
Structure-Aware, Diagnosis-Guided ECU Firmware Fuzzing

QICAI CHEN, Fudan University, China
KUN HU, Fudan University, China
SICHEN GONG, Fudan University, China
BIHUAN CHEN

∗
, Fudan University, China

ZIKUI KONG, ANHUI GuarDrive Safety Technology, China
HAOWEN JIANG, Fudan University, China
BINGKUN SUN, Fudan University, China
YOU LU, Fudan University, China
XIN PENG, Fudan University, China

Electronic Control Units (ECUs), providing a wide range of functions from basic control functions to safety-
critical functions, play a critical role in modern vehicles. Fuzzing has emerged as an effective approach to ensure
the functional safety and automotive security of ECU firmware. However, existing fuzzing approaches focus on
the inputs from other ECUs through external buses (e.g., CAN), but neglect the inputs from internal peripherals
through on-board buses (e.g., SPI). Due to the restricted input space exploration, they fail to comprehensively
fuzz ECU firmware. Moreover, existing fuzzing approaches often lack visibility into ECU firmware’ internal
states but rely on limited feedback (e.g., message timeouts or hardware indicators), hindering their effectiveness.

To address these limitations, we propose a structure-aware, diagnosis-guided framework, EcuFuzz, to com-
prehensively and effectively fuzz ECU firmware. Specifically, EcuFuzz simultaneously considers external
buses (i.e., CAN) and on-board buses (i.e., SPI). It leverages the structure of CAN and SPI to effectively mutate
CAN messages and SPI sequences, and incorporates a dual-core microcontroller-based peripheral emulator
to handle real-time SPI communication. In addition, EcuFuzz implements a new feedback mechanism to
guide the fuzzing process. It leverages automotive diagnostic protocols to collect ECUs’ internal states, i.e.,
error-related variables, trouble codes, and exception contexts. Our compatibility evaluation on ten ECUs from
three major Tier 1 automotive suppliers has indicated that our framework is compatible with nine ECUs. Our
effectiveness evaluation on three representative ECUs has demonstrated that our framework detects nine
previously unknown safety-critical faults, which have been patched by technicians from the suppliers.

CCS Concepts: • Computer systems organization→ Firmware; • Software and its engineering→
Software testing and debugging.

Additional Key Words and Phrases: ECU Firmware Fuzzing, Serial Peripheral Interface, Diagnostic Feedback

∗Bihuan Chen is the corresponding author.

Authors’ Contact Information: Qicai Chen, School of Computer Science, Fudan University, Shanghai, China, qcchen23@m.
fudan.edu.cn; Kun Hu, School of Computer Science, Fudan University, Shanghai, China, huk23@m.fudan.edu.cn; Sichen
Gong, School of Computer Science, Fudan University, Shanghai, China, scgong24@m.fudan.edu.cn; Bihuan Chen, School
of Computer Science, Fudan University, Shanghai, China, bhchen@fudan.edu.cn; Zikui Kong, ANHUI GuarDrive Safety
Technology, Shanghai, China, kongzikui@guardrive.tech; Haowen Jiang, School of Computer Science, Fudan University,
Shanghai, China, hwjiang23@m.fudan.edu.cn; Bingkun Sun, School of Computer Science, Fudan University, Shanghai, China,
bksun21@m.fudan.edu.cn; You Lu, School of Computer Science, Fudan University, Shanghai, China, ylu24@m.fudan.edu.cn;
Xin Peng, School of Computer Science, Fudan University, Shanghai, China, pengxin@fudan.edu.cn.

This work is licensed under a Creative Commons Attribution 4.0 International License.
© 2025 Copyright held by the owner/author(s).
ACM 2994-970X/2025/7-ARTISSTA039
https://doi.org/10.1145/3728914

Proc. ACM Softw. Eng., Vol. 2, No. ISSTA, Article ISSTA039. Publication date: July 2025.

HTTPS://ORCID.ORG/0009-0006-1343-2162
HTTPS://ORCID.ORG/0009-0005-7312-9870
HTTPS://ORCID.ORG/0009-0006-2241-832X
HTTPS://ORCID.ORG/0000-0001-7238-7492
HTTPS://ORCID.ORG/0009-0003-0770-9960
HTTPS://ORCID.ORG/0009-0000-1923-3398
HTTPS://ORCID.ORG/0000-0002-2264-5729
HTTPS://ORCID.ORG/0009-0008-1634-9721
HTTPS://ORCID.ORG/0000-0003-3376-2581
https://orcid.org/0009-0006-1343-2162
https://orcid.org/0009-0005-7312-9870
https://orcid.org/0009-0006-2241-832X
https://orcid.org/0009-0006-2241-832X
https://orcid.org/0000-0001-7238-7492
https://orcid.org/0009-0003-0770-9960
https://orcid.org/0009-0000-1923-3398
https://orcid.org/0000-0002-2264-5729
https://orcid.org/0009-0008-1634-9721
https://orcid.org/0000-0003-3376-2581
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://doi.org/10.1145/3728914

ISSTA039:2 Chen et al.

ACM Reference Format:
Qicai Chen, Kun Hu, Sichen Gong, Bihuan Chen, Zikui Kong, Haowen Jiang, Bingkun Sun, You Lu, and Xin
Peng. 2025. Structure-Aware, Diagnosis-Guided ECU Firmware Fuzzing. Proc. ACM Softw. Eng. 2, ISSTA,
Article ISSTA039 (July 2025), 23 pages. https://doi.org/10.1145/3728914

1 Introduction
Modern vehicles contain many interconnected Electronic Control Units (ECUs), with the number
varying from around thirty for low/mid-end cars to around hundred for high-end vehicles [59].
These ECUs manage a wide range of functions, from basic control functions like window control
to safety-critical functions such as stability control [30], collision avoidance [29, 54, 56, 57] and
airbag deployment [27]. While these ECUs enable sophisticated vehicle control and automation,
their extensive deployment also raises concerns about functional safety and automotive security.

Functional safety, as defined in ISO 26262 [31], is the absence of unreasonable risk due to hazards
caused by malfunctioning behavior of electrical/electronic systems. Such malfunctions can arise
from systematic failures (due to specification errors, implementation flaws, or integration issues) or
random failures (that occur stochastically in hardware). The automotive industry has witnessed sev-
eral critical incidents resulting from violations of functional safety. For example, a software defect
in Toyota’s Electronic Throttle Control System (ETCS) caused unintended acceleration incidents be-
tween 2002 and 2010 due to an inadequate watchdog timer implementation [36]. A calibration error
in Ford’s Body Control Module and Powertrain Control Module caused unexpected vehicle stalls in
2021-2024 models [22]. A software defect in the transmission control unit (CVT-ECU) of 2019-2022
Mitsubishi Outlander Sport models triggered transmission failures and led to engine damage [42].
Therefore, it is important to comprehensively test ECUs to ensure their functional safety.

Automotive security, governed by standards like ISO/SAE 21434 [21], addresses the protection
of vehicle systems against malicious attacks that could compromise safety, functionality, or data
privacy. ECUs are vulnerable to cyber attacks due to their increasing connectivity and complexity.
Several documented attacks have demonstrated their vulnerabilities. For example, researchers have
demonstrated remote exploitation of ECUs through wireless interfaces [41], unauthorized manipu-
lation of vehicle behavior through compromised ECUs [64], and extraction of sensitive information
from ECU firmware [44, 45]. As vehicles become increasingly connected and autonomous, the po-
tential impact of such security breaches grows more severe [13, 66]. Vulnerabilities in ECU firmware
must be detected and patched during development, as post-deployment patches can be costly or
even impractical [1, 19]. These security considerations, alongside functional safety requirements,
necessitate testing techniques that can effectively evaluate both aspects of ECU firmware.

Fuzzing has become an effective approach to ensure the functional safety and automotive security
of ECU firmware. Early effort primarily employs black-box fuzzing techniques [23, 35, 46, 48, 61, 63,
65, 68]. These techniques often rely on random mutations [23, 46, 63, 65] or structure-aware muta-
tions [35, 48, 61, 68] of CAN messages, guided by observable ECU behaviors such as message time-
outs and hardware indicators. To further improve effectiveness, grey-box fuzzing techniques [53]
have been proposed to utilize control flow information to guide the mutation. However, existing
techniques have two limitations. First, they primarily consider the inputs from external buses,
particularly CAN, but neglect the critical inputs from on-board buses such as SPI. These on-board
buses handle real-time interactions between the microcontroller unit (MCU) in ECUs and on-board
peripherals [7, 37]. Due to the restricted input space exploration, existing techniques fail to com-
prehensively fuzz ECU firmware. Second, their feedback mechanism usually relies on external
observable behaviors such as CAN messages timeouts or hardware indicators, providing limited
visibility into the ECU’s internal states. As a result, their feedback mechanism fails to effectively
guide the mutation and thus hinders the effectiveness of fuzzing.

Proc. ACM Softw. Eng., Vol. 2, No. ISSTA, Article ISSTA039. Publication date: July 2025.

https://doi.org/10.1145/3728914

Structure-Aware, Diagnosis-Guided ECU Firmware Fuzzing ISSTA039:3

In the broader context of MCU firmware fuzzing, several approaches have been developed. SHIFT
[40] runs instrumented firmware on MCUs to collect coverage information. GDBFuzz [17] utilizes
hardware breakpoints to capture execution states without the need of code instrumentation. 𝜇AFL
[38] leverages ARM’s Embedded Trace Macrocell for detailed instruction tracing. However, these ap-
proaches are not readily applicable to ECU firmware fuzzing. The instrumentation required by SHIFT
often exceeds the limited storage resource of ECUs. GDBFuzz’s continuous breakpoint operations
interfere with ECUs’ strict timing requirements. 𝜇AFL’s tracing demands specialized debugging
hardware that is costly and difficult to integrate into the closed automotive ECU ecosystem.
To address the above limitations, we propose a structure-aware, diagnosis-guided framework,

named EcuFuzz, to comprehensively and effectively fuzz ECU firmware. On the one hand, EcuFuzz
simultaneously considers external buses (i.e., CAN) and on-board buses (i.e., SPI). This expanded
input space enables the fuzzing of the ECU firmware’s interactionwith both vehicle networks and on-
board ASICs, addressing a critical gap in existing approaches. To generate inputs, EcuFuzz leverages
the structure of CAN and SPI to effectively mutate CAN messages and SPI sequences. To deliver
inputs while meeting ECUs’ real-time constraints, EcuFuzz implements a dual-core microcontroller-
based peripheral emulator. This emulator enables precise timing control for SPI communication,
allowing EcuFuzz to maintain the strict temporal requirements of ECUs during fuzzing.

