMBER OF REPOSITORIES USED BY DIFFERENT FRAMEWORKS

Framework Repo. Framework Description

Hibernate 91 An object relational mapping framework
Jakarta EE 134 Jakarta enterprise edition

Junit 62 Java unit testing framework
Lombok 11 A Java framework to replace template code
Spring 643 An inversion of control framework for Java platform
Guice 20 A lightweight dependency injection framework

Jackson 39 A framework for JSON processing in Java
Total 1,000 –

D. Annotation Prediction

In the prediction phase, DeepAnna extracts the code con-
texts of a given class or method in the same way as training
set construction. It then feeds the extracted code contexts
into the trained model and outputs the probabilities of all
the candidate annotations. Finally it selects the annotations
whose probabilities are greater than a predefined threshold as
the recommended annotations for the given class or method.

IV. EVALUATION

We implement DeepAnna to support annotation recommen-
dation and misuse detection for the seven major Java frame-
works identified in our empirical study. We implement the
deep learning based prediction model using PyTorch 1.9.0†.

We train the model on a server with Xeon E5-2620 2.1GHz
CPUs, 128GB RAM, four Nvidia 1080Ti GPUs, and running
Ubuntu 16.04. The settings of the training are as follows: the
embedding sizes of AST nodes and tokens are both 32; the
hidden size of Bi-GRU is 32; the batch size is 64; the attention
size is 16; and the learning rate is 0.005. During the training,
we set the training epochs to 10 and take the model with the
best F1 score on the validation set as the final trained model.

Based on the implementation, we evaluate DeepAnna with
the following three research questions:
• RQ3: What is the effectiveness of DeepAnna in annota-

tion recommendation?
• RQ4: What is the contribution of different code contexts

in DeepAnna to the achieved effectiveness?
• RQ5: What is the effectiveness of DeepAnna in annota-

tion misuse detection?

A. Dataset

We crawl 1,000 open-source Java projects that meet the
following criteria from GitHub: mentioning one of the seven
frameworks in the project descriptions; having at least 50 stars.
For the Spring framework we crawl 643 projects that have
the most stars. For all the other frameworks we crawl all the
projects that meet the two criteria. We randomly divide the
crawl projects into training set, validation set, and test set by
a ratio of 8:1:1. As there are many classes and methods that do
not have any annotations, we ensure that the training samples
without annotations account for 1/3 of all the training samples

†https://pytorch.org/



by randomly selecting a part of the classes and methods that
have no annotations.

Table I reports the number of repositories used by differ-
ent frameworks, and a brief description of each framework.
Specifically, the training, validation and test datasets are con-
structed based on 800, 100 and 100 repositories respectively.
Numerically, we finally obtain large-scale training samples for
annotated recommendation and misuse detection, i.e., 139,188
class-level training samples and 762,964 method-level training
samples. The validation dataset contains 25,730 class-level
samples and 113,019 method-level samples. The test dataset
contains 24,489 class-level samples and 124,628 method-level
samples.

B. Evaluation Metrics

To evaluate the effectiveness of DeepAnna in annotation rec-
ommendation, we use the following eight evaluation metrics
for multi-label classification. Before elaborating the metrics,
we first introduce some symbols that will be used in the metric
definitions. m denotes the number of samples. N denotes the
number of labels. T = {(x1, Y1) , (x2, Y2) , . . . , (xm, Ym)}
denotes the test set, where xi is the i-th sample and Yi is
the label set for xi. f(xi) denotes the value function for the
i-th sample. A multi-label classification algorithm learns the
mapping relation of f(xi). This function is supposed to have
a higher value for those labels which are in the label set Yi.
Y −i denotes the set of irrelevant labels for the i-th sample,
and Y +

i denotes the set of relevant labels for the i-th sample.
rankf denotes the number of labels whose rank is higher than
the predicted labels. j denotes a member of the set of Y +

i .
Hamming Loss. It denotes the proportion of incorrect

samples for all labels, and is defined by Eq. 4,

Hamming Loss =
1

m

m∑
i=1

XOR(Yi,j , Pi,j)

N
(4)

where Yi,j is the indicator of class j of sample i, and Pi,j is
the prediction score of class j of sample i. The smaller the
hamming loss, the better the prediction.

