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Abstract—Uncaught runtime exceptions have been recognized
as one of the commonest root causes of real-life exception bugs in
Java applications. However, existing runtime exception detection
techniques rely on symbolic execution or random testing, which
may suffer the scalability or coverage problem. Rule-based bug
detectors (e.g., SpotBugs) provide limited rule support for runtime
exceptions. Inspired by the recent successes in applying deep learn-
ing to bug detection, we propose a deep learning-based technique,
named DREX, to identify not only the types of runtime exceptions
that a method might signal but also the statement scopes that might
signal the detected runtime exceptions. It is realized by graph-
based code representation learning with (i) a lightweight analysis
to construct a joint graph of CFG, DFG and AST for each method
without requiring a build environment so as to comprehensively
characterize statement syntax and semantics and (ii) an attention-
based graph neural network to learn statement embeddings
in order to distinguish different types of potentially signaled
runtime exceptions with interpretability. Our evaluation on
54,255 methods with caught runtime exceptions and 54,255 meth-
ods without caught runtime exceptions from 5,996 GitHub Java
projects has indicated that DREX improves baseline approaches
by up to 18.2% in exact accuracy and 41.6% in F1-score. DREX
detects 20 new uncaught runtime exceptions in 13 real-life pro-
jects, 7 of them have been fixed, while none of them is detected
by rule-based bug detectors (i.e., SpotBugs and PMD).

Index Terms—runtime exceptions, deep learning

I. INTRODUCTION

Exceptions are abnormal or unexpected events that occur at
runtime and disrupt the normal flow of a program’s execution,
and hurt the program’s robustness [21, 32]. To facilitate the de-
velopment of robust programs against exceptions, most modern
programming languages provide built-in exception handling
mechanisms to signal, propagate and handle exceptions [31, 43].
Exception handling mechanisms are implemented differently
across different programming languages. In particular, the ex-
ception handling mechanism implemented by Java distinguishes
three types of exceptions, i.e., checked exceptions, runtime ex-
ceptions and errors; and runtime exceptions and errors are col-
lectively known as unchecked exceptions. Checked exceptions
potentially raised in a method are required to be either locally
handled in method body, or explicitly declared on method sig-
nature. The Java compiler will signal a compilation error if this
requirement is not satisfied. Unchecked exceptions are not
subject to this requirement. Thus, uncaught checked exceptions
will be detected at compile time and will not occur at runtime,
whereas uncaught unchecked exceptions will not be detected
at compile time but will occur at runtime.

Previous empirical studies on exception handling have rec-
ognized uncaught exceptions as one of the most common root
causes of real-life exception bugs in Java applications [6, 13,
17, 18, 25, 72]. Similar empirical evidences have also been
reported in Android applications which reuse Java’s exception
handling mechanism [16, 47, 67]. In fact, such uncaught ex-
ceptions are all unchecked exceptions, which can cause serious
consequences such as denial-of-service, especially for server
applications that should provide long-running services. Hence,
it is important to automatically detect runtime exceptions so
that developers can fix the bug or catch the exception without
crashing the application. As errors are often caused by external
problems that are difficult to detect, we do not consider errors.

Some attention has been paid to unchecked exception detec-
tion. Kadar et al. [46] use symbolic execution to systematically
explore execution paths of each method to detect runtime
exceptions, and Csallner et al. [22] and Wu et al. [96] use
random testing on methods to heuristically detect runtime
exceptions. The former may suffer the scalability problem due
to the limitation of symbolic execution [5], while the latter
might incur high time overhead and suffer the coverage
problem [74]. On the other hand, rule-based bug detectors
(e.g., FindBugs [41], PMD [19], Google’s Error Prone [2] and
Facebook’s Infer [40]) are very efficient, but provide limited
rule support for runtime exceptions [37].

Inspired by recent successes in deep learning-based bug de-
tection [15, 38, 53, 55, 69, 88, 101, 106], we propose a deep
learning-based technique, named DREX, to efficiently and ef-
fectively detect runtime exceptions via automatically learned
semantic features of runtime exceptions. The goal of DREX is
to detect not only the types of runtime exceptions that a method
may signal, but also the statement scopes that might signal the
detected runtime exceptions. To achieve this goal, the exist-
ing deep learning-based bug detection techniques are limited for
two main reasons. First, except for [53, 106], they represent
source code as a flat sequence of tokens or AST (abstract
syntax tree) nodes, which limits the capability to learn semantic
features with respect to data and control dependencies. How-
ever, such dependencies are important for runtime exception
detection. Second, except for [101], they all work at a coarse-
grained level by detecting whether a file or method is buggy. As
a result, their code representation learning is designed to embed
files or methods into vectors, which is not applicable to our fine-
grained statement-level detection and also lacks interpretability.



To collect sufficient data for enabling deep learning-based
runtime exception detection, we extract and investigate try-
catch blocks in 5,996 GitHub Java projects which were created
after 2013 and have more than 20 stars. Of the 5,745,434 non-
test methods in these projects, 54,255 (0.9%) methods contain
63,513 runtime exception try-catch blocks, covering 1,008 run-
time exception types, mostly inherited from JDK’s 83 runtime
exception types to add customized exception information. We
trace these project-customized runtime exception types back
to the JDK’s runtime exception types where they are inherited,
and obtain the top eight frequently-caught runtime exception
types and regard the other types as RuntimeException. Thus,
we can formulate runtime exception detection as a multi-class
classification problem, and regard the statements in try blocks
as the statement scopes that may signal runtime exceptions.

To overcome the limitations of existing deep learning-based
bug detectors, we propose a graph-based code representation
to combine CFG (control flow graph), DFG (data flow graph)
and AST of a method into a joint graph so that both semantic
dependencies among statements and syntactic structures of
statements are comprehensively characterized. To facilitate the
construction of joint graphs and enable learning from “big
code”, we propose a lightweight analysis to construct CFG and
DFG with type information at the statement level without requir-
ing a build environment. Based on this graph representation, we
propose an attention-based graph neural network by combining
GGNN (gated graph neural network) [54] and GAN (graph
attention network) [83]. In our code representation learning,
GGNN allows our model to embed each node into three vectors
by propagating and aggregating information of neighboring
nodes according to different edge types (i.e., CFG edge, DFG
edge, and AST edge). GAN allows our model to weigh the im-
portance of neighboring nodes in runtime exception detection,
and models the interpretability. Based on the weighed vector of
each statement node, we adopt a single-layer neural network
to detect the runtime exception types that the statement may po-
tentially signal. Our code representation learning advances the
state-of-the-art by providing fine-grained statement embedding
based on weighed syntactic and semantic information.