On the other hand, EcuFuzz implements a new feedbackmechanism to effectively guide the fuzzing
process. EcuFuzz leverages ECUs’ built-in unified diagnostic services (UDS) to access the ECUs’
internal states, including error-related variables, trouble codes, and exception contexts. This inter-
nal visibility through ECUs’ built-in UDS overcomes the limited visibility of existing approaches
that only monitor ECUs’ external behaviors, helps guide the fuzzing process toward potentially
problematic states, and also facilitates technicians to detect and localize the potential faults.

To evaluate EcuFuzz, we first quantitatively analyze ten ECUs from three major Tier 1 automotive
suppliers. EcuFuzz is compatible with nine ECUs that support both CAN and SPI interfaces, which
demonstrates the practical usability for real-world ECUs. Then, we run EcuFuzz against each of
the three representative ECUs, i.e., an Airbag Control Unit (ACU), a Front-Looking Camera (FLC),
and a Front-Looking Radar (FLR) for 24 hours. Our fuzzing campaign reveals nine previously un-
known safety-critical faults across these ECUs, including faults in airbag deployment control, radar
obstruction detection, and sensor data processing. All the identified faults have been reported to
the suppliers, and subsequently confirmed and patched by the technicians, which demonstrates the
practical effectiveness of EcuFuzz in fault detection.We also run three state-of-the-arts against ACU
where EcuFuzz detects seven faults. However, they fail to detect any fault.

In summary, this work makes the following contributions.

• We proposed a comprehensive and effective fuzzing framework, EcuFuzz, for ECU firmware. It
expands input space by simultaneously targeting external buses and on-board buses, and leverages
a new feedback mechanism through UDS to enable diagnosis-guided fuzzing.
• We implemented a dual-core microcontroller-based peripheral emulator. Its modular architecture
enables adaptation to different on-board bus protocols through a simple interface, making Ecu-
Fuzz both cost-effective and extensible for automotive ECU firmware fuzzing.
• We evaluated EcuFuzz through experiments on real-world automotive ECUs, demonstrating its
compatibility across different ECU hardware architectures and its effectiveness in discovering
previously unknown safety-critical faults. Nine faults have been detected in three ECUs.

2 Background
ECUs Based on Classic AUTOSAR Architecture. Among various ECU architectures deployed
in modern vehicles, this work focuses on ECUs based on Classic AUTOSAR architecture, which

Proc. ACM Softw. Eng., Vol. 2, No. ISSTA, Article ISSTA039. Publication date: July 2025.

ISSTA039:4 Chen et al.

MCU
Transceiver

Debugger/Programmer
JTAG UART

ECU
Digital

Analog

Pulse-shaped

Input Signals

…

ASIC 1

ASIC 2

…

Actuator

…

Motors

Relays

Lights

CANH CANL

MISO
MOSI
SCK
CS

MISO
MOSI
SCK
CS

TX

RX

OUTPUT

Other ECUs

Fig. 1. ECU Hardware Architecture

are widely deployed in safety-critical control functions requiring high functional safety levels. AU-
TOSAR (AUTomotive Open System ARchitecture) provides a standardized software framework
for automotive ECUs [5], helping manufacturers reduce hardware dependencies and simplify the
integration of software components. The classic AUTOSAR architecture is divided into three layers,
i.e., the application layer, the runtime environment (RTE) layer, and the basic software (BSW) layer.
The application layer contains software components (SWCs) that implement an ECU’s core function-
alities. The RTE layer abstracts communication between SWCs and BSW, facilitating both intra- and
inter-ECU data exchange. The BSW layer provides essential services such as memory management,
diagnostics, and communication interfaces, ensuring smooth interaction between the application
and external systems. It is worth mentioning that some high-end ECUs adopt System on Chip (SoC)
architecture and run general-purpose operating systems like QNX. However, classic AUTOSAR
ECUs are still widely deployed and particularly crucial as they directly handle safety-critical func-
tions such as airbag deployment and brake control. Such ECUs operate under strict real-time and
resource constraints, making their safety and security testing more challenging, compared to their
high-end counterparts that already have a wide range of testing tools available.

ECUHardware Architecture. Figure 1 illustrates a typical ECU hardware architecture, showing
its main components and their interconnections. The core of an ECU is a microcontroller unit (MCU),
which executes a firmware that contains AUTOSAR software components and basic software, etc.
This firmware is typically developed using AUTOSAR tools, and flashed into the MCU’s non-volatile
memory by debugging interfaces. The MCU connects to external vehicle networks via transceivers
that convert differential signals into digital signals for MCU processing, enabling communication
with other ECUs. Moreover, the MCU connects to application-specific integrated circuits (ASICs)
through on-board buses. ASICs, sometimes referred to as System Basis Chips (SBCs) [11], provide
support functions for ECU operation. Specifically, ASICs process and condition various input signals,
including digital (discrete on/off signals), analog (continuous voltage levels), and pulse-shaped sig-
nals (complex waveforms), before forwarding them to the MCU. ASICs also integrate other support
functions such as power management, system supervision, and wake-up logic. This design of ASICs
reduces overall system complexity and allows the MCU to focus on core computational tasks.
From the perspective of an ECU firmware, its inputs primarily originate from two sources, i.e.,

external buses (e.g., CAN) carrying network traffic from other ECUs, and on-board buses (e.g., SPI)
transmitting pre-processed sensor data from the ASICs. This architecture enables ECUs to efficiently
handle both system-wide coordination and local sensor processing tasks, making them capable of
performing complex control functions while maintaining real-time performance requirements.
Serial Peripheral Interface (SPI). SPI is a widely used synchronous serial communication

protocol for short-distance communication between MCUs and peripherals [24]. It operates in a
master-slave configuration, typically with the MCU as the master. The SPI protocol uses four signal

Proc. ACM Softw. Eng., Vol. 2, No. ISSTA, Article ISSTA039. Publication date: July 2025.

Structure-Aware, Diagnosis-Guided ECU Firmware Fuzzing ISSTA039:5

Request 1 (32 Bit) Request 2 (32 Bit)

Answer 1 (32 Bit) Answer 2 (32 Bit)

CS

MOSI

MISO

Fig. 2. In-Frame SPI Communication

Request 1 (32 Bit) Request 2 (32 Bit)

Answer 0 (32 Bit) Answer 1 (32 Bit)

CS

MOSI

MISO

Fig. 3. Out-Frame SPI Communication

MCU

Config Device Channel

Config Status

Config Threshold

Config Status

Config Watch Dog

Config Status

Threshold Demand Test

Disable Status

Read Sensor Status

Sensor Status

Read Sensor Data

Sensor Data

In
iti

al
iz

at
io

n
Ph

as
e

R
un

ni
ng

Ph
as

e

ASIC

①

⑫

②

③

④

⑤
⑥

⑦
⑧

⑨
⑩

⑪

Fig. 4. Communication Process Between the MCU

and the On-Board ASIC in the ECU via SPI

Time [s] Chip
Select MOSI MISO

① 0.029374 ASIC 0x6838013C 0x20200007

② 0.037554 ASIC 0x6818013C 0x202C0091

③ 0.030374 ASIC 0x68780128 0x20200007

④ 0.030874 ASIC 0x68580128 0x202C0091

⑤ 0.062026 ASIC 0x6160C80C 0x20600034

⑥ 0.070205 ASIC 0x6140C80C 0x20606402

⑦ 0.078386 ASIC 0x04400218 0x20600005

⑧ 0.291006 ASIC 0x0D40000C 0x60600700

⑨ 0.299186 ASIC 0x3200001C 0x2800C00E

⑩ 0.305706 ASIC 0x33000014 0x2800001B

⑪ 0.312246 ASIC 0xC0000008 0x2A1FFF0A

⑫ 0.318786 ASIC 0xC0000008 0x2A1FFE89

Fig. 5. An Examaple of a SPI Record between the

MCU and the On-Borad ASIC in the ECU

lines for synchronous communication, Master Output Slave Input (MOSI) for data transmission
from master to slave, Master Input Slave Output (MISO) for data transmission from slave to master,
Chip Select (CS) for selecting and enabling the target slave device, and Serial Clock (SCK) for
synchronizing data transfer between devices. This configuration enables full-duplex communication,
with the master device (MCU) controlling the clock signal and slave selection through the SCK and
CS lines while exchanging data with the slave device (ASIC) through the MOSI and MISO lines. In
automotive ECUs, SPI communication often involves 32-bit data words, with the Most Significant
Bit (MSB) transmitted first. Two common SPI communication modes used in ECUs are as follows.
• In-FrameMode.As illustrated in Figure 2, the request and answer are interleaved within a single
communication cycle. The master sends a 32-bit request over the MOSI line, and the slave imme-
diately responds with a 32-bit answer over the MISO line within the same communication cycle.
This mode requires the slave to process the request and generate a answer in real-time.
• Out-FrameMode.As illustrated in Figure 3, the request and answer occur in two successive com-
munication cycles. The master sends a 32-bit request in one communication cycle, and the slave
responds with a 32-bit answer in the subsequent communication cycle. This mode allows a delay
between the request and answer, providing more processing time for the slave.
Communication Between MCU and ASIC. Figure 4 provides the communication process be-

tween the MCU and the ASIC via SPI, while Figure 5 illustrates an example of a SPI record captured
during the communication process. The SPI record contains a sequence of entries, and each entry
contains 32-bit digital signals transmitted on MOSI and MISO lines, along with the corresponding
chip select signals that identify the target ASIC. Based on the ASIC technical manual, these signals
can be decoded into specific instructions during both initialization phase and running phase.

During the initialization phase, the MCU configures the ASIC’s device channels, thresholds, and
watchdog settings, with each configuration followed by a status check. A threshold demand test is
then performed, where the MCU verifies the ASIC’s ability by properly comparing sensor values

Proc. ACM Softw. Eng., Vol. 2, No. ISSTA, Article ISSTA039. Publication date: July 2025.