One Error. It is used to evaluate the number of times the
label ranked in first is not the true label. The smaller the value,
the better the prediction. It is defined by Eq. 5.

One Error =
1

m

m∑
i=1

I
[
argmax f (xi) /∈ Y +

i·
]

(5)

Coverage. It denotes the average rank of the furthest true
labels among all labels. The smaller the value, the better the
prediction. It is defined by Eq. 6.

Coverage =
1

m

m∑
i=1

I

[
max
j∈Y +

i

rankf (xi, j)− 1

]
(6)

Ranking Loss. The set of relevant labels is compared with
the set of irrelevant labels, and then the number of times
the prediction likelihood of the relevant labels is smaller than
the prediction likelihood of the irrelevant labels is defined as
ranking loss, as formulated in Eq. 7 (i.e., the average score of

the pairs of labels in the sample being predicted in the opposite
direction). The smaller the value, the better the prediction.

Ranking Loss =
1

m

m∑
i=1

∣∣Sirank

∣∣∣∣Y +
i ‖Y

−
i

∣∣ (7)

where Sirank denotes the number of pairs of label yp and yq
where yp belongs to Y +

i , yq belongs to Y −i , and the value
function of yp is less than or equal to the value function of
yq .

Average Precision. The average precision is the average
accuracy of each point. It is defined by Eq. 8,

Average Precision =
1

m

m∑
i=1

1∣∣Y +
i

∣∣ ∑
j∈Y +

i

∣∣∣Sij
precision

∣∣∣
rankf (xi, j)

(8)

where Sij
precision denotes the rank of j-th label among all the

probability distribution of the ground truth labels for the i-th
sample.

Precision, Recall and F1 Score. In addition to the evalu-
ation metrics for multi-label classification, we also use the
traditional classification evaluation metrics, i.e., precision,
recall and F1 Score. They are defined by Eq. 9, 10 and 11,

Precision =
TP

TP + FP
(9)

Recall =
TP

TP + FN
(10)

F1 Score =
2TP

2TP + FP + FN
(11)

where TP is the number of annotations that are correct and
classified as correct, FN is the number of annotations that are
correct but are classified as incorrect, and FP is the number
of annotations that are not correct but are classified as correct.

C. Effectiveness Evaluation (RQ3)

We formulate annotation recommendation as a multi-label
classification problem. There are other multi-label text clas-
sification approaches, which can be applied to this task by
taking code snippets as texts directly. Therefore, we compare
DeepAnna with several multi-label text classification baselines
on annotation recommendation.

1) Method: To evaluate the effectiveness of DeepAnna, we
compare it with several state-of-the-art machine learning based
and deep learning based multi-label classification approaches.
Specifically, we select ML-KNN [7] and ML-ARAM [8] as the
state-of-the-art machine learning based approaches, and select
Transformer [9] and RCNN [10] as the state-of-the-art deep
learning based approaches. Previous studies have demonstrated
that RCNN can achieve the best performance on multi-label
classification tasks [11]. All models use the same training
parameters, training environment and training strategy.



TABLE II
COMPARISON RESULTS OF DIFFERENT APPROACHES ON CLASS-LEVEL ANNOTATION RECOMMENDATION

Metrics DeepAnna Transformer RCNN ML-KNN ML-ARAM

Hamming Loss 0.00014 0.00018 0.00015 0.00026 0.00035
One Error 0.13005 0.16245 0.13965 0.37674 0.37674
Coverage 93.1906 134.6173 92.9327 173.2289 361.7455

Ranking Loss 0.02773 0.04035 0.02789 0.05134 0.09985
Average Precision 0.85144 0.78703 0.83215 0.23774 0.23774