We have conducted a set of experiments to evaluate the ef-
fectiveness and efficiency of the proposed approach on a data
set with 54,255 methods with caught runtime exceptions and
54,255 methods without caught runtime exceptions. First, we
compare DREX with several baseline approaches. The result
demonstrates that DREX achieves an exact accuracy of 60.0%
and an F1-score of 78.4%, while improving the baselines by up
to 18.2% and 41.6%; and GAN and type information used in
DREX bring the highest gain, i.e., 16.9% in exact accuracy and
7.3% in F1-score, and 8.3% in exact accuracy and 10.8% in F1-
score, respectively. Second, we measure the time overhead of
DREX. The result indicates that our approach takes 16.0 hours
to train the model, and 2.71 seconds to construct the graph and
0.26 seconds to identify runtime exceptions for each method. Fi-
nally, we manually analyze 50 methods with uncaught runtime
exceptions detected by DREX, successfully write test cases to
trigger 20 uncaught runtime exceptions in 13 real-life projects,

1 public boolean equals(Object other) {
2 try {
3 if (other == null) {
4 return false;
5 }
6 return d.equals(((BigReal) other).d);
7 } catch (ClassCastException cce) {
8 return false;
9 }

10 }

Fig. 1: A Motivating Example of ClassCastException

and 7 of them have been confirmed and fixed by developers.
None of the 20 uncaught runtime exceptions are detected by
rule-based bug detectors (i.e., SpotBugs and PMD).

In summary, this work makes the following contributions.
• We combine CFG, DFG and AST into a joint graph to com-

prehensively characterize both statement syntax and state-
ment semantics, and develop a lightweight analysis to con-
struct the graph without requiring a build environment.

• We propose an attention-based graph neural network by com-
bining GGNN and GAN to detect the type and statement
scope of uncaught runtime exceptions with interpretability.

• We conduct experiments to show the improvement of DREX
over baseline approaches and the capability in detecting 20
new uncaught runtime exceptions in real-life projects.

II. PRELIMINARIES, MOTIVATIONS AND DATA COLLECTION

In this section, we explain the exception handling mechanism
in Java, illustrate motivating examples on runtime exceptions,
and present our data collection of runtime exceptions.

A. Exception Handling Mechanism in Java

Java has three basic categories of exceptions: checked excep-
tions (i.e., Exception), runtime exceptions (i.e., RuntimeExcep-
tion), and errors (i.e., Error). All JDK’s exceptions are inherited
from the three exceptions. Developers have the flexibility to
extend any of the JDK’s exceptions. Runtime exceptions and
errors are also known as unchecked exceptions. We focus on
runtime exceptions as checked exceptions will not occur at
runtime and errors are caused by external problems.

Exceptions are handled by try-catch constructs. Specifically,
in the block try {S} catch (E e) {H}, the try block guards
a set of statements S from occurrences of exceptions flowing
out of the block. S is also called the statement scope of an
exception. This scope has a direct impact on the robustness of
a program, and if scopes are not properly defined in each
program location, the possible actions in the associated
handlers are significantly constrained [43]. The catch block
defines a handler for an exception instance e of the type E
(and sub-types of E) with a set of statements H (i.e., actions
to handle the caught exception).

B. Motivating Examples on Runtime Exceptions

Figure 1 presents an example of ClassCastException in the
method equals of the project Apache Commons Math. This
method determines whether the current object of type BigReal
equals to the passed argument other of type Object. At Line 6,
it first casts other to type BigReal, and then checks whether the
member variable d of the current object equals to the member



1 public static FSA loadFSA(File file, Query query) throws IOException {
2 log(utilsLogger, query, "Loading FSA file");
3 String filePath = null;
4 try {
5 filePath = file.getAbsolutePath();
6 } catch (SecurityException e1) {
7 error(utilsLogger, query, "No read access for the FSA file");
8 throw new IOException("No read access for the FSA file");
9 }

10 FSA fsa = loadFSA(filePath, query);
11 return fsa;
12 }

Fig. 2: A Motivating Example of SecurityException

variable d of the casted other. Due to the polymorphism mech-
anism in Java, this method can accept an argument of any type,
leading to a ClassCastException if other is not an instance of
BigReal. Therefore, a try-catch block is added to handle the
buggy cast expression. From this example, we can observe that
a comprehensive semantic understanding of a method is needed
to detect runtime exceptions; e.g., the parameter other is used
(i.e., data flow information) in the cast expression (i.e., syntax
information) without any type validation in the path (i.e., control
flow information) to the cast expression. Therefore, existing
deep learning-based bug detectors (e.g., [15, 38, 55, 69, 88])
that only rely on source tokens or AST nodes can have a low
accuracy. We can also observe from this example that a large
amount of semantic information can be extracted among state-
ments in a method, which contributes to runtime exceptions
differently and needs to be explicitly weighed to distinguish
and interpret the statements that signal or do not signal run-
time exceptions. Therefore, existing deep learning-based bug
detectors (e.g., [53, 106]) that use CFG and DFG but fail to
weight their importance can have a low recall.

Figure 2 illustrates an example of SecurityException in the
method loadFSA of the project Vespa. This method loads the
FSA file by calling an overloaded method loadFSA at Line 10,
which might throw an IOException that is not handled but de-
clared at the method signature at Line 1. To prepare the first ar-
gument for calling the overloaded method, it calls the method
getAbsolutePath on the argument file of type File. However,
this method invocation may throw a SecurityException if a
required system property value (e.g., read permission) cannot
be accessed, because the file indicated by the argument file
can be located anywhere in the system. Similar observations
from the previous example can be made from this example,
and we can further observe that runtime exceptions from
third-party library APIs can be easily missed since devel-
opers could be unfamiliar with third-party library APIs and
runtime exceptions in third-party library APIs are often not
documented [16, 47]. As such runtime exceptions can be deeply
hidden, it is non-trivial for approaches based on symbolic
execution or random testing (e.g., [22, 46]) to trigger them.