ISSTA039:6 Chen et al.

SPI
Sequence

MutatorD
ispatcher

UDS
Analyzer

Feed
back

CAN
Messages

Mutator

Fuzzing Engine

ASIC1
Slave

ASIC2
Slave

Share Buffer
Processer

SPI Handler

ASIC1
Buffer

Updater

SPI Frame
Decoder

Communication
Bridge

SPI
Sequences

Shared RAM

Read Write

ASIC2
Buffer

Updater

Peripheral Emulator

Transceiver

Debugger/Programmer

JTAG UART

ECU
Digital

Analog

Pulse-shaped

Input Signals

…

ASIC 1

ASIC 2

…

Actuator

…

Motors

Relays

Lights

CANH CANL

TX

RX

OUTPUT

SCK
CS

MOSI
MISO

SCK

MISO
MOSI

CS

… …

\\
\\
\\
\\

\\
\\
\\
\\

CAN
DBC

SPI
Record

Symbol
Table

MCU

Fig. 6. Framework Overview of EcuFuzz

against configured thresholds. This test must be passed for safety-critical functions (e.g., airbag
deployment) to properly operate. Once initialized, theMCU enters its running phase, where theMCU
cyclically reads sensor status and data from the ASIC. For example, in an airbag control unit, the
ASIC continuously processes acceleration signals from crash sensors before sending the processed
data to the MCU via SPI for airbag deployment decisions.

Controller Area Network (CAN). CAN is the predominant protocol for inter-ECU communica-
tion in vehicles [12]. It employs a message-based structure with an arbitration ID and data payloads
up to 8 bytes. CAN’s key features include fixed data rates, prioritized message transmission, and
robust error detection via a 16-bit Cyclic Redundancy Check (CRC). These characteristics make
CAN ideal for real-time automotive applications, enabling efficient exchange of sensor data, control
commands, and diagnostic information across vehicle systems.

Unified Diagnostic Services (UDS). UDS is a standardized automotive diagnostic protocol, de-
fined in ISO-14229 [32], to facilitate communication between diagnostic tools and ECUs in vehicles.
It provides a unified framework for various diagnostic services, enhancing vehicle serviceability
and enabling sophisticated diagnostic capabilities [34]. A key feature of UDS is the ability to retrieve
Diagnostic Trouble Codes (DTCs), which are standardized codes that indicate specific faults or mal-
functions in the vehicle. For example, DTC B0001 represents an airbag deployment circuit failure.
Through UDS, technicians can access these DTCs, read real-time sensor data, reprogram ECU
modules, and execute specific diagnostic routines such as sensor calibration.

3 Approach
We first introduce the framework overview of EcuFuzz, and then elaborate on each key module.

3.1 Overview
We design EcuFuzz as a structure-aware, diagnosis-guided fuzzing framework to test the firmware
of automotive ECUs. ECUs are input-triggered, and they undergo state transitions and computations
based on inputs from external and on-board buses. At its core, EcuFuzz uses this characteristic by
adopting an input-centric testing paradigm, i.e., systematically crafted inputs are injected to elicit a
wide range of ECU behaviors, allowing for the identification of potential defects within the firmware.
The framework overview of EcuFuzz is presented in Figure 6, and its workflow algorithm is shown
in Algorithm 1. Overall, EcuFuzz is composed of two components, i.e., a fuzzing engine hosted on a
PC workstation, and a peripheral emulator implemented on a dual-core microcontroller. To enable

Proc. ACM Softw. Eng., Vol. 2, No. ISSTA, Article ISSTA039. Publication date: July 2025.

Structure-Aware, Diagnosis-Guided ECU Firmware Fuzzing ISSTA039:7

Algorithm 1 The Workflow of EcuFuzz
Require: 𝐸𝐶𝑈 : the target ECU under fuzz; 𝐸𝐿𝐹 : the binary file of the ECU firmware; 𝑆𝑃𝐼𝑅𝑒𝑐𝑜𝑟𝑑 : the SPI com-

munication record file; 𝐷𝐵𝐶: the CAN database file; 𝑁 : the maximum number of iterations
Ensure: FaultReports: a set of detected faults with triggering inputs
1: SPISequences← ExtractSPISequences(SPIRecord) ⊲ See Section 3.2
2: CANMessages← ExtractCANMessages(DBC) ⊲ See Section 3.3
3: SPISeeds← SPISequences, CANSeeds← CANMessages
4: PeripheralEmulator← InitializePeripheralEmulator() ⊲ See Section 3.4
5: SymbolTable← ExtractSymbolTable(ELF) ⊲ Extract variable names and addresses
6: UDSAnalyzer← InitializeUDSAnalyzer(SymbolTable) ⊲ See Section 3.5
7: for 𝑖 ← 1 to 𝑁 do
8: ECUState← UDSAnalyzer.GetECUState()
9: MSPI← SPISequenceMutator(SPISeeds, ECUState) ⊲ See Section 3.2
10: MCAN← CANMessageMutator(CANSeeds) ⊲ See Section 3.3
11: Dispatcher.SendSPISequences(MSPI)
12: Dispatcher.SendCANMessages(MCAN)
13: PeripheralEmulator.SendSPISequences() ⊲ See Section 3.4
14: errorVars← UDSAnalyzer.MonitorErrorVariables() ⊲ See Section 3.5
15: dtcs← UDSAnalyzer.MonitorDTCs() ⊲ See Section 3.5
16: exceptions← UDSAnalyzer.MonitorExceptions() ⊲ See Section 3.5
17: if errorVars ≠ ∅ and (dtcs ≠ ∅ or exceptions ≠ ∅) then
18: FaultReport← GenerateFaultReport(errorVars, dtcs, exceptions, MSPI, MCAN)
19: FaultReports← FaultReports ∪ {FaultReport}
20: if dtcs ≠ ∅ then
21: UDSAnalyzer.ClearDTCs() ⊲ See Section 3.5
22: end if
23: end if
24: if new error-related variables are covered then
25: SPISeeds← SPISeeds ∪ {MSPI}, CANSeeds← CANSeeds ∪ {MCAN}
26: end if
27: end for
28: return FaultReports

the fuzzing of the ECU firmware, we disconnect the SPI connections between theMCU and on-board
ASICs in the ECU under fuzz. This disconnection allows our peripheral emulator to take the place
of the original on-board ASICs and simulate their behaviors.

The workflow of EcuFuzz begins with extracting seed inputs from the SPI record and CAN DBC
files 1○ (Line 1–2). The SPI record contains pre-recorded SPI communication sequences between the
MCU and on-board ASICs, while the CANDBC defines the type and format of CANmessages. We re-
spectively parse SPI record and CANDBC to extract SPI sequences and CANmessages. The extracted
SPI sequences and CAN messages serve as the seed corpus for our mutation-based fuzzing (Line 3).
Then, the SPI Sequence Mutator and CAN Message Mutator generate mutated inputs based on seed
inputs 2○ (Line 9–10). Through theDispatcher, the mutated SPI sequences are first encoded into CAN
messages and then transmitted to the Peripheral Emulator 3○ (Line 11), whereas the mutated CAN
messages are directly transmitted to the ECU 4○ (Line 12). The Peripheral Emulator, implemented on
a dual-core microcontroller, plays a critical role in simulating ASIC behaviors. Specifically, the Com-
munication Bridge receives the encoded CAN messages, and decodes them back into SPI sequences.
The decoded SPI sequences are written to the Shared RAM. The SPI Handler manages real-time SPI
communication through slave modules by reading SPI sequences from the Shared RAM and transmit-
ting them to the MCU 5○ (Line 13). Then, the UDS Analyzer collects the ECU’s internal states as the

Proc. ACM Softw. Eng., Vol. 2, No. ISSTA, Article ISSTA039. Publication date: July 2025.

ISSTA039:8 Chen et al.

Fig. 7. Structured 32-Bit SPI Frame Format for MOSI and MISO in MCU-ASIC Communication

feedback 6○ (Line 14–16). It inspects error-related variables based on the Symbol Table extracted
from the binary file of the ECU firmware (Line 5), monitors active DTCs, and analyzes exception con-
texts. If a potential fault is detected based on the feedback, a fault report is generated for technician
to analyze, and resume the ECU to normal running phase (Line 17–23). If new error-related variables
are covered (i.e., the input triggers new error states), the input is preserved for subsequent mutation
7○ (Line 25). Finally, when the campaign is finished, a set of fault reports is returned.

3.2 SPI Sequence Mutator
We first introduce the generation of the seed corpus of SPI sequences, and then present our structure-
aware mutation strategy and context-aware mutation scheduler.

3.2.1 SPI Sequence SeedGeneration. Since ECUs follow a fixed power-up sequence, we use a logic an-
alyzer [52] to capture the complete SPI communication between the MCU and on-board ASICs from
ECU power-up through initialization phase until reaching running phase. The logic analyzer records
the raw 32-bit digital signals (i.e., SPI frames) transmitted on MOSI and MISO lines, along with the
corresponding chip select signals that identify the target ASIC for each transmission. These recorded
communication traces constitute a complete SPI Record, as illustrated in Figure 5. The initialization
phase contains a deterministic sequence of SPI frames for ECU configuration, while the running
phase consists of cyclically repeated SPI frames for sensor data processing. By capturing this entire
operational cycle, we obtain both the initialization SPI sequence and running SPI sequence with their
complete set of SPI frames in the correct order, which are sufficient to serve as the seed corpus for
mutation-based fuzzing as only the field values within these SPI frames need to be mutated.