Precision 0.86894 0.85325 0.86914 0.76145 0.62326
Recall 0.80438 0.70613 0.76833 0.58740 0.49827

F1 Score 0.83538 0.77270 0.81560 0.66319 0.55380

TABLE III
COMPARISON RESULTS OF DIFFERENT APPROACHES ON METHOD-LEVEL ANNOTATION RECOMMENDATION

Metrics DeepAnna Transformer RCNN ML-KNN ML-ARAM

Hamming Loss 0.00024 0.00025 0.00025 0.00029 0.00035
One Error 0.30190 0.32161 0.32102 0.43716 0.43680
Coverage 43.5066 67.5626 57.5358 76.5337 4.41485

Ranking Loss 0.01311 0.02173 0.01822 0.02444 0.00115
Average Precision 0.72217 0.71051 0.69141 0.55745 0.36998

Precision 0.74104 0.77611 0.73482 0.68971 0.56317
Recall 0.62066 0.52212 0.59241 0.46261 0.53865

F1 Score 0.67550 0.62121 0.65594 0.55378 0.55065

2) Results: The class-level comparison results are shown
in Table II. We can see that DeepAnna achieves the best
performance in almost all metrics except for coverage and
precision. RCNN achieves the best performance among the
four baselines, while the two machine learning based base-
lines ML-KNN and ML-ARAM have the worst performance.
Overall, DeepAnna achieves better performance than RCNN
on all metrics except for coverage and precision. Specifically,
DeepAnna improves RCNN by about 2% in both average
precision and F1 score. Besides, the results of method-level
comparison are reported in Table III. DeepAnna achieves the
best performance in all metrics except for coverage, ranking
loss and precision. Relatively, RCNN is the best among the
four baselines, while ML-KNN and ML-ARAM are the worst.

Comparing the evaluation metrics at the class level and
method level, we can see that the metrics at the class level are
higher than the metrics at the method level. This is because
in most cases we can extract more structural context and
textual context from class than from method, which allows
the model to better learn the context information in the code,
thus improving the evaluation metrics.

Summary. DeepAnna can effectively recommend annota-
tions with an average precision of 0.85 and an F1 score of 0.84
at the class level and an average precision of 0.72 and an F1
score of 0.68 at the method level. DeepAnna also outperforms
the state-of-the-art multi-label text classification approaches on
most metrics at both the class and method level.

D. Ablation Study (RQ4)

Both structural and textual contexts in the code are lever-
aged in DeepAnna. Therefore, we measure how each code con-
text contributes to the overall recommendation performance.

TABLE IV
COMPARISON RESULTS OF OUR ABLATION STUDY ON CLASS-LEVEL

ANNOTATION RECOMMENDATION

Metrics DeepAnna-
Textual

DeepAnna-
Structural

DeepAnna

Hamming Loss 0.00014 0.00034 0.00014
One Error 0.13489 0.30494 0.13005
Coverage 95.0783 147.1698 93.1906

Ranking Loss 0.02851 0.04408 0.02773
Average Precision 0.84253 0.55693 0.85144

Precision 0.86818 0.75744 0.86894
Recall 0.79162 0.32112 0.80438

F1 Score 0.82812 0.45094 0.83538

TABLE V
COMPARISON RESULTS OF OUR ABLATION STUDY ON METHOD-LEVEL

ANNOTATION RECOMMENDATION

Metrics DeepAnna-
Textual

DeepAnna-
Structural

DeepAnna

Hamming Loss 0.00024 0.00028 0.00024
One Error 0.30965 0.35458 0.30190
Coverage 48.5020 56.9429 43.5066

Ranking Loss 0.01549 0.01805 0.01311
Average Precision 0.70974 0.60820 0.72217

Precision 0.73461 0.69156 0.74105
Recall 0.61029 0.54166 0.62066

F1 Score 0.66666 0.60742 0.67550

1) Method: We design an ablation study by removing each
code context, i.e., the structural context encoder and the textual
context encoder, from the model in DeepAnna. The variant,
where the textual context encoder is removed, is referred to as
DeepAnna-Structural, while the variant, where the structural
context encoder is removed, is referred to as DeepAnna-



Textual. Then, we compare DeepAnna with these two variants
with the same training parameters, training environment and
training strategy.