Motivated by these observations, we propose a deep learning-
based technique to detect both types and scopes of runtime
exceptions, which is built upon (i) a graph-based code represen-
tation that combines CFG, DFG and AST to comprehensively
capture code syntax and semantics (see Section III-B) and (ii)
an attention-based graph neural network that learns fine-grained
statement embedding based on weighed syntactic and semantic
information (see Section III-C).
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Fig. 3: Frequently Caught Runtime Exception Types

C. Data Collection of Runtime Exceptions

To enable our deep learning-based runtime exception detector,
we need a large number of code samples that signal runtime
exceptions and code samples that do not. It is straightforward
to collect code samples that signal runtime exceptions because
open-source projects use try-catch blocks to handle potential
runtime exceptions; i.e., we can parse the try-catch blocks in
open-source projects to collect methods with runtime excep-
tions. To this end, we choose the GitHub Java projects that
were created after 2013 and have more than 20 stars. These
criteria are designed to balance the sample size and the sample
quality, which restrict our selection to 5,996 projects. We use
JavaParser [76] to parse runtime exception try-catch blocks in
each non-test method of these projects. Test methods are ex-
cluded to only focus on try-catch behaviors in production
methods. 5,745,434 non-test methods are analyzed, and 54,255
(0.9%) methods contain a total of 63,513 runtime exception
try-catch blocks. Only 80 of these runtime exception try-catch
blocks catch more than one runtime exception type.

All these blocks cover 1,008 runtime exception types. JDK
has a total of 83 runtime exception types, 21 of which are caught
in 60,928 try-catch blocks in 51,932 methods. The other 987
runtime exception types are inherited from JDK’s runtime ex-
ception types to add customized exception information, and they
are caught in 2,665 try-catch blocks in 2,439 methods. Actually,
project-customized runtime exception types have the same
nature of the JDK’s runtime exception types where they are in-
herited. Therefore, to collect sufficient samples for each runtime
exception type, we trace project-customized runtime exception
types back to JDK’s runtime exception types where they are
inherited. Finally, we obtain eight frequently-caught runtime ex-
ception types, as reported in Figure 3. The most frequently
caught runtime exception type is IllegalArgumentException,
which is caught in 13,398 methods. It indicates that an illegal
or inappropriate argument has been passed to a method call.
For the other less frequently caught runtime exception types
in 17.6% of methods, we treat them as RuntimeException.

Then, for each of the 54,255 methods that signal runtime ex-
ceptions, we randomly select from its residing file a method that
does not signal runtime exceptions. Thus, we collect 54,255
methods as the samples that do not signal runtime exceptions.

III. METHODOLOGY

In this section, we first present an overview of DREX, and
then introduce each step of DREX in detail.



…
…

…

ℎ",$(&)

ℎ",(
(&)

ℎ",)(&)

ℎ*,$(&)

ℎ*,(
(&)

ℎ*,)(&)

ℎ+,$(&)

ℎ+,((&)

ℎ+,)(&)

…

ℎ",$(")

ℎ*,$(")

ℎ+,$(")

…

ℎ",$(,)

ℎ*,$(,)

ℎ+,$(,)

…

ℎ",(
(")

ℎ*,(
(")

ℎ+,(
(")

…

ℎ",(
(,)

ℎ*,(
(,)

ℎ+,(
(,)

…

ℎ",)(")

ℎ*,)(")

ℎ+,)(")

…

ℎ",)(,)

ℎ*,)(,)

ℎ+,)(,)

…

ℎ"(,)

ℎ*(,)

ℎ+(,)

Propagation
Propagation

Propagation 

…

…

…

Attention

…
…

…

Fully Connected  Layer

CFG Edge
DFG Edge
AST Edge

…

Methods

Runtime Exception 
Detection

Attention-Based Graph 
Neural Network

Graph-Based Code 
Representation
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A. Approach Overview

We formulate runtime exception detection as a multi-class
(i.e., ten classes, nine classes for the nine runtime exception
types in Figure 3 and one class for no runtime exception) classi-
fication problem at the statement level. The classifier is learned
from our method samples that signal and do not signal runtime
exceptions from a large corpus of open-source projects (see
Section II-C). We regard the statements in runtime exception
try blocks as the statement scopes that may signal runtime
exceptions. Figure 4 presents an overview of our approach,
which consists of the following three main steps.
• Graph-Based Code Representation. For each method from

an open-source project, we use our lightweight analysis to
construct the CFG (control flow graph) and DFG (data flow
graph) at the statement level without the need of a build en-
vironment, and combine the CFG, DFG and AST (abstract
syntax tree) into a joint graph to comprehensively charac-
terize the semantic dependencies among statements and the
syntactic structures of statements. Such semantic and syntac-
tic knowledge can be used to distinguish whether a statement
signals specific types of runtime exceptions.

• Attention-Based Graph Neural Network. With our graph
representation, we adopt a 3-layer attention-based graph neu-
ral network1 to learn statement embedding with weighed se-
mantic and syntactic knowledge. In each layer, we first adopt
GGNN (gated graph neural network) [54] to embed each node
into three vectors through propagating and aggregating infor-
mation of neighboring nodes following three edge types (i.e.,
CFG, DFG and AST edges), and then adopt GAN (graph at-
tention network) [83] to weigh the importance of neighboring
nodes in exception detection, generate a vector representation
for each node, and provide model interpretability.

• Runtime Exception Detection. With the weighed vector of
each statement node, we adopt a single-layer neural network
as the classifier to decide whether each statement signals run-
time exceptions and what runtime exception types it signals.