As shown in Figure 7, the on-board ASIC defines a specific SPI frame format for SPI communica-
tion, where each SPI frame on the MOSI and MISO lines follows a fixed 32-bit structure. The request
frame on the MOSI line consists of fields including instruction identifier, status flags, data, and CRC.
Similarly, the response frame on theMISO line has its own 32-bit structure with corresponding fields.
Each entry in the SPI record is defined as a tuple 𝐿 = ⟨𝑡, 𝑐𝑠,𝑚𝑜𝑢𝑡 ,𝑚𝑖𝑛⟩, where 𝑡 is the timestamp, 𝑐𝑠
is the chip select signal,𝑚𝑜𝑢𝑡 and𝑚𝑖𝑛 are the 32-bit SPI frame on MOSI and MISO respectively. To
parse each entry in the SPI record, we analyze the on-board ASIC technical manual to understand
the SPI communication protocol, and create a JSON-formatted SPI instruction definition file. Each
instruction in this definition file defines a pair of the MOSI and MISO frames as a tuple 𝐼 = ⟨𝑖𝑛𝑠𝑡,
{𝑓 1𝑚𝑜𝑠𝑖 , ..., 𝑓

𝑛
𝑚𝑜𝑠𝑖 }, {𝑝1𝑚𝑜𝑠𝑖 , ..., 𝑝

𝑛
𝑚𝑜𝑠𝑖 }, {𝑓 1𝑚𝑖𝑠𝑜 , ..., 𝑓

𝑘
𝑚𝑖𝑠𝑜 }, {𝑝1𝑚𝑖𝑠𝑜 , ..., 𝑝

𝑘
𝑚𝑖𝑠𝑜 }, {𝑟 1𝑚𝑖𝑠𝑜 , ..., 𝑟

𝑘
𝑚𝑖𝑠𝑜 }⟩, where 𝑖𝑛𝑠𝑡 is

the instruction identifier in the MOSI frame (i.e., bits 22-31 as shown in Figure 7), 𝑓 𝑖𝑚𝑜𝑠𝑖 and 𝑓
𝑗

𝑚𝑖𝑠𝑜
are

the name of the 𝑖-th and 𝑗-th field in the MOSI andMISO frames respectively, 𝑝𝑖𝑚𝑜𝑠𝑖 and 𝑝
𝑗

𝑚𝑖𝑠𝑜
specify

the bit positions of each field, and 𝑟 𝑗
𝑚𝑖𝑠𝑜

is the valid value range for the 𝑗-th MISO field. Notice that
only MISO fields are subject to mutation since they represent ASIC responses that we aim to fuzz,
and the MOSI fields are not mutated because they represent MCU requests.

Based on this definition file, we develop a parser to parse each entry in the SPI record. For each
entry 𝐿, the parser first extracts the instruction identifier from bits 22-31 of the MOSI frame. Using
this instruction identifier as the key, the parser looks up the corresponding instruction tuple 𝐼 in the
definition file, and parses MOSI and MISO frames according to 𝐼 by extracting values from their
specified bit positions (i.e., 𝑝𝑖𝑚𝑜𝑠𝑖 and 𝑝

𝑗

𝑚𝑖𝑠𝑜
) and associating them with their corresponding field

names (i.e., 𝑓 𝑖𝑚𝑜𝑠𝑖 and 𝑓
𝑗

𝑚𝑖𝑠𝑜
). Through this parsing process, we obtain a sequence of MISO frames for

Proc. ACM Softw. Eng., Vol. 2, No. ISSTA, Article ISSTA039. Publication date: July 2025.

Structure-Aware, Diagnosis-Guided ECU Firmware Fuzzing ISSTA039:9

two distinct phases. Notice that MOSI frames are not included because they are not mutated during
fuzzing but are used for correctly locating the MISO frames during parsing. Specifically, in the run-
ning phase, specific SPI frames with fixed instruction patterns repeat cyclically, such as those for
sensor data reading and diagnostic checking. By observing these repeated instruction patterns, we
can identify a sequence of MISO frames belonging to the running phase. Consequently, the non-
repeated sequence of MISO frames that appear from power-up until the first occurrence of these
repeated patterns belongs to the initialization phase, as it occurs only once during power-up. The
extracted SPI sequences from the initialization and running phases serve as the seed corpus, and
will be mutated to test ECU startup behavior and cyclic operation behavior.

3.2.2 Structure-AwareMutation Strategy. Building upon the instruction tuple 𝐼 defined for SPI frame
parsing, we propose a structure-aware mutation strategy that systematically applies different mu-
tation operators to different MISO fields based on their functional roles and constraints. Formally,
we define a mutation tuple𝑀 by extending 𝐼 , i.e.,𝑀 = ⟨𝐼 , {𝑂1

𝑚𝑖𝑠𝑜 , ...,𝑂
𝑘
𝑚𝑖𝑠𝑜 }⟩, where 𝑂

𝑗

𝑚𝑖𝑠𝑜
denotes

the mutation operator pool for the 𝑗-th MISO field. Each mutation operator pool consists of the
following three types of mutation operators.
• AFL’s Standard Mutation Operators. These operators include basic bit-level mutations such as
bit flips and arithmetic operations. They are primarily assigned to MISO fields that represent state
information, where each bit corresponds to a specific status or flag (e.g., sensor status flags). By tar-
geting individual bits using the bit positions 𝑝 𝑗

𝑚𝑖𝑠𝑜
, they help to effectively test the ECU firmware’s

capability to handle unexpected or corrupted state indicators. For example, flipping a bit that
indicates a sensor’s active status can test the error handling capability for various sensor states.
• Edge-Case Mutation Operators. These operators generate values that lie just outside the de-
fined valid ranges of specific MISO fields. They are specifically targeted at MISO fields that repre-
sent data fields with clearly defined valid ranges (i.e., 𝑟 𝑗

𝑚𝑖𝑠𝑜
from 𝐼). For example, for a resistor

value field in a seat occupancy sensor, edge-case operators might generate values slightly below
the minimum or above the maximum thresholds. They help to test the ECU firmware’s capability
to correctly validate sensor data and handle unexpected or extreme input values. By referencing
the bit positions 𝑝 𝑗

𝑚𝑖𝑠𝑜
, these mutations ensure that only the relevant bits corresponding to the

data field are mutated, maintaining the integrity of other unrelated fields.
• Range-Constrained Mutation Operators. These operators produce values within the defined
boundaries of each MISO field, as specified by 𝑟 𝑗

𝑚𝑖𝑠𝑜
. They can be assigned to any MISO fields, re-

gardless of their functional role, since they ensure that the generated values remain within valid
ranges. They help to test the ECU firmware’s behavior under various valid but uncommon ASIC
responses. For example, simulating sustained high acceleration values during prolonged bumpy
road conditions can test the capability to handle extended periods of intense sensor data inputs.
These operators utilize the valid ranges 𝑟 𝑗

𝑚𝑖𝑠𝑜
to generate appropriate values, and apply them to

the correct bit positions 𝑝 𝑗

𝑚𝑖𝑠𝑜
to maintain data integrity.

During fuzzing, only one mutation operator is selected from the operator pool 𝑂 𝑗

𝑚𝑖𝑠𝑜
for each

MISO field and applied per fuzzing iteration. This strategy enables comprehensive fuzzing of ASIC
responses while preserving the SPI frame structure defined in the ASIC technical manual. For
example, when fuzzing an acceleration sensor data field in a MISO frame, our strategy may employ
range-constrained operators to evaluate the ECU firmware’s behavior under different but valid accel-
eration values, or leverage edge-case operators to verify boundary checks. Aftermutation operations,
a CRC recalculation mechanism ensures the mutated frames maintain valid CRC values based on
algorithms from the ASIC technical manual. This prevents mutated frames from being discarded at
the protocol level due to CRC validation failures, allowing them to reach ECU’s processing logic.

Proc. ACM Softw. Eng., Vol. 2, No. ISSTA, Article ISSTA039. Publication date: July 2025.

ISSTA039:10 Chen et al.

3.2.3 Context-Aware Mutation Scheduler. To further enhance the fuzzing effectiveness while main-
taining SPI communication integrity, we propose a context-aware mutation scheduler that applies
different mutation operators during different ECU’s operational phases. Specifically, the scheduler
monitors the ECU’s internal state through UDS (as will be described in Section 3.5), which enables
it to determine whether the ECU is in initialization phase or running phase. Based on this phase
information, appropriate mutation operators are dynamically selected as follows. During the initial-
ization phase, the mutation process selectively applies operators from the pool𝑂 𝑗

𝑚𝑖𝑠𝑜
to each MISO

field. Specifically, it disables mutation operators that could affect protocol-critical MISO fields such
as status flags so as to ensure the proper completion of the ECU startup process. In contrast, during
the running phase, the full mutation operator pool is enabled for most MISO fields. This allows
comprehensive testing of sensor data and status fields in MISO frames.

3.3 CAN Message Mutator
Similar to our SPI sequence mutator, our CAN message mutator utilizes a structure-aware mutation
strategy based on CANDBC file. While some existing approaches attempt structure-aware mutation
through reverse engineering of CANmessages, they often fail to satisfy AUTOSAR end-to-end (E2E)
protection checks [4]. Instead, we use CAN DBC file to obtain precise message definitions, enabling
the generation of valid inputs that can pass E2E protection checks while exploring potential defects.

To generate a seed corpus for CAN messages, we use cantools [9] to parse DBC file and extract
CANmessage definitions. ACANmessage includesmessage attributes (i.e., ID, name, and data length
code (DLC)), signal characteristics (i.e., start bit, length, byte order, and scaling parameters), and
timing parameters (i.e., transmission cycle time and timeout values). For each CAN message type in
the DBC file, we generate multiple seed CAN messages by constructing a message frame with the
specified ID and DLC, then populating each signal field with values from its valid physical range.
These values are converted to raw binary format using signal-specific scaling parameters before
being placed in their designated bit positions. Multiple seeds are generated with value combinations
of different signal fields, including minimum, maximum, and typical operating values, to ensure a
relatively diverse coverage of the CAN message exploration space.

Our mutation strategy preserves critical message attributes while mutating signal values. For each
signal field within a CAN message, our strategy follows three steps. First, it extracts the raw binary
value from the specified bit positions defined in the DBC file. Second, it converts this raw value to its
physical representation using the DBC-specified scaling parameters (e.g., factor and offset). Third, it
applies mutation operators that are specifically assigned based on the signal’s characteristics as de-
fined in the DBC file. Similar to our SPI sequence mutation, different types of operators are assigned
based on the signal’s functional role, i.e., bit-level operators for status flags, edge-case operators
for threshold-sensitive values, and range-constrained operators for continuous sensor data. These
mutated values are converted back to raw binary format and carefully inserted into their correct
bit positions, maintaining the specified byte order to ensure message integrity. For example, for a
vehicle speed message type (ID: 0x123, DLC: 8 bytes) containing a speed signal (bits: 8-20, scaling
factor: 0.05625, valid range: 0-240 km/h), a seed message might represent a typical speed of 60 km/h.
Our mutation strategy might apply range-constrained operators to test normal speed variations,
or edge-case operators to verify boundary handling at the 240 km/h limit, while preserving the
message’s structural integrity as defined in the DBC file.