2) Results: The comparison results of class-level anno-
tation recommendation are shown in Table IV. We can
see that DeepAnna-Textual achieves better performance than
DeepAnna-Structural in all metrics, which indicates that tex-
tual context is more effective for the annotation recommenda-
tion task compared to structural context. DeepAnna, leveraging
a combination of textual and structural context, achieves the
best performance in all metrics, which indicates that for the
annotation recommendation task, we need to consider not only
the textual context of the code but also the structural context
of the code in order to achieve the best recommendation
result. The fusion of the two contexts can effectively improve
the overall performance. This also indicates that for class-
level annotation recommendation, the GRU model has better
information extraction capability for textual context than for
structure context.

The comparison results of method-level annotation recom-
mendation are reported in Table V. Similar to the class-level
annotation recommendation, DeepAnna-Textual outperforms
DeepAnna-Structural in all metrics, which further indicates
that textual context is more important than structural context
on this task; and DeepAnna achieves the best performance
in all metrics. The potential reason for a worse performance
of DeepAnna-Structural is that there is much redundant in-
formation in ASTs, and most of the nodes in ASTs contain
limited syntactic information. If we want to further improve
the effectiveness contribution of ASTs, we need to further
optimize the extraction method of structural context.

Summary. Both structural and textual context contribute to
the achieved effectiveness of DeepAnna, while textual context
achieve more contribution than structural context.

E. Annotation Misuse Detection (RQ5)

DeepAnna can automatically recommend annotations for
developers to use when programming, which can improve the
development productivity of developers by saving the time of
query annotations. In addition, DeepAnna can be used to detect
annotation misuses in code by analyzing the code, comparing
the recommended annotations with the actual annotations in
the code, and detecting inconsistencies as annotation misuses.
To investigate whether DeepAnna can detect annotation mis-
uses in a real-world scenario, we design the following two
experiments.

1) Method: The first experiment is designed to evaluate
the effectiveness of annotation misuse detection on real-world
annotation misuses. To this end, we first search and crawl
all the issues and pull requests in GitHub from November
29, 2020 to May 16, 2021. Then, we identify the issues
and pull requests where the programming language is Java,
the annotation keyword appears in the title, and the status is
closed. By this way, we collect a total of 15,000 issues and
pull requests. After that, we keep only the issues and pull
requests that are associated with the code commits. Then, we

TABLE VI
ANNOTATE MISUSE DEETECTION RESULTS

Metrics Class Level Method Level

Hamming Loss 0.00040 0.00042
One Error 0.28155 0.61271
Coverage 122.6165 102.6332

Ranking Loss 0.03655 0.03525
Average Precision 0.53579 0.35744

Precision 0.71493 0.44336
Recall 0.47447 0.27554

F1 Score 0.57040 0.33981

manually review the content of the posts and select the issues
and pull requests which fix annotation misuses. Finally, we
collect 123 instances of annotation misuses at the class level
and 186 instances of annotation misuses at the method level.
We extract the code in the commit, use the code before the
commit as the code sample (i.e., the input of our model), and
use the annotation fixed after the commit as the annotation
ground truth, and compare the prediction results of DeepAnna
with the annotation ground truth.

The second experiments is designed to evaluate whether
DeepAnna can detect new annotation misuses in real-world
projects. To this end, we crawl Java repositories with different
star intervals from GitHub. Specifically, we crawl 200 projects
in descending order of the number of stars from four star
intervals, i.e., [50, 100), [100, 200), [200, 300), [300, 500), re-
spectively. Notice that we remove the repositories that belong
to the previously constructed dataset in Section IV-A. Then,
DeepAnna is applied to detect annotation misuse in these
repositories, i.e., the currently used annotation is different
from our predicted annotation. When DeepAnna detects an
annotation misuse, we send a pull request to the GitHub
repository, where the misused annotation is fixed.