B. Graph-Based Code Representation

As motivated in Section II-B, a comprehensive semantic un-
derstanding of a method is needed to determine whether the
method signals runtime exceptions. However, the extraction of

1For simplicity, we only show a 1-layer in Figure 4.

such semantic information often relies on heavyweight program
analysis techniques which often require a build environment,
greatly hindering the data collection. Therefore, we propose a
graph-based code representation that combines CFG, DFG and
AST and is constructed in a lightweight way at the statement
level. The graph G of each method has two types of nodes (i.e.,
statement nodes Vs and AST nodes Va) and three types of
edges (i.e., CFG edges Ec, DFG edges Ed, and AST edges Ea).
Formally, G is denoted as a tuple 〈V, E〉, where V = Vs ∪ Va

denotes nodes, and E = Ec ∪ Ed ∪ Ea denotes edges. The
graph is constructed in the following steps. Notice that here we
only present the high-level procedure to construct the graph.
A detailed implementation has been open-sourced.

1) CFG Construction: As DREX is intended to detect run-
time exceptions at the statement level, we construct CFG at
the statement level. To this end, we adopt JavaParser [76] to
visit each statement by walking through the AST. During the
walk, we construct a node for each statement and determine
whether the statement belongs to four groups of control flow
statements breaking up the execution flow, i.e., decision-making
statements (i.e., IfStmt, SwitchStmt and SwitchEntryStmt), loop-
ing statements (i.e., WhileStmt, ForStmt, ForeachStmt and
DoStmt), branching statements (i.e., BreakStmt, ContinueStmt,
ReturnStmt and LabeledStmt), and exceptional statements (i.e.,
TryStmt). If yes, we construct an edge between the statement
and each possible control flow target; otherwise, we construct
an edge between the statement and the next statement. There
are two exceptions in this process: (i) we skip the CFG con-
struction for the whole method when a statement has parser er-
rors (i.e., UnparsableStmt in JavaParser); and (ii) we exclude
from the constructed CFG the exceptional statements that catch
runtime exceptions in order to remove the explicit indicator of
runtime exceptions. After this CFG construction, we construct
Vs and Ec. For example, the four green nodes in Figure 5
represent the statements at Line 1, 3, 5 and 6 in Figure 1.
The three red edges represent the control flow edges among
statements, and the if statement at Line 3 leads to two control
flows to Line 4 and Line 6, respectively.

2) AST Construction: For each statement node in the con-
structed CFG, we use JavaParser to generate its AST subtree,
and link the statement node to the root node of the AST subtree.
In this way, we combine CFG and AST, and construct Va and
Ea. For example, as shown in Figure 5, the black nodes repre-
sent AST nodes, the blue edges denote AST edges, and each
statement node is connected via AST edge to its AST subtree.

3) DFG Construction: Based on the constructed CFG, we
determine how data flows along the control flows. Compared
with the data flow analysis on intermediate representation of
the SSA (static single assignment) form in Soot [81], our
data flow analysis at the statement level differs in the variable
reaching definition and use analysis, challenged by the various
forms of statements. To address this challenge, we maintain a
reaching definition set to record the variables that are reachable
to the current statement node as well as the statement nodes that
define the variables, and define the specific reaching definition
and use analysis for each type of statements and expressions
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Fig. 5: The Graph Representation of the Method in Figure 1 with Highly Weighted Edges

(i.e., the composing elements of statements) based on its syntac-
tic structure. Basically, for a method declaration, we directly put
its parameters into the reaching definition set. Then, for each
statement or expression type, we actually know the composing
elements that may define or use a variable, and parse the com-
posing element to search for NameExpr to determine the vari-
able. If the variable is defined, we update the reaching definition
set; and if the variable is used, we search from the reaching
definition set the statements that define the variable, and con-
struct DFG edges to those statements. In this way, we construct
Vd. For example, as shown in Figure 5, the statement node
corresponding to Line 1 in Figure 1 is a MethodDeclaration,
and we put its parameter other into the reaching definition
set. The statement node corresponding to Line 3 contains a
BinaryExpr, and we know that its left and right expression may
use a variable. Then, we parse its left expression which is a
NameExpr of other, and thus we construct a DFG edge between
the statement nodes corresponding to Line 1 and Line 3, as
visualized by the green edge. The DFG edge between Line 1
and Line 6 is similarly constructed.

4) Type Extraction: As type information carries important
semantics (e.g., type information is important for ClassCas-
tException), we extract type information for literals, variables
and classes used in each method. To this end, for each class in
a project, we first collect the fully qualified names of its visible
classes, i.e., classes in the same package, its imported classes2

2We exclude the class (and its enclosing methods) if it has wildcard imports
because we cannot resolve types. However, wildcard imports are not used in
all our 5,996 projects potentially because of automated supports in IDEs.

and classes in the package java.lang. Then, we determine the
fully qualified name of the type of its member variables by
matching with its visible classes. Finally, for each method in the
class, similar to DFG construction, we parse the expressions in
each statement based on the specific syntactic structure. Specif-
ically, if a variable declaration is encountered, we record and
replace the type with its fully qualified name by matching with
the visible classes and remove the variable name; if a variable
reference is encountered, we replace the variable name with the
fully qualified name of its type; if a class name is encountered,
we replace it with its fully qualified name by matching with the
visible classes; and if a literal is encountered, we replace it with
the corresponding literal type. For example, as shown in the
statement nodes in Figure 5, we add the fully qualified name
org.apache.commons.math.util.BigReal to the method name,
replace the parameter Object other with its fully qualified name
of the type java.lang.Object; and we replace the conditional
expression other == null with java.lang.Object == NullLiteral.

5) Node Embedding Initialization: After constructing the
graph of each method, we regard the content in each node as a
doc, and apply Doc2Vec [49] over all methods to initialize the
node embedding xv of each node v ∈ V for each method.

C. Attention-Based Graph Neural Network

With our graph representation G = 〈V, E〉 for each method,
we develop a 3-layer attention-based graph neural network to
learn statement embedding based on recent advances in graph
neural networks [97, 105]. Each layer consists of two modules.