Our CANmessagemutator operates in parallel with our SPI sequencemutator, enabling simultane-
ous fuzzing of both external and on-board buses. This integrated approach is crucial for detecting de-
fects that only manifest under specific combinations of inputs. For example, during our ACU fuzzing,
we identified airbag deployment threshold defects that emerged only when mutated CAN messages

Proc. ACM Softw. Eng., Vol. 2, No. ISSTA, Article ISSTA039. Publication date: July 2025.

Structure-Aware, Diagnosis-Guided ECU Firmware Fuzzing ISSTA039:11

carrying collision prediction data coincided with specific SPI-transmitted acceleration sensor data.
These defects would remain undetected if fuzzing each bus in isolation, demonstrating the impor-
tance of concurrent mutation across different input buses.

3.4 Peripheral Emulator
While external bus simulation is well-supported by tools like CANoe [26] or PEAK-CAN [25], simu-
lating on-board ASIC communication for fuzzing presents a timing challenge. Specifically, on-board
ASIC communication, particularly via SPI, requires precise timing and real-time processing capabil-
ities. Automotive SPI communication in In-Frame mode (see Section 2) operates at a rate up to 10
Mbaud, requiring request processing and response generation within the same communication
cycle. For the fuzzing purpose, these responses must be dynamically generated by our mutation
strategy while maintaining protocol timing. Any delay can corrupt the entire communication frame.

To address this timing challenge, we first considered FPGA-based solutions, which can support
SPI communication timing requirements through parallel processing capabilities [51]. However,
FPGA-based solutions present practical challenges for implementing peripheral emulation. While
FPGAs excel at parallel processing, they require precise hardware-level implementation of com-
munication protocols, making the design and verification process inherently complex. Debugging
timing and protocol-related issues in hardware is more challenging than software-based approaches.
Moreover, FPGA designs are relatively rigid once implemented, requiring hardware redesign to sup-
port different ASIC protocols or adapt to protocol variations. These limitations make FPGA-based
solutions less practical for our peripheral emulation needs.

Instead, we adopt a protocol-centric approach that leverages a key characteristic of modern ECU
architecture, i.e., all peripheral inputs are preprocessed by on-board ASICs before being transmitted
to the MCU through standardized protocols like SPI. This architectural design enables our emulator
to simulate diverse peripherals by capturing and replaying the standardized SPI communication
sequences between ASICs and MCU, without directly interfacing with physical sensors. Such a
protocol-centric approach significantly reduces testing costs, compared to traditional Hardware-in-
the-Loop (HiL) testing that requires expensive peripheral-specific simulators, while requiring only
minimal modifications to the SPI frame parsing logic to support new peripherals.
We implement this protocol-centric design using a dual-core microcontroller architecture that

separates real-time SPI communication from mutated inputs management. This design provides
the required timing precision while maintaining flexibility for fuzzing adaptation. The peripheral
emulator is composed of the following three modules.

Communication Bridge. The communication bridge manages the interface between the fuzzing
engine and SPI communication. It receives encoded SPI sequences via CANmessages from the fuzzing
engine, decodes them through the SPI frame decoder, andwrites them to the sharedmemory through
the corresponding ASIC buffer updater. Due to the CAN frame size limitation, we implement mes-
sage fragmentation and reassembly mechanisms for transmitting complete SPI sequences. This
fragmentation mechanism employs sequence numbers and acknowledgments to ensure reliable
transmission of mutated SPI sequences between the fuzzing engine and the communication bridge.
Once received, these SPI sequences are reassembled before being written to the shared memory. In
our implementation, this module runs on the Cortex-M4 core of the STM32H755 microcontroller.

Shared RAM. The shared memory interface between the communication bridge and the SPI han-
dler utilizes a circular buffer structure, enabling continuous updates of SPI sequences without inter-
rupting real-time SPI communication. To prevent race conditions in shared memory access, we im-
plement a hardware-level synchronization mechanism through the STM32H755’s AXI-SRAM. We
prioritize SPI interrupts on the Cortex-M7 core to maintain deterministic communication timing.

Proc. ACM Softw. Eng., Vol. 2, No. ISSTA, Article ISSTA039. Publication date: July 2025.

ISSTA039:12 Chen et al.

SPI Handler. Dedicated to real-time SPI communication, the SPI handler manages communica-
tion with the MCU through ASIC slaves. Each ASIC slave simulates a specific on-board ASIC, imple-
menting timing and protocol requirements for In-Frame and Out-Frame communication modes. We
implement these slaves using the Cortex-M7 core of the STM32H755 microcontroller, leveraging
its high-performance characteristics to meet strict timing requirements. To ensure uninterrupted
data flow, we implement a double-buffering mechanism with interrupt-driven callbacks. When an
SPI transfer completes, an interrupt triggers the buffer switch and prepares new data for the next
transfer, maintaining continuous communication without timing violations.

3.5 UDS Analyzer
Our UDS analyzer monitors the ECU’s internal state as the feedback for fuzzing by leveraging built-
in UDS capabilities. Traditional instrumentation-based and coverage-based feedback approaches be-
come impractical and ineffective for automotive ECUs for two reasons, i.e., the limited resources of
MCUs (typically with flash memory and RAM in the range of a few megabytes and hundreds of kilo-
bytes) and the cyclical nature of ECU operations where similar code paths are repeatedly executed
for sensor data processing and control actions. Instead, our UDS analyzer aims to provide deep visi-
bility into the ECU’s internal state without requiring code instrumentation or specialized hardware.
To this end, we initially consider existing tools such as python-uds [10]. However, due to

maintenance issues and unresolved bugs in these tools, we implement our own UDS client that
constructs diagnostic request messages and processes diagnostic responses according to ISO 14229
standard, utilizing python-can [58] for CAN message transmission and reception. This imple-
mentation supports essential UDS services including memory read (0x23), DTC operations (0x19,
0x14), and diagnostic session control (0x10), enabling systematic monitoring of ECU’s internal
state through standardized diagnostic interfaces [32]. Specifically, our feedback mechanism via UDS
analyzer employs a three-level monitoring strategy, ranging from basic state tracking to critical
fault detection. The first level (Section 3.5.1) is designed to guide the fuzzing process, while the
second level (Section 3.5.2) and the third level (Section 3.5.3) are designed to detect potential faults.

3.5.1 Inspecting Error-Related Variables. Our UDS analyzer extracts error-related variable informa-
tion from the ECU’s ELF file by parsing its symbol table, identifying variables that indicate error con-
ditions through naming patterns (e.g., variable names containing “error”, “invalid” and “fault”). Using
the UDS 0x23 service, our analyzer first reads these error-related variables when the ECU is in a
DTC-free state to establish their baseline values. During fuzzing, it continuously monitors these
variables through the UDS 0x23 service. When the values of these variables deviate from their base-
lines, potential error conditions are indicated. Moreover, our analyzer compares the set of deviated
variables with those deviated in previous inputs. If new variables show deviations (i.e., variables
that have not deviated in previous inputs), the corresponding input is added to the seed corpus for
subsequent fuzzing iterations. This feedback serves to guide the mutation process.

3.5.2 Monitoring Diagnostic Trouble Codes. Our UDS analyzer leverages standardized DTCs to
detect and track firmware anomalies. Using the UDS service 0x19, it periodically polls the ECU for
active DTCs, which provide standardized indicators of specific faults according to ISO 14229-1
standard [32]. After recording, our analyzer clears the detected DTC using the UDS service 0x14 to
prevent it from interfering with future inputs, ensuring each input starts from a known clean state.
This DTC-based monitoring together with the variable state analysis provides standardized fault
indicators that are specifically designed for automotive diagnostics, easing manual fault analysis.

3.5.3 Analyzing Exception Contexts. Our UDS analyzer also captures severe system faults that may
disrupt normal UDS communication. The AUTOSAR’s ErrorHook and ProtectionHook functions

Proc. ACM Softw. Eng., Vol. 2, No. ISSTA, Article ISSTA039. Publication date: July 2025.

Structure-Aware, Diagnosis-Guided ECU Firmware Fuzzing ISSTA039:13

record critical errors (e.g., memory access violations, and privilege escalation attempts) in the Non-
Volatile Memory (NVM) module [6]. When severe faults trigger ECU resets through the watchdog
timer, our analyzer uses the UDS service 0x23 to retrieve these persistent error records from NVM
after system recovery. This mechanism ensures that critical faults causing system-level failures
are captured, even when they temporarily disable UDS communication, thereby completing the
comprehensive monitoring strategy with severe fault detection capabilities.

3.5.4 False Positive Filtering. As required by the ASPICE standard [3], automotive suppliers conduct
functional validation testing before ECU deployment, where one key aspect is to verify diagnostic
capabilities by deliberately sending specific input patterns. These DTC-triggering input patterns are
recorded in validation testing logs, which we can obtain from the suppliers. During fuzzing, when
our mutated inputs accidentally match these known input patterns, the resulting DTCs represent the
ECU’s expected diagnostic behavior rather than potential firmware faults. Therefore, to reduce such
false positives, we develop a filtering mechanism based on known DTC-triggering input patterns
from functional validation testing. It identifies whether mutated inputs contain the same critical bits
that are intentionally used in functional validation testing to verify specific diagnostic capabilities.

Specifically, let 𝐼𝑓 represents the set of inputs that trigger a specific DTC during fuzzing, and 𝐼𝑡
represents the set of inputs that trigger the same DTC during functional validation testing. For each
input 𝑖 𝑓 ∈ 𝐼𝑓 , if there exists an input 𝑖𝑡 ∈ 𝐼𝑡 such that 𝑖 𝑓 & 𝑖𝑡 = 𝑖𝑡 (where & denotes the bitwise AND
operation), meaning that 𝑖 𝑓 actually contains all the critical bits in 𝑖𝑡 that are used to verify this
diagnostic capability in functional validation testing, 𝑖 𝑓 is considered to trigger a false positive and
is thus filtered; otherwise, 𝑖 𝑓 is considered to trigger a potential fault.