2) Results: The result of our first experiment is shown in
Table VI. As can be seen from the results, DeepAnna can
detect annotation misuses in real scenarios with a precision of
0.71 at the class level and a precision of 0.44 at the method
level. These results demonstrate that DeepAnna can detect
annotation misuses with moderate accuracy. We can also see
that the evaluation metrics of annotation misuse detection are
lower than the evaluation metrics in RQ3. This is because
the dataset in annotation misuse detection contains annotations
that developers will misuse in actual programming scenarios,
while the dataset in RQ3 has no consideration of the possibility
of annotation misuse actually occurring. These two datasets
differ in the distribution of different types of annotations.

For the second experiment, the total number of pull requests
we have submitted to GitHub is 85. Among them, 20 pull
requests have been accepted by developers. 9 pull requests
have been refused, and the developers consider these pull re-
quests as wrong modifications. The remaining 56 pull requests
are still in open status and are waiting the developers to give
responses. These promising results demonstrate the capability
of DeepAnna in detect annotation misuses. Figure 9 shows
a practical example of a pull request we have submitted. A



Fig. 9. Pull Request Demo of Annotation Misuse in Github

Spring bean in the service layer should be annotated using
@Service annotation instead of @Component annotation.
@Service annotation is a specialization of @Component
in the service layer. By using a specialized annotation, it
can serve two purposes. First, annotated classes are treated
as Spring bean. Second, special behavior can be put in this
layer.

Summary. DeepAnna can detect annotation misuses with
moderate accuracy. Based on DeepAnna, we submit 85 bug-
fixing pull requests for annotation misuse defects in open-
source projects and 20 of them have been accepted and
merged.

V. THREATS TO VALIDITY

The threats to the empirical study mainly lie in the selec-
tion and analysis of the annotation related Stack Overflow
questions. These questions are selected based on the “java”
and “annotations” tags. It is thus possible that Java annotation
related questions that have no “java” or “annotations” tags
are missed in the analysis. The categories of the problems
involved in the questions are analyzed manually and thus may
not accurately reflect the intents of the questioner. To alleviate
this threat we invite two annotators to classify the questions
independently and calculate their agreement on the results.

The threats to the internal validity of the evaluation mainly
lie in the selection and quality of the open-source projects
used for model training and testing. First, we only consider
the Java projects that mention the subject frameworks in
their descriptions. Some projects using the seven frameworks
are possibly missed as their descriptions do not mention the
frameworks. Second, we construct the training set and test
set based on the assumption that the annotations are correctly
used in these projects. This assumption may not be true for
some samples. To alleviate this threat we only choose the
projects with at least 50 stars to avoid introducing too much
noise. Besides, we apply a dropout layer in the model to avoid
overfitting and enhance the model robustness for noisy data.
The threats to the external validity of the evaluation mainly lie
in the fact that we only consider seven major Java frameworks

and the results may not be generalized to the annotations
defined by other frameworks.

VI. RELATED WORK

Empirical Studies on Annotation. Many researchers have
conducted empirical studies on Java annotation since its in-
troduction as a feature of Java language in 2004. Rocha et
al. [12] investigate how annotations are used in 106 open-
source projects and find that annotation hell (i.e., poor code
readability and understandability caused by the abuse of anno-
tations) occurs in many of the studied projects. Yu et al. [13]
present an empirical study on the usage, evolution, and impact
of annotations in 1,094 high-quality Java projects on GitHub.
They find that annotations are widely used and developer’s
changes to annotations may cause defects, so they suggest
that systematic annotation testing tools are needed to check the
use of annotations. Some other researchers conduct empirical
studies on specific types of annotations. Tempero et al. [14]
conduct an empirical study on the usage of @Override
annotations in 100 open-source projects and find that most
subclasses override at least one method of the parent classes.
Dyer et al. [15] present an empirical study on the actual
usage of Java language features, including the declaration
and use of Java annotations. Parnin et al. [16] empirically
study the usage of Java generic types and Java annotations
in practice and compare their differences. They find that
annotations are more frequently used than generic types in
Java projects. Dong et al. [17] find that annotation misuse
is common in programs using testing frameworks, so they
suggest to conduct researches on annotation recommendation
and misuse detection for testing frameworks. These empirical
studies motivate our work on Java annotation recommendation
and misuse detection in this paper.