1) Propagation Module: As each node in G is connected to
neighboring nodes by CFG, DFG and AST edges, we adopt



GGNN (gated graph neural network) [54] to embed each node
into one vector by propagating and aggregating information of
neighboring nodes following one edge type. As a result, three
vectors are generated for each node following three edge types.
Specifically, the propagation works as follows. At time step 1,
we initialize the node state vector h(1)

v,p for each node v as its
initial node embedding xv (i.e., Eq. 1), where p ∈ {c, d, a}
denotes an edge type (i.e., c, d and a respectively denotes CFG,
DFG and AST edge). Then, at each time step t, information
is propagated and aggregated among neighboring nodes along
edges of a specific type independently; i.e., a new state vector
f
(t)
v,p of each node v is generated via aggregating information of

its neighboring nodes following edges of type p (i.e., Eq. 2),
where Av,p is v’s sub-matrix of the graph adjacent matrix A
with respect to edge type p, [; ] denotes vector concatenation, b
denotes learnable parameters, and > denotes matrix transpose.
Then, a gated recurrent unit (GRU) [14] is used to integrate
information from v’s state vector at the previous time step and
v’s new state vector at the current time step (i.e., Eq. 3). At
the last time step T , the state vector h(T )

v,p becomes the node
v’s final representation hv,p with respect to edge type p.

h
(1)
v,p = xv (1)

f
(t)
v,p = A>v,p[h

(t−1)>
1,p ; ...;h

(t−1)>
|V|,p ]> + b (2)

h
(t)
v,p = GRU(h

(t−1)
v,p ,f

(t)
v,p) (3)

2) Attention Module: As motivated in Section II-B, a large
amount of semantic information can be extracted among state-
ments, which contributes to runtime exceptions differently and
needs to be explicitly weighed to distinguish and interpret
whether the statements signal runtime exceptions. Therefore,
we use GAN (graph attention network) [83] to weigh the
importance of neighboring nodes in runtime exception de-
tection following all types of edges, and generate a vector
representation for each node with interpretability. Our attention
module is a single-layer feedforward neural network. For each
node v, it computes the importance (or weight) αp

vu of each
neighboring node u following edges of a specific type p (i.e.,
Eq. 4), where LeakyReLU is the activation function, Vp(v) is
v’s neighboring nodes connected via edges of type p, and W is
learnable parameters. The final node representation hv is gener-
ated via a weighted combination of its neighboring nodes along
all types of edges after applying a nonlinearity (i.e., Eq. 5),
where σ denotes the nonlinear sigmoid function.

αp
vu =

exp(LeakyReLU(W [hv,p;hu,p]))∑
p∈{c,d,a}(

∑
j∈Vp(v) exp(LeakyReLU(W [hv,p;hj,p])))

(4)

hv = σ(
∑

p∈{c,d,a}
σ(

∑
u∈Vp(v)

αp
vuW

phu,p)) (5)

Despite the black-box nature of neural networks, our model
provides partial interpretability thanks to the attention module;
i.e., the computed weights actually allow us to visualize on
our constructed graph the importance of various edges to the
detected runtime exception. For example, Figure 5 highlights
the highly weighted edges, where the width of each highly-
weighted edge is proportional to the weight learned by our
model. Our model successfully identifies the ClassCastExcep-

tion at Line 6 in Figure 1. It can be seen that highly-weighted
edges clearly interpret how our model identifies the runtime
exception: 1 reveals the data flow that the parameter other is
used at Line 6, 2 reveals the control flow to Line 6 and 3
reveals that there is only a null checking (but not type checking)
in this control low, and 4 reveals the cast expression at Line 6.

D. Runtime Exception Detection

We formulate runtime exception detection as a multi-class
classification problem. Given the representation of a statement
node hv (v ∈ Vs), its detected runtime exceptions ỹv is com-
puted by a classifier realized by a fully connected layer with
a sigmoid activation function (i.e., Eq. 6), where ỹv is a 10-
dimension vector with the first nine dimensions corresponding
to the probability of signaling the nine exception types in Fig-
ure 3 and the last dimension corresponding to the probability
of not signaling any runtime exception, W is learnable param-
eters, and σ denotes the sigmoid activation function. During
training, the loss function is defined as the averaged cross-
entropy over all statement nodes (i.e., Eq. 7), where yv denotes
the ground truth detection value for statement node v. During
prediction, we regard a statement node as signaling a type of
runtime exception if its predicted probability is larger than 0.5.
In that sense, it is possible that a statement node may signal
multiple types of runtime exceptions.

ỹv = σ(Whv) (6)

loss =
−

∑|Vs|
v=1(yv ∗ log(ỹv) + (1− yv) ∗ log(1− ỹv))

|Vs|
(7)

IV. EVALUATION

We have implemented the proposed approach in 12.8K lines
of Python and Java code, using PyTorch for deep learning and
JavaParser for graph construction. We have released the source
code of our approach at https://drex-drex.github.io/ together
with the dataset used in our evaluation.

A. Evaluation Setup

To evaluate the effectiveness and efficiency of our approach,
we conducted a set of experiments using the dataset collected
in Section II-C. We split the dataset into training, validation
and testing dataset by 7:1:2, while ensuring the same splitting
ratio across various runtime exception types.

Research Questions. Our evaluation is designed to answer
the following research questions:
• RQ1: What is the effectiveness of DREX in detecting runtime

exceptions?
• RQ2: What is the contribution of each graph component in

DREX to the achieved effectiveness?
• RQ3: What is the efficiency of DREX in detecting runtime

exceptions?
• RQ4: What is the capability of DREX in detecting new

uncaught runtime exceptions?
Evaluation Metrics. We adopted four metrics as the indi-

cator of the effectiveness of runtime exception detection. The
first metric is exact accuracy, i.e., the ratio of methods whose

https://drex-drex.github.io/


caught runtime exception types and scopes are all exactly cor-
rect. For example, given a method whose third line signals
a NullPointerException, only a prediction of a NullPointerEx-
ception at the third line is considered as exactly correct. The
other three metrics are precision, recall and F1-score at the
statement level. For example, for a statement that signals a
NullPointerException, a prediction of NullPointerException and
ArithmeticException has full recall but low precision.

Training Configuration. We used the Doc2Vec model to
convert each node in our graph into a 120-dimensional vector,
and then fed the entire graph into our attention-based graph
neural network module for three iterations (i.e., 3-layer). Our
model is trained via Adam optimizer with the learning rate set
to 0.001. Our model was trained on a server machine with a
Nvidia GTX 2080Ti GPU and a 3.60GHZ CPU with 16 cores
and 128G memory. The training last 16.0 hours with 10 epochs.