4 Evaluation
We have implemented EcuFuzzwith 14.2K lines of C and Python code. To evaluate the compatibility
and effectiveness of EcuFuzz, we conducted experiments to answer three research questions.
• RQ1Compatibility Evaluation: How compatible is EcuFuzzwith ECU hardware architectures?
• RQ2 Effectiveness Evaluation: How effective is EcuFuzz in detecting faults in ECU firmware?
• RQ3 Ablation Study: How do the two key components in EcuFuzz impact its effectiveness?

Fig. 8. Hardware Configuration in Our Evaluation

To answer RQ1, we used ten diverse ECUs
from three major Tier 1 automotive suppliers
who are our collaborators, and quantitatively
assessed whether EcuFuzz is compatible with
the ECU hardware architectures together with
the technicians from the suppliers. To answer
RQ2, we ran EcuFuzz against three represen-
tative ECUs, i.e., an Airbag Control Unit (ACU),
a Front-Looking Camera (FLC), and a Front-
Looking Radar (FLR), for 24 hours.We also com-
pared EcuFuzzwith three state-of-the-arts, i.e.,
SecFuzz [23],AutoFuzz [48] and EffCAN [53],
using ACU. To answerRQ3, we compared Ecu-
Fuzz’s effectiveness with/without UDS-based feedback and structure-aware mutation using ACU.
Our experiments were conducted on a Lenovo R9000K laptop equipped with an AMD Ryzen 9

5900HX CPU, 32 GB of RAM, running Windows 11. Figure 8 illustrates the hardware configuration
in our evaluation. It included a Vector VN1610 interface for CAN communication, a Lauterbach
debugger for firmware flashing, and a Zeroplus LAP-C logic analyzer (LA5016) for capturing SPI
record. A NUCLEO-H755ZI-Q development board was used as the peripheral emulator.

Proc. ACM Softw. Eng., Vol. 2, No. ISSTA, Article ISSTA039. Publication date: July 2025.

ISSTA039:14 Chen et al.

Table 1. Statistics of the Hardware Architectures of Ten Representative ECUs

ECU MCU Family MCU Model On-Board ASIC SPI? CAN? Supplier

Airbag Control Unit (ACU) Infineon AURIX TC234LP CCL1600B Yes Yes Supplier A
Front-Looking Camera (FLC) Infineon AURIX TC397XP XAZU3EG-1SFVC784Q Yes Yes Supplier A
Front-Looking Radar (FLR) NXP S32R274 AWR2944 Yes Yes Supplier A
Engine Control Unit (ECU) NXP MPC5777C UJA1169 Yes Yes Supplier B
Transmission Control Unit (TCU) Infineon AURIX TC277 TLE9278BQX Yes Yes Supplier B
Body Control Module (BCM) NXP S12VR64 MC33972 Yes Yes Supplier B
Anti-lock Braking System (ABS) STMicroelectronics SPC5 SPC560B54 L9374 Yes Yes Supplier B
Electric Power Steering (EPS) Infineon AURIX TC275 TLE9180D-31QK Yes Yes Supplier B
Battery Management System (BMS) TI C2000 TMS320F28027 MC33772B Yes Yes Supplier C
Electronic Control Suspension (ECS) Renesas RH850 R7F7015803AFP-C^KA3 None None Yes Supplier C

4.1 Compatibility Evaluation (RQ1)
Table 1 reports the statistics of the hardware architectures of the ten representative ECUs from three
suppliers (whose names are anonymized due to confidentiality agreements). Overall, these ECUs
represent a diverse range of control systems found in modern vehicles, encompassing different
functionalities and various MCU architectures [18, 47].

Specifically, these ECUs employ diverse MCU architectures, ranging from high-performance pro-
cessors like Infineon AURIX TC397XP with multiple cores for complex ADAS functions, to
cost-effective processors like TI C2000 TMS320F28027 for basic control tasks. Each MCU model
is paired with specific on-board ASICs tailored to their functions; e.g., CCL1600B works with
TC234LP in ACU for acceleration data processing, while AWR2944 works with S32R274 in FLR
for radar signal processing. ECS stands out as an exception, using Renesas RH850 R7F7015803AFP
without an on-board ASIC. This architectural difference stems from its specific functional require-
ments. ECS primarily controls pneumatic suspension systems, managing four electromagnetic
valves for air spring adjustment by direct GPIO connections. This relatively simpler control topology
allows the MCU to directly interface with actuators without an intermediary on-board ASIC for
complex signal processing. This variety in MCU-ASIC combinations demonstrates the diversity of
ECUs’ hardware architectures.

The majority (i.e., nine out of ten) support both SPI and CAN interfaces. Therefore, EcuFuzz’s de-
sign, targeting both external (CAN) and internal (SPI) communication buses, is compatible with these
nine ECUs supporting both SPI and CAN. This compatibility indicates that EcuFuzz can provide
testing capabilities for a wide range of automotive ECUs across different functionalities, hardware
architectures, and suppliers. While the current implementation of EcuFuzz focuses on CAN and SPI
interfaces, the modular architecture of peripheral emulator allows for adaptation to other protocols.

4.2 Effectiveness Evaluation (RQ2)
4.2.1 Evaluation on Three Real-World ECUs. While we analyzed ten ECUs from three suppliers in
our compatibility evaluation, we conducted in-depth effectiveness evaluation on three representative
ECUs from Supplier A, i.e., ACU, FLC and FLR. This focused evaluation was driven by two practical
considerations. First, supplier A provided more comprehensive technical documentation and debug-
ging support, enabling thorough analysis of the fuzzing results. Second, these three ECUs represent
different safety integrity levels and functional domains, i.e., ACU for passive safety (ASIL D), and
FLC and FLR for active safety (ASIL B), each implemented on different MCU architectures (TC234LP,
TC397XP and S32R274 respectively). The MCU of ACU processes acceleration data from on-board
ASICs to determine airbag deployment. The MCU of FLC receives information like detected objects
and lane lines from on-board ASICs, and completes basic Level 2+ advanced driver assistance tasks.
The MCU of FLR processes raw signals from the on-board ASICs, applying clustering and classifi-
cation algorithms to identify object information from the original radar reflections.

Proc. ACM Softw. Eng., Vol. 2, No. ISSTA, Article ISSTA039. Publication date: July 2025.

Structure-Aware, Diagnosis-Guided ECU Firmware Fuzzing ISSTA039:15

Table 2. Effectiveness Results of EcuFuzz on Three Real-World ECUs

ECU # Exec. # Exec. Triggering DTCs # Unique DTCs # Filtered DTCs # Exceptions # Faults

ACU 43,120 2,637 287 63 1 7
FLC 42,830 1,340 104 17 8 1
FLR 38,131 497 59 21 5 1

Table 2 shows the results after running EcuFuzz for 24 hours against each ECU. Overall, approxi-
mately 40,000 input executions were generated per ECU. ACU, with the highest safety integrity level
(ASIL D), exhibited the highest number of executions (i.e., 2,637) that triggered DTCs, resulting in 287
unique DTCs triggered. By applying the false positive filtering mechanism in Section 3.5.4, these
were further filtered into 63 unique DTCs for manual investigation, effectively eliminating false pos-
itives from expected diagnostic behaviors. Despite having the highest number of DTCs, ACU only
triggered one exception in one execution. On the contrary, FLC and FLR (ASIL B) triggered a much
lower number (i.e., 17 and 21) of DTCs, but a higher number (i.e., 8 and 5) of exceptions. This inverse
relation between ASIL levels and exception numbers aligns with the ISO 26262 requirement that
higher ASIL levels require more rigorous fault detection mechanisms. Such mechanisms detect and
handle potential faults earlier in the processing chain, generating DTCs rather than allowing issues
to escalate into more severe system-level exceptions. Besides, ACU has more sensors and actuators
than FLC and FLR for the diagnostic routines to monitor, resulting in more complex diagnostic rou-
tines and consequently a higher number of triggered DTCs.

We reported the filtered DTCs and exceptions, together with the inputs that triggered them, to the
technicians of supplier A. They manually analyzed them and detected seven, one and one previously
unknown faults in ACU, FLC and FLR, respectively, demonstrating the effectiveness of EcuFuzz.

4.2.2 Case Studies on the Detected Faults. We analyzed these nine safety-critical faults, which have
been confirmed and patched by supplier A. Our analysis of these faults reveals that they are often
triggered by edge cases involving complex interactions between multiple CAN and SPI inputs, i.e.,
scenarios that are challenging to identify through supplier’s functional validation testing.

NVMData Loss during Power-Down. In normal power-down scenarios, ACU relies on a capac-
itor (nominally charged to 12V) to supply power for critical operations, including writing to Non-
Volatile Memory (NVM). This capacitor ensures data integrity even if the main power supply is com-
promised during a collision. However, we discovered a fault that, if the capacitor voltage approaches
9V before ACU initiates the power-down sequence, there may be insufficient time for all modules
to complete their NVM write operations. This fault stems from ACU’s threshold for NVM write
operations (set to 9V) and time required for various modules to record their state.

Task Priority Inversion in Deployment Logic. We revealed a priority inversion fault in ACU
firmware’s deployment logic. It occurs when a medium-priority CANmessage processing task holds
a mutex that protects the deployment threshold parameters, while a high-priority task, processing
acceleration data from the ASIC, needs to access these parameters. If a low-priority diagnostic task
becomes active during this period, it can prevent the medium-priority task from releasing the
mutex, blocking the high-priority task from updating critical deployment parameters. This scenario
was triggered when EcuFuzz simultaneously sent specific CAN messages and SPI sequences that
caused intensive parameter updates. The firmware failed to implement a proper mutex protection
mechanism in this critical path, potentially affecting airbag deployment timing.

Self-Test State Lock during Initialization.During the initialization phase, we identified a fault
related to the self-test process of the CCL1600B chip. ACU configures CCL1600B parameters via SPI
communication, including sensor channel settings, thresholds, and filter coefficients. Subsequently,
CCL1600B initiates a self-test to verify its sensor data reading and threshold comparison capabilities.

Proc. ACM Softw. Eng., Vol. 2, No. ISSTA, Article ISSTA039. Publication date: July 2025.

ISSTA039:16 Chen et al.