Rule Based Annotation Misuse Detection. Some re-
searchers explore the problem of annotation misuse and pro-
pose rule-base approaches for annotation misuse detection.
Córdoba-Sánchez et al. [18] propose a modelling language
called Ann for efficiently designing and verifying Java annota-
tions. Ann uses dependency and integrity constraints between
annotations to check whether the annotations used in programs
satisfy the constraints. They evaluate the language using a set
of annotations from Jakarta EE and the results show that Ann
can express sufficiently rich semantic information. Darwin et
al. [19] propose an approach that uses DSL-based declarations
to verify the correctness of annotation usage. Noguera et
al. [20] develop a tool that allows developers to define and
verify annotation frameworks using a domain model. Noguera
et al. [21] propose a framework for validating procedures for
attribute-oriented programming by defining annotation usage
rules and an extensible set of meta-annotations. These annota-
tion misuse detection approaches rely on developers’ expertise
to define framework specific rules or constraints and cannot
reflect the latent relationships between the source code and
annotations used. In contrast, DeepAnna is a learning based
approach that does not rely on developers’ expertise and can



reveal the latent relationships between the source code and
annotations used.

Deep Learning for Software Engineering. With the rapid
development of deep learning in recent years, more and
more neural network models are being used in the fields
of software engineering, such as code completion and API
recommendation, comment generation and code search.

In code completion and API recommendation direction,
deep learning models are used to learn representation of source
code and recommend next token or API for incomplete code.
White et al. [22] point out that deep learning models can
learn textual context of code, and propose recurrent neural
network (RNN) based code recommendation methods. Dam
et al. [23] propose a code completion method using long
short term memory (LSTM) instead of basic to solve the long-
range dependency problem and thus improve the completion
accuracy.

Deep learning based approaches achieve success in com-
ment generation task by modeling the task as a machine trans-
lation problem from program language to natural language.
Lyer et al. [24] consider source code as token sequences and
propose a comment generation model (named CODE-NN)
based on Seq2Seq architecture with attention mechanism. Hu
et al. [25] consider both textual and structural context and
fed them into the Seq2Seq architecture separately to generate
higher quality comments.

Deep learning based code search approaches represent the
given natural language (NL) query and code snippets into
the same vector space and rank the code snippets via their
similarity scores. Gu et al. [26] propose CODEnn, a deep
learning-based code search method, which uses RNN and
multi-layer perceptron for NL and code without considering
code structural context. Xu et al. [27] propose a two-stage
attentional neural network structure TabCS for code search
and their experimental results show that TabCS achieves the
best code search results compared to existing approaches.

Deep learning based approaches are proven successful in
these research directions related to source code semantics. We
also apply representation learning for source code considering
structural and textual code contexts and obtain practical results
on annotation prediction task.

Text Multi-label Classification. Text multi-labe classi-
fication is a classical task in natural language processing
and has many application scenarios. Many learning based
classification approaches are proposed in recent years. Clare et
al. [28] propose a decision tree based multi-label classification
algorithm that adapts the traditional decision tree algorithm
C4.5 [29] to multi-classification tasks. The prediction results
on the genetic dataset show that the authors’ proposed method
can achieve a high prediction accuracy. Zhang et al. [7]
propose a multi-label classification method named ML-KNN
based on the traditional K-nearest neighbor (KNN) method.
In addition to KNN, ML-KNN leverages the maximum a
posteriori (MAP) principle to determine the labels of unseen
instances. Read et al. [30] use a new classifier chain approach
that models the association between labels and determines