B. Detection Effectiveness Evaluation (RQ1 and RQ2)

We compared DREX with the following approaches to eval-
uate the effectiveness of DREX as well as the contribution of
each graph component in DREX to the achieved effectiveness.

• NexGen [101]: It represents code as a sequence of tokens. It
uses Bi-LSTM and attention mechanism to obtain token em-
bedding and statement embedding, and uses a binary classifier
to predict whether a statement throws an exception. We
adapted it to support multi-class classification. It is a represen-
tative of the existing code representation learning approaches
that regard code as a sequence of tokens [15, 38, 55, 55, 69].

• DREX (CFG): We only use CFG as the graph representation
of a method in DREX. It can be seen as a representative of
the approaches that represent code as CFG [23].

• DREX (CFG+DFG): We combine CFG and DFG as the graph
representation in DREX. It can represent the approaches that
treat code as CFG and DFG [8, 104].

• DREX (CFG+DFG+AST) w/o GAN: We remove GAN (i.e.,
attention module) and assign equal weights to neighboring
nodes in DREX. It can be regarded as a representative of the
approaches that integrate CFG, CFG and AST [53, 106].

• DREX (CFG+DFG+AST) w/o type: We directly use source
code without type information for each statement node.

It is worth mentioning that we cannot directly compare DREX
with the existing approaches except for [101] as they do not
provide statement-level embedding and detection. Instead, we
use the above approaches as representatives of the existing
approaches although they are not exactly the same.

Table I reports the exact accuracy, precision, recall and F1-
score of these approaches, where the last row presents the result
of DREX in full configuration. Overall, DREX outperformed all
these five approaches in all the four metrics, and achieved an
exact accuracy of 60.0% and an F1-score of 78.4%. DREX sig-
nificantly outperformed NexGen by 18.2%, 42.1%, 40.7% and
41.6% in exact accuracy, precision, recall and F1-score. This
result indicates that code semantics would be difficult to capture
by only considering source code tokens. When we only used
CFG, DREX had a degradation of 7.4%, 2.2%, 3.8% and 3.1%

TABLE I: Effectiveness Comparisons across Approaches
Approach Exact Precision Recall F1

NexGen 41.8 42.3 32.5 36.8
DREX (CFG) 52.6 82.2 69.4 75.3

DREX (CFG+DFG) 55.7 83.0 72.9 77.6
DREX (CFG+DFG+AST) w/o GAN 43.1 83.5 61.8 71.1
DREX (CFG+DFG+AST) w/o type 51.7 76.0 60.9 67.6

DREX (CFG+DFG+AST) 60.0 84.4 73.2 78.4

in exact accuracy, precision, recall and F1-score, while still out-
performing NexGen. When we integrated CFG with DFG, the
degradation of DREX in all the four metrics decreased. These
results demonstrate that all the three code representations (i.e.,
CFG, DFG and AST) contribute to the semantic understanding
for effective runtime exception detection. Moreover, after we
removed GAN, DREX suffered a significant degradation of
16.9% and 11.4% in exact accuracy and recall since the
importance of different semantics is not distinguished, making
the model have weak capability in distinguish various runtime
exception types. When we did not leverage type information,
DREX had a significant degradation in all the four metrics.
This indicates that type information is important semantics for
runtime exception detection.

Moreover, we report the precision, recall and F1-score of
these approaches for each of the nine runtime exception types
in Figure 6, where the legend is only shown in Figure 6a and
omitted in others for clarity. DREX outperformed NexGen in
precision, recall and F1-score for all the nine runtime exception
types, except for the precision for ArithmeticException and re-
call and F1-score for RuntimeException. This clearly demon-
strates the advantages of combining CFG, DFG and AST over
source code tokens in a comprehensive understanding of code
semantics. When we removed AST, or AST and DFG from
our graph representation, DREX had a degradation in F1-
score for all runtime exception types, except for ArithmeticEx-
ception, while having a slight improvement in precision (resp.
recall) but a significant degradation in recall (resp. precision)
for some types of runtime exceptions (e.g., UnsupportedOp-
erationException). This indicates that a combination of CFG,
DFG and AST is needed to achieve the best overall detection
effectiveness with balanced precision and recall. Further, GAN
(i.e., attention module) had a significant contribution to the
detection of all the nine runtime exception types, except for
IllegalStateException and RuntimeExceptions. This is poten-
tially due to their diverse characteristics that are difficult to
learn as IllegalStateException, denoting that a method has been
invoked at an illegal or inappropriate time, could be caused by
various reasons, and RuntimeException represents all the other
less frequent runtime exceptions (see Section II-C). Type in-
formation contributed to detect all the nine runtime exception
types, except for IndexOutOfBoundsException as it is mostly
related to specific types (e.g., arrays) and constant values.

DREX outperformed baselines by up to 18.2% in exact ac-
curacy and 41.6% in F1-score. Each code representation
contributed to the understanding of code semantics. Both
attention module and type information significantly con-
tributed to the achieved effectiveness of DREX.
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Fig. 6: Precision, Recall and F1-score for Runtime Exception Types (Two Approaches overlap in (c) and (h))

C. Efficiency Evaluation (RQ3)

We measured the efficiency of DREX in terms of training
time and detection time. Detection time consists of the time to
construct the graph and the time to detect the runtime excep-
tions using our trained model. As model training can be seen
as a one-time job and can be done off-line, detection time is
more important. Our model training took around 16.0 hours. On
average, the graph construction and runtime exception detection
respectively took 2.71 seconds and 0.26 seconds for a method.
Thus, about 3 seconds are needed to detect runtime exceptions
in a method, which is acceptable for real-world applications.

Our model training took 16.0 hours. Our end-to-end run-
time exception detection took around 3 seconds for each
method, which is acceptable for real-world applications.