However, we observed when sensor data exceeds the set threshold during the self-test, ACU becomes
locked in the self-test state, preventing ACU from entering its running phase.

Undefined Retry Timeout Mechanism. During initialization, ACU configures the CCL1600B
chip via SPI communication. After configuring the registers, MCU reads back register values to
determine if the chip has correctly written the configuration values. If the written values do not
match read-back values, it performs a retry. However, if the number of retries is not properly set,
the chip is faulty, causing ACU to be stuck in an infinite loop trying to configure the registers.

UncheckedWatchdog Timer Interval.During initialization, ACU configures watchdog timer’s
timeout period. If the MCU exceeds this period without properly resetting the watchdog timer, the
watchdog will reset the MCU. If the watchdog timeout is set to a negative value, the watchdog
cannot function correctly, causing the MCU to become stuck in an infinite loop and unable to reset.

Airbag Unintended Deployment Anomaly. In scenarios involving active and passive system
fusion, the active safety system sends dynamic and static objects around the vehicle to ACU via
CAN bus to adjust the deployment threshold, enabling ACU to deploy the airbag more accurately.
In special scenarios (e.g., collisions with trucks), the acceleration threshold is set lower to achieve
slightly earlier airbag deployment. However, lowering the threshold should not cause unintended
airbag deployment when the vehicle is driving on bumpy roads. We found a fault where unintended
airbag deployment occurred on bumpy roads while fuzzing both the CAN and SPI simultaneously.
Time-Critical Data Processing Race Condition. We revealed a timing fault in ACU’s crash

detection logic.When themutated acceleration data fromCCL1600B indicates potential crash events,
it triggers complex crash analysis algorithms. Meanwhile, if the mutated CAN messages contain
collision prediction data suggesting high crash probability, both data streams require immediate
processing. However, due to improper task scheduling in the firmware, the collision prediction
processing could delay the acceleration data analysis beyond the designated 1ms time window,
causing ACU to miss the optimal airbag deployment timing. This fault is critical in complex crash
scenarios where both pre-crash and crash data analysis are essential for optimal deployment.

Unhandled Object Types in MCU. During the object detection process, FLC’s on-board ASIC
sends SPI frames containing object information to the MCU. We detected a fault where setting
an unknown object type in these SPI frames caused the Autonomous Emergency Braking (AEB)
function to fail. Specifically, when the MCU encountered an unfamiliar object type, it failed to
trigger the AEB system properly. This fault could lead to potential collisions in real-world driving
scenarios, as the vehicle might not respond appropriately to obstacles on the road.

Radar Obstruction False Positive. FLR erroneously reports radar obstruction when two condi-
tions coincide, the on-board ASIC reports no reflection points via SPI, and the CAN bus indicates
the vehicle is moving. This false positive occurs because the firmware fails to properly correlate the
lack of radar data with vehicle speed. It could lead to unnecessary deactivation of ADAS features.

4.2.3 Comparison with State-of-the-Art. We conducted comparative experiments only on ACU for
two reasons. First, ACU contains extensive diagnostic functions monitoring 32 pyrotechnic circuits,
16 RSUs and 32 switches, having rich error-related variables and DTCs suitable for evaluating the
effectiveness of fuzzing. Second, ACU’s Warning Lamp signals transmitted in CAN messages align
with the hardware indicators required by the state-of-the-arts. However, FLC and FLR do not provide
such signals, making the comparison infeasible. To the best of our knowledge, EcuFuzz is the first
work that can efficiently fuzz both external buses and on-board buses for ECU firmware. We selected
three state-of-the-arts for comparison, i.e., SecFuzz [23], AutoFuzz [48], and EffCAN [53], due to
their diverse methodologies, which cover the spectrum from pure black-box to grey-box fuzzing
strategies and collectively represent the current state-of-the-arts in ECU fuzzing research.

Proc. ACM Softw. Eng., Vol. 2, No. ISSTA, Article ISSTA039. Publication date: July 2025.

Structure-Aware, Diagnosis-Guided ECU Firmware Fuzzing ISSTA039:17

Table 3. Comparison Results of EcuFuzz with Three State-of-the-Art Approaches

Approach # Exec. # Exec.
Triggering DTCs

Unique
DTCs

Warning
Lamp

Excep-
tions

Error-Var
Coverage # Faults

ECUFuzz 43,120 2,637 287 32 1 86% 7
SecFuzz 43,050 42 8 9 0 8% 0
AutoFuzz 43,085 31 5 7 0 6% 0
EffCAN 43,100 56 12 15 0 12% 0

(a) Fault Discovery Analysis (b) Error-Related Variable Analysis (c) Corpus Growth Analysis

Fig. 9. Impact of Our UDS-Based Feedback Mechanism on EcuFuzz’s Effectiveness

To ensure a fair comparison, we enhanced these approaches by equipping them with CAN mes-
sage structure knowledge through DBC files, ensuring they had equal capabilities in understanding
CAN message structures during mutation. Moreover, to enable comprehensive comparison metrics,
we equipped these approaches with our UDS analyzer to collect various feedbacks for the purpose of
comparison. As we lacked their specific hardware setups, we also modified them to monitor the
Warning Lamp signals in CANmessages that controlled their hardware indicators. It preserved their
original intention of monitoring ECU’s external behaviors while adapting to our environment.

Table 3 reports the comparison results. While the three state-of-the-arts generated a similar num-
ber of input executions as EcuFuzz, they triggered a significantly fewer number of DTCs and Warn-
ing Lamp activations, while achieving a significantly lower coverage of error-related variables. This
effectiveness gap can be attributed to two main factors. First, AUTOSAR-compliant ECUs imple-
ment multi-layered validation for CAN messages, including CAN identifier and DLC validation at
the driver level, and E2E protection checks at the COM layer. These validations make it challenging
for the three approaches which focus solely on fuzzing CAN messages to trigger ECU anomalies.
Second, more importantly, these three approaches only focus on CAN inputs, while modern ECUs
process inputs from both CAN and on-board buses. In ECU firmware, CAN-related code and its
associated error-related variables only account for a small portion, as most functional modules are
dedicated to processing sensor data and control logic via on-board buses. By simultaneously fuzzing
both CAN and SPI inputs, EcuFuzz can access error-related variables across both communication
and functional modules, leading to a significantly higher coverage of error-related variables.

4.3 Ablation Study (RQ3)
To evaluate the impact of our two key components, i.e., our UDS-based feedback mechanism and our
structure-aware mutation strategy, we conducted two ablation studies on ACU.

4.3.1 Impact of UDS-Based Feedback. To evaluate the impact of our UDS-based feedback, we com-
pared the effectiveness of EcuFuzz with and without our feedback for 24-hour fuzzing period.

Fault Discovery Analysis. Figure 9a illustrates the number of faults discovered over the fuzzing
time. With our feedback mechanism enabled, EcuFuzz identified seven faults during the 24-hour

Proc. ACM Softw. Eng., Vol. 2, No. ISSTA, Article ISSTA039. Publication date: July 2025.

ISSTA039:18 Chen et al.

(a) Unique DTCs Analysis (b) Error-Related Variable Analysis

Fig. 10. Impact of Our Structure-Aware Mutation Strategy on EcuFuzz’s Effectiveness

period. In contrast, with our feedback mechanism disabled, EcuFuzz detected only two of the same
faults, demonstrating the effectiveness of UDS-based guidance in exploring diverse error states.
Error-Related Variable Deviation Analysis. Figure 9b shows the number of error-related

variables deviated from their baseline values over the fuzzing time. With our feedback mechanism
enabled, we observed a steady increase in the number of deviated variables, particularly rapid in the
initial four hours. Our feedback mechanism maintained a consistently higher number of deviated
variables by directing mutations towards inputs that were more likely to trigger new error states.
The slowing growth rate after the initial four hours suggests that EcuFuzz has explored many of
the readily accessible error states, with further exploration requiring more sophisticated input com-
binations. In contrast, with our feedback mechanism disabled, EcuFuzz shows a lower number of
deviated variables. It reflects the random nature of mutations without the targeted guidance. As the
ECU’s error handling mechanism requires sustained error conditions to confirm faults, random mu-
tations might intermittently trigger and then inadvertently resolve errors in subsequent cycles. This
process leads to fluctuations in the number of deviated variables, as errors might be temporarily in-
duced and then inadvertently reset due to subsequent random inputs. After approximately 16 hours,
the growth in the number of deviated variables plateaus, although oscillations continue. This plateau
is attributed to the latching mechanism employed for critical error-related variables. Once these
variables change state, they are latched and preserved in non-volatile memory (NVM) for subsequent
diagnostic purposes, even if the error-inducing conditions are no longer present. These latched
errors persist unless cleared through specific UDS routine control commands, contributing to the
sustained number of deviated variables despite ongoing random mutations.
Corpus Growth Analysis. Figure 9c shows that our feedback mechanism drove rapid corpus

growth in the first 8 hours, increasing to approximately 2,200 seeds. The growth rate then gradually
decreased, with the corpus size reaching around 2,800 seeds by the end of the 24-hour period. In
contrast, without feedback, the corpus size remained constant at the initial size, as no new error-
triggering inputs were preserved. This difference correlates with the error-variable deviation trend,
reflecting the progressive discovery of error-triggering inputs through feedback guidance.

4.3.2 Impact of Structure-Aware Mutation. To evaluate the impact of our structure-aware mutation,
we compared EcuFuzz with and without structure-aware mutation over a 24-hour fuzzing period.
Without structure-aware mutation, EcuFuzz performs random mutations.

Unique DTCs Analysis. Figure 10a shows that with structure-aware mutation, EcuFuzz de-
tected a higher number of unique DTCs (i.e., 287) and identified seven faults, while randommutation
only detected 31 unique DTCs and identified zero fault. This difference is attributed to the mutation
strategy’s capability to generate structurally valid inputs that pass low-level driver validations, al-
lowing the inputs to reach higher-level application logic where more complex DTCs are triggered. In
contrast, random mutation typically generates inputs that fail basic validation checks (e.g., CRC
validation, and valid bit checks), resulting in a limited set of approximately 30 driver-level DTCs.

Proc. ACM Softw. Eng., Vol. 2, No. ISSTA, Article ISSTA039. Publication date: July 2025.