final prediction by voting among multiple classifier chain
models under an acceptable computational complexity. Benites
et al. [8] propose an adaptive associative mapping neural
network that clusters the learned prototypes via additional
ART layers. This model achieved a significant classification
performance and a fast prediction speed. Zhou et al. [11]
propose four deep learning-based multi-label classification
algorithms, i.e., TagCNN, TagRNN, TagHAN, and TagRCNN,
based on CNN [31], RNN [10], HAN [32] and RCNN [33] re-
spectively. Compared with traditional multi-label classification
algorithms, experimental results show that TagCNN and TagR-
CNN achieve better recommendation results. Although these
classification models achieved state-of-the-art performance,
they are designed for classification task on text instead of
source code. Our approach models annotation recommendation
and misuse detection as a multi-label classification task by
considering the annotations as labels. Besides textual context,
we also take structural context of code into consideration to
better capture code features.

VII. CONCLUSION

Annotation is an important feature of Java language and
has been widely used in Java programs. Many popular Java
frameworks such as Spring highly rely on annotations to
define and implement various mechanisms that are required
by their applications. In this paper, we present our work on
the recommendation and misuse detection of Java annota-
tions. We first conduct an empirical study on Stack Overflow
questions to investigate the major development frameworks
that are involved in questions about Java annotations and the
main problems encountered by developers in the use of Java
annotations. The study reveals seven major Java frameworks
that are frequently used by developers, for example Spring,
Hibernate, Junit. It also shows that a large part of the developer
questions about Java annotations are about the correct usage of
annotations. Based on the findings of the study, we propose
a deep learning based Java annotation recommendation and
misuse detection approach called DeepAnna. DeepAnna trains
a deep learning based multi-label classification model by
considering both the structural and textual contexts of source
code. It can recommend annotations and detect annotation
misuse at both class level and method level. Our evaluation
shows that DeepAnna outperforms state-of-the-art text multi-
label classification approaches in annotation recommendation
and can effectively detect annotation misuses. Based on our
analysis, we submit 85 bug-fixing pull requests for annotation
misuses in open-source projects and 20 of them have been
accepted and merged.

Our future work will be focused on improving the accuracy
of annotation recommendation and misuse detection on the
one hand and exploring the application of the approach in
industrial projects on the other hand.

ACKNOWLEDGMENT

This work is supported by National Natural Science Foun-
dation of China under Grant No. 61972098.



REFERENCES

[1] (2017) Oracle. lesson: Annotations. [Online]. Available:
https://docs.oracle.com/javase/tutorial/java/annotations/

[2] (2021) Spring. [Online]. Available: https://spring.io/
[3] (2021) Hibernate. [Online]. Available: https://hibernate.org/
[4] B. D. Eugenio and M. Glass, “The kappa statistic: A second look,”

Comput. Linguistics, vol. 30, no. 1, pp. 95–101, 2004. [Online].
Available: https://doi.org/10.1162/089120104773633402

[5] J. Pennington, R. Socher, and C. D. Manning, “Glove: Global vectors
for word representation,” in Empirical Methods in Natural Language
Processing (EMNLP), 2014, pp. 1532–1543. [Online]. Available:
http://www.aclweb.org/anthology/D14-1162

[6] M. Zhang and Z. Zhou, “A review on multi-label learning algorithms,”
IEEE Trans. Knowl. Data Eng., vol. 26, no. 8, pp. 1819–1837, 2014.
[Online]. Available: https://doi.org/10.1109/TKDE.2013.39

[7] ——, “ML-KNN: A lazy learning approach to multi-label learning,”
Pattern Recognit., vol. 40, no. 7, pp. 2038–2048, 2007. [Online].
Available: https://doi.org/10.1016/j.patcog.2006.12.019

[8] F. Benites and E. P. Sapozhnikova, “HARAM: A hierarchical ARAM
neural network for large-scale text classification,” in IEEE International
Conference on Data Mining Workshop, ICDMW 2015, Atlantic City,
NJ, USA, November 14-17, 2015. IEEE Computer Society, 2015, pp.
847–854. [Online]. Available: https://doi.org/10.1109/ICDMW.2015.14