D. Detected Uncaught Runtime Exceptions (RQ4)

To evaluate the capability of DREX in detecting uncaught
runtime exceptions, we randomly selected from our testing
dataset 50 methods with uncaught runtime exceptions reported
by DREX, and manually analyzed the reported uncaught runtime
exceptions at reported statements. We successfully wrote test

cases to trigger 20 uncaught runtime exceptions in 20 of the
methods, spanning over 13 projects. For the remaining uncaught
runtime exceptions, we either failed to write test cases to trigger
runtime exceptions due to the complicated encapsulation, or
failed to be sure about the intended behavior or business logic
of a particular method. Thus, we conservatively considered all
the remaining uncaught runtime exceptions as false positives.

Of the 20 uncaught runtime exceptions, 7 have been con-
firmed and fixed by developers after we submitted the issue.
Moreover, we ran SpotBugs (i.e., the successor of FindBugs
[41]) and PMD [19] to check whether rule-based bug detectors
can detect the 20 uncaught runtime exceptions. It turns out
that they can find none of them. These results demonstrate the
capability of DREX in detecting uncaught runtime exceptions,
which is not covered by rule-based bug detectors.

DREX detected 20 new uncaught runtime exceptions in 13
real-world projects, and 7 of them have been fixed, while
none of them is detected by rule-based bug detectors.

E. Qualitative Study

Apart from the quantitative evaluation in the previous sec-
tions, we analyzed several interesting case studies to compre-



1 public Set<Member> getMethodUsage(Method method) {
2 return getMembersFromDescriptors(store.get(MemberUsageScanner.class, name(

method)));
3 }

Fig. 7: An Example of Detected Uncaught Runtime Exception

1 public void setReference(Record reference) {
2 try {
3 this.key = reference.getField(0, IntValue.class).getValue();
4 } catch (NullPointerException npex) {
5 throw new NullKeyFieldException();
6 }
7 }
8
9 @SuppressWarnings("unchecked")

10 public <T extends Value> T getField(int fieldNum, T target) {
11 // range check
12 if (fieldNum < 0 || fieldNum >= this.numFields) {
13 throw new IndexOutOfBoundsException();
14 }
15 if (target == null) {
16 throw new NullPointerException("The target object may not be null");
17 }
18 // get offset and check for null
19 final int offset = this.offsets[fieldNum];
20 if (offset == NULL_INDICATOR_OFFSET) {
21 return null;
22 }
23 ...
24 }

Fig. 8: An Example of Incorrect Detection

1 private String shortPath(String path) {
2 try {
3 if (path != null) {
4 if (path.length() == 0) {
5 return "xDrip Default";
6 }
7 Ringtone ringtone = RingtoneManager.getRingtone(mContext, Uri.parse(

path));
8 if (ringtone != null) {
9 return ringtone.getTitle(mContext);

10 } else {
11 String[] segments = path.split("/");
12 if (segments.length > 1) {
13 return segments[segments.length - 1];
14 }
15 }
16 }
17 return "";
18 } catch (SecurityException e) {
19 // need external storage permission?
20 checkStoragePermissions("Need permission to access audio files");
21 return "";
22 }
23 }

Fig. 9: An Example of Incorrect Detection

hensively illustrate the capability of DREX.
Figure 7 presents one of the 20 uncaught runtime exceptions

detected by DREX (see Section IV-D) in the project Reflections,
which has more than 3.2K stars and over 2.5 million downloads
per month from Maven Central. This method tries to obtain all
usages of a given method through reflection. DREX detected a
RuntimeException. As Reflections claims to support Java 8 at its
homepage and lambda expression is one of the most important
features introduced in Java 8, we wrote a test case that used the
given method in a lambda expression, and successfully triggered
a ReflectionsException inherited from RuntimeException. This
issue was also experienced by other developers.

Figure 8 and 9 presents two case studies of incorrect detec-
tion from Section IV-B. The statement at Line 3 in Figure 8
signals a NullPointerException thrown by the invoked method
getFiled declared at Line 10–24. Although getFiled may throw
an IndexOutOfBoundsException if the parameter fieldNum is
not in a range, the statement at Line 3 will not signal an Index-
OutOfBoundsException as it passes 0 to fieldNum. However,
DREX failed to detect NullPointerException potentially be-
cause DREX applies intra-procedural analysis and thus fails to
extract the semantic knowledge in the called methods. Instead,

DREX detected IndexOutOfBoundsException because DREX
replaces 0 with its type information. However, as shown in
Section IV-B, type information significantly contributed to other
exception types. We believe such trade-offs are reasonable. This
example also motivates the challenge in distinguishing different
types of runtime exceptions.

The method in Figure 9 signals a SecurityException due to
the call to parse at Line 7. In fact, this parse method opens a
file that the program does not have permission to read. However,
DREX cannot learn such semantics as it uses intra-procedural
analysis. Instead, DREX links its semantics to format parsing or
string parsing that often throws IllegalArgumentException. As a
result, DREX detected an IllegalArgumentException for the first
three if statements. This example indicates that if developers
use uncommon words to naming some operations, it will
mislead deep learning-based detectors.

F. Discussion

Threats. We relied on manual analysis to analyze detected
uncaught runtime exceptions in Section IV-D. To reduce the
threat, three of the authors first separately conducted the manual
analysis, and then organized a group discussion to review the
uncertain cases and conflict cases to reach a consensus. As the
three authors are not the developers of the projects where DREX
detected uncaught runtime exceptions, we took a conservative
strategy (i.e., only when we can write a test case to trigger the
uncaught runtime exception) to confirm true cases.

Limitations. Our lightweight analysis is an intra-procedural
analysis, and it might hider the semantic understanding of called
methods (as shown by the examples in Section IV-E) and nega-
tively impact the accuracy of DREX. One remedy is to encode
call graph knowledge into our graph representation; i.e., we
can first construct a call graph, and then encode the learned
semantic of each method at their callsites. Moreover, for third-
party library API calls, we can also use their documentation to
enhance their semantic understanding. However, the problem is
how to extract such information in a lightweight way to enable
learning from “big code”.

V. RELATED WORK

Empirical Studies on Exception Handling. Studies have
been conducted to understand and characterize exception han-
dling patterns [11, 48, 64, 73], exception handling bugs [6, 13,
17, 18, 24, 25, 25, 72], exception stack traces [16, 28, 47, 67],
and mechanism design of exception handling [29, 31, 58,
60, 82, 95]. These studies characterize the common existence
of uncaught runtime exceptions, which inspire our work to
automatically detect uncaught runtime exceptions.