Structure-Aware, Diagnosis-Guided ECU Firmware Fuzzing ISSTA039:19

Error-RelatedVariableDeviationAnalysis.As shown in Figure 10b, structure-awaremutation
achieved a higher number of deviated error-related variables. Random mutation primarily triggered
changes in driver-level error-related variables, maintaining a relatively constant number of around
50 deviated variables throughout the fuzzing period.
In summary, these results demonstrate the significant contribution of our UDS-based feedback

mechanism and structure-aware mutation strategy to the achieved effectiveness of EcuFuzz.

4.4 Threats to Validity
Internal Validity. Our work faces three main threats to internal validity. First, our false positive
filtering mechanism relies heavily on functional validation testing logs. If these logs are incomplete
or do not capture all intended diagnostic behaviors, legitimate diagnostic responses could be incor-
rectly flagged as faults. Second, our identification of error-related variables depends on naming
conventions in symbol tables. It may miss relevant variables if they do not follow expected naming
conventions, potentially affecting the comprehensiveness of our error state monitoring. Third, the
modifications we made to baselines, including adding CAN message structure knowledge, equip-
ping them with our UDS analyzer for feedback collection, and adapting their hardware indicator
monitoring mechanism to use CAN messages, could affect their original behavior. However, these
modifications should theoretically enhance rather than impair their performance by providing them
with better input structure understanding and more comprehensive monitoring capabilities.

Construct Validity. Our evaluation relies on the number of triggered DTCs, exceptions, and
error-related variable deviations as indicators of potential faults. While these indicators align with
standardized automotive diagnostic practices, they may not capture every form of functional anom-
aly. For example, the firmware might exhibit performance or real-time scheduling issues without
raising immediate diagnostics. Additionally, our framework assumes that legitimate firmware faults
eventually map to detectable DTCs or manifest through specific error variables and exception hooks.
If an ECU’s diagnostic coverage is incomplete or does not robustly log intermittent faults, some
issues might remain undetected. Extending our framework to correlate timing metrics and resource
usage with abnormal conditions could enhance the construct validity of our evaluation.

External Validity. EcuFuzz relies on three key components, i.e., the STM32H755 development
board, the binary ELF file of the ECU firmware, and the CAN DBC files. While the STM32H755 is
widely available, access to ELF and DBC files is usually restricted to Tier 1 suppliers or trusted part-
ners of original equipment manufacturers (OEMs). Importantly, EcuFuzz does not require access to
source code, relying solely on ELF and DBC files, which are relatively accessible for academic insti-
tutions collaborating with automotive industry partners. However, our framework’s applicability
remains primarily within in-house testing or collaborative projects. The current implementation
of EcuFuzz is compatible only with ECUs that support both CAN and SPI communication. ECUs
using alternative protocols, such as LIN or FlexRay, or those without on-board ASICs, are not
currently supported. However, the underlying methodology of EcuFuzz can be adapted to these
other protocols with appropriate modifications due to our modular design. Additionally, while
our evaluation covered ECUs from three major suppliers, there might be architectural variations
in ECUs from other suppliers that could affect tool compatibility. Our future work is focused on
extending our fuzzing framework by exploring more specific ECU firmware characteristics and
potentially expanding the compatibility to include a wider range of communication protocols.

5 Related Work
ECU Security and Safety Testing. Early automotive fuzzing efforts primarily employed black-box
techniques, focusing on CAN bus communication. In terms of random mutation-based approaches,

Proc. ACM Softw. Eng., Vol. 2, No. ISSTA, Article ISSTA039. Publication date: July 2025.

ISSTA039:20 Chen et al.

Fowler et al. [23] used random mutations of CAN messages, monitoring vehicle responses via hard-
ware indicators. Werquin et al. [63] extended it by combining multiple fuzzing strategies with auto-
mated physical response detection. Nyamdelger et al. [46] performed fuzzing by feeding CAN mes-
sages generated by a real vehicle. Yeo et al. [65] combined CAN message fuzzing with sensor-based
feedback monitoring in a simulated vehicle environment. Then, structure-aware mutation-based
approaches emerged. Patki et al. [48] focused on fuzzing UDS requests by analyzing message struc-
tures. Kim et al. [35] analyzed CAN message logs to generate more effective inputs. Varghese et al.
[61] refined it with automated reverse engineering-guided fuzzing, incorporating real-time ECU
response analysis. Zhang et al. [68] further enhanced structure-aware fuzzing by combining bit flip
rate analysis with generative adversarial networks to produce realistic CAN messages. To improve
fuzzing effectiveness through better feedback mechanisms, grey-box approaches were developed.
Radu et al. [53] designed EffCAN, utilizing control flow graph coverage of ECU firmware to guide
payload mutations. More recently, Dunne et al. [14] employed reverse engineering to guide CAN
bus fuzzing, but limited details are uncovered in their short paper. Varghese et al. [60] used pow-
ertrace monitoring to detect system responses in their black-box CAN bus fuzzer. In addition to
fuzzing, hardware-in-the-loop (HiL) simulation has been widely used for ECU functional safety
testing [28, 33, 43], and it has evolved to include fault injection techniques [8, 55] for safety testing.
These approaches primarily focus on external interfaces, particularly the CAN bus. Our work

extends the fuzzing scope to include both external (CAN) and internal (SPI) communication buses.
General-PurposeMCUFuzzing. Fuzz testing, developed for general-purposeMCUfirmware, of-

ten relies on techniques that are not readily applicable to automotive ECUs. For example, 𝜇AFL [38]
employs ARM’s Embedded Trace Macrocell for detailed instruction tracing. While effective for cer-
tain MCUs, it requires specialized hardware features and debugging tools, which are costly and not
typically available in ECUs. GDBFuzz [17] uses hardware breakpoints to capture execution states
without code instrumentation. However, it can interfere with the real-time operation of ECUs,
making it unsuitable for systems with strict timing requirements. SHIFT [40] introduces a semi-
hosted fuzz testing framework that runs instrumented firmware on the MCU to collect coverage
information. Although it provides detailed feedback, it necessitates code instrumentation, which
can be impractical for ECUs due to limited memory resources and cost constraints.

Structure-Aware Fuzzing. Structure-aware fuzzing frameworks (e.g., Nautilus [2], Superion [62]
andAFLSmart [50]) rely on code instrumentation, which is impractical for ECUfirmware fuzzing due
to limited resources and restricted access to firmware source code [67]. Several works [20, 39, 69] use
QEMU-based emulation to collect coverage, but QEMU’s incomplete support for automotive-specific
architectures like TriCore makes them unsuitable for ECU firmware fuzzing. Protocol fuzzing tools
like Peach [16] and BooFuzz [49] are not optimized for ECU firmware fuzzing and hence require non-
trivial adaptation, and have shown comparable performance to automotive fuzzers [48].

6 Conclusion
We have proposed EcuFuzz, a structure-aware and diagnosis-guided fuzzing framework for auto-
motive ECU firmware. Our evaluation has shown the compatibility of EcuFuzz with different ECU
hardware architectures and the effectiveness of EcuFuzz in detecting faults in real-world ECUs.

7 Data Availability
All the experimental data and source code of our work is available at our replication site [15].

Acknowledgment
This work was supported by the National Natural Science Foundation of China (Grant No. 62372114
and 62332005).

Proc. ACM Softw. Eng., Vol. 2, No. ISSTA, Article ISSTA039. Publication date: July 2025.

Structure-Aware, Diagnosis-Guided ECU Firmware Fuzzing ISSTA039:21

References
[1] Harald Altinger, Franz Wotawa, and Markus Schurius. 2014. Testing methods used in the automotive industry: Results

from a survey. In Proceedings of the 2014 Workshop on Joining AcadeMiA and Industry Contributions to Test Automation
and Model-Based Testing. 1–6.

[2] Cornelius Aschermann, Tommaso Frassetto, Thorsten Holz, Patrick Jauernig, Ahmad-Reza Sadeghi, and Daniel
Teuchert. 2019. NAUTILUS: Fishing for deep bugs with grammars.. In Proceedings of 2019 Network and Distributed
System Security Symposium.

[3] SIG Automotive. 2010. Automotive SPICE®. Prozess Assessment Model 2 (2010), 5.
[4] AUTOSAR. 2020. E2E Protocol Specification. Protocol Specification 30. AUTOSAR.
[5] AUTOSAR. 2022. AUTOSAR Website. https://www.autosar.org/ Accessed: 2024-10-31.
[6] AUTOSAR. 2022. Specification of Operating System. Software Specification 34. AUTOSAR. https://www.autosar.org/

fileadmin/standards/R22-11/CP/AUTOSAR_SWS_OS.pdf
[7] AUTOSAR. 2022. Specification of SPI Handler/Driver. https://www.autosar.org/fileadmin/standards/R22-11/CP/

AUTOSAR_SWS_SPIHandlerDriver.pdf Accessed: 2024-10-31.
[8] Enea Bagalini and Massimo Violante. 2016. Development of an automated test system for ECU software validation: An

industrial experience. In Proceedings of the 2016 15th Biennial Baltic Electronics Conference. 103–106.
[9] Erik Bengtson. 2023. cantools: A Python package for handling CAN bus data. https://github.com/eerimoq/cantools

Version 36.5.0.
[10] Richard Clubb et al. 2020. python-uds: An extensible UDS library for Python. https://github.com/richClubb/python-uds

Latest commit: 95f3a53 (as of May 12, 2020).
[11] Wikipedia contributors. 2024. System basis chip. https://en.wikipedia.org/wiki/System_basis_chip Accessed:

2024-10-31.
[12] JA Cook and JS Freudenberg. 2007. Controller area network (can). EECS 461 (2007), 1–5.
[13] Jürgen Dobaj, Georg Macher, Damjan Ekert, Andreas Riel, and Richard Messnarz. 2023. Towards a security-driven

automotive development lifecycle. Journal of Software: Evolution and Process 35, 8 (2023), e2407.
[14] MurrayDunne and Sebastian Fischmeister. 2022. Powertrace-based Fuzzing of CANConnectedHardware. In Proceedings

of the 2022 IEEE International Conference on Cyber Security and Resilience. 239–244.
[15] ECUFuzz. 2025. ECUFuzz-2025. https://github.com/ECUFuzz/