[9] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones,
A. N. Gomez, L. Kaiser, and I. Polosukhin, “Attention is
all you need,” in Advances in Neural Information Processing
Systems 30: Annual Conference on Neural Information Processing
Systems 2017, December 4-9, 2017, Long Beach, CA, USA,
I. Guyon, U. von Luxburg, S. Bengio, H. M. Wallach, R. Fergus,
S. V. N. Vishwanathan, and R. Garnett, Eds., 2017, pp. 5998–6008.
[Online]. Available: https://proceedings.neurips.cc/paper/2017/hash/
3f5ee243547dee91fbd053c1c4a845aa-Abstract.html

[10] P. Liu, X. Qiu, and X. Huang, “Recurrent neural network for
text classification with multi-task learning,” in Proceedings of the
Twenty-Fifth International Joint Conference on Artificial Intelligence,
IJCAI 2016, New York, NY, USA, 9-15 July 2016, S. Kambhampati,
Ed. IJCAI/AAAI Press, 2016, pp. 2873–2879. [Online]. Available:
http://www.ijcai.org/Abstract/16/408

[11] P. Zhou, J. Liu, X. Liu, Z. Yang, and J. C. Grundy, “Is deep learning
better than traditional approaches in tag recommendation for software
information sites?” Inf. Softw. Technol., vol. 109, pp. 1–13, 2019.
[Online]. Available: https://doi.org/10.1016/j.infsof.2019.01.002

[12] H. Rocha and M. T. Valente, “How annotations are used in java: An
empirical study,” in Proceedings of the 23rd International Conference
on Software Engineering & Knowledge Engineering (SEKE’2011), Eden
Roc Renaissance, Miami Beach, USA, July 7-9, 2011. Knowledge
Systems Institute Graduate School, 2011, pp. 426–431.

[13] Z. Yu, C. Bai, L. Seinturier, and M. Monperrus, “Characterizing the
usage, evolution and impact of java annotations in practice,” IEEE
Trans. Software Eng., vol. 47, no. 5, pp. 969–986, 2021. [Online].
Available: https://doi.org/10.1109/TSE.2019.2910516

[14] E. D. Tempero, S. Counsell, and J. Noble, “An empirical study
of overriding in open source java,” in Computer Science 2010,
Thirty-Third Australasian Computer Science Conference (ACSC
2010), Brisbane, Australia, January 18-22, 2010, Proceedings,
ser. CRPIT, B. Mans and M. Reynolds, Eds., vol. 102.
Australian Computer Society, 2010, pp. 3–12. [Online]. Avail-
able: http://portal.acm.org/citation.cfm?id=1862200&CFID=15843676
&CFTOKEN=50950122

[15] R. Dyer, H. Rajan, H. A. Nguyen, and T. N. Nguyen, “Mining billions
of AST nodes to study actual and potential usage of java language
features,” in 36th International Conference on Software Engineering,
ICSE ’14, Hyderabad, India - May 31 - June 07, 2014, P. Jalote,
L. C. Briand, and A. van der Hoek, Eds. ACM, 2014, pp. 779–790.
[Online]. Available: https://doi.org/10.1145/2568225.2568295

[16] C. Parnin, C. Bird, and E. R. Murphy-Hill, “Adoption and use of java
generics,” Empir. Softw. Eng., vol. 18, no. 6, pp. 1047–1089, 2013.
[Online]. Available: https://doi.org/10.1007/s10664-012-9236-6

[17] D. J. Kim, N. Tsantalis, T. P. Chen, and J. Yang, “Studying test
annotation maintenance in the wild,” in 43rd IEEE/ACM International
Conference on Software Engineering, ICSE 2021, Madrid, Spain,
22-30 May 2021. IEEE, 2021, pp. 62–73. [Online]. Available:
https://doi.org/10.1109/ICSE43902.2021.00019
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