Exception Detection, Validation and Policies. Several ap-
proaches have been proposed to detect uncaught exceptions
using static and dynamic analysis techniques. Jo et al. [45] pro-
posed an inter-procedural analysis of Java projects based on set-
based analysis to identify uncaught checked exceptions that
should be more specific than the already thrown or caught
exceptions and to identify unnecessary checked exceptions. Our
approach is complementary to this work by detecting uncaught



runtime exceptions. Kadar et al. [46] also detected runtime
exceptions, and used symbolic execution on each method to de-
termine branches that throw runtime exceptions. However, this
work might not scale to large-scale Java projects due to the well-
known scalability issues in symbolic execution [5]. Csallner et
al. [22] detected runtime exceptions by automatically generating
and executing random tests for each public method in a Java
project. Similarly, Wu et al. [96] dynamically extracted system
services in Android systems and fuzzed the services so as to ex-
pose runtime exceptions. Zhang et al. [103] proposed a dynamic
analysis approach to amplify a given set of tests by mocking
external resources in each test and exhaustively explore their
exceptional behavior space. However, these approaches might
incur high time overhead due to executions of the large number
of generated tests. Besides, Sinha et al. [75] and Jiang et al.
[44] attempted to identify the faulty statement that caused
the runtime exception, which could be served as the next
complementary step of runtime exception detection.

Zhang et al. [101] proposed a deep learning approach to local-
ize which statement will throw an exception and to generate the
catch block. This work focuses on all types of exceptions, while
ours focuses on runtime exceptions. In fact, there is no need to
use deep learning to localize checked exceptions as they can be
accurately detected by modern IDEs. Moreover, this work treats
code as token sequences, which may fail to learn semantics.

Another line of work is to validate the correctness and
completeness of exception handling code [78, 91, 92, 93, 99].
These approaches aim to validate the business logic of exception
handling code (e.g., a resource is not released), while DREX
is to identify uncaught runtime exceptions. Domain-specific
languages have been proposed to allow software architects and
developers to explicitly specify exception handling policies [1,
7, 30, 62] that govern the use of exceptions. These approaches
rely on developers to manually specify the exception handling
policies, while DREX does not require such human intervention.

Code Representation Learning. Recent advance and suc-
cess in deep learning has attracted an increased interest in
applying deep learning techniques to learn code representations
from a massive code corpus for various programming language
and software engineering tasks [3, 10, 27, 98], e.g., program
property prediction (e.g., [4, 100]), bug prediction and localiza-
tion (e.g., [51, 71]), bug fixing (e.g., [36, 80]), code generation
(e.g., [12, 77]), code completion (e.g., [70, 94]), code search
(e.g., [33, 84]), code classification (e.g., [85, 102]), code mi-
gration (e.g., [35, 65]), code clone detection (e.g., [79, 102]),
API usage search (e.g., [34, 52]), comment generation (e.g.,
[42, 50]), and commit message generation (e.g., [20, 59]).
Except for [8, 23, 39, 79, 85, 86, 104], to the best of our knowl-
edge, all these approaches represent code at the level of
tokens and AST, often failing to bridge the gap between code
syntax and semantics. As a result, such syntax-level code
representations have limited potentiality to capture semantics
of uncaught runtime exceptions.

To characterize code semantics, some works [8, 23, 104] rep-
resented code as CFG and DFG, and some works [39, 85, 86]
represented code as symbolic or concrete execution traces.

While execution traces can capture deep and precise program
semantics, they are more difficult to obtain than AST, CFG and
DFG, which limits their scalability. Tufano et al. [79] empiri-
cally demonstrated that different code representations (i.e., to-
kens, AST, CFG and bytecode) were complementary to each
other in the task of clone detection. Following this direction,
Wan et al. [84] learned representations of tokens, AST and
CFG, and leveraged multi-modal attention to combine these rep-
resentations for code search. Different from these approaches,
we represent code as a joint graph that builds connections
among AST, CFG and DFG and combines properties of AST,
CFG and DFG, and used attention-based graph neural networks
to learn the important semantics of runtime exceptions.

Static Bug Detection. Some pattern-based techniques rely
on manually-crafted rules; and typical detectors include Find-
Bugs (and its successor, SpotBugs) [41], PMD [19], Google’s
Error Prone [2], and Facebook’s Infer [40]. They are efficient,
but they usually require great manual efforts to create rules for
new bug types. Differently, some pattern-based techniques have
the capability to automatically mine implicit API usage rules
from a large corpus of source code, and identify violations
of the mined rules as potential API misuse bugs [9, 26, 56,
57, 61, 63, 66, 68, 87, 89, 90]. They extract rules from API
usages without distinguishing whether they are buggy or not,
and thus they cannot distinguish buggy API usage from un-
common API usage, leading to high false positives. Differently,
we learn semantic features of exceptions from the code with
runtime exceptions and the code without runtime exceptions.

Some initial attempts have been recently made to use deep
learning techniques to find bugs. Specifically, one line of work
is focused on specific bugs [15, 55, 55, 69]. They rely on artifi-
cially created and manually labeled training data, and represent
code as tokens. In contrast to these approaches, we use training
data automatically collected from real-world projects, and use a
graph-based code representation to better characterize semantics
of runtime exceptions. Another line of work is focused on
general-purpose bug detection. Wang et al. [88] and Habib et
al. [38] encoded code as AST nodes or tokens, failing to bridge
the gap between syntax and semantics. To capture bug seman-
tics, Li et al. [53] and Zhou et al. [106] tried to combine AST,
CFG and DFG, but we further extract type information and use
attention mechanisms to improve the effectiveness and model
the interpretability. More importantly, all these general-purpose
bug detection approaches work at a coarse-grained level by
predicting whether a source file or method is buggy or not,
while ours works at a fine-grained level by predicting which
statements have which kinds of runtime exception bugs.

VI. CONCLUSIONS

In this paper, we propose a deep learning-based technique,
named DREX, to detect both the types and statement scopes of
runtime exceptions that a method may signal in Java projects.
Our extensive evaluation has demonstrated promising results
of DREX over baseline approaches.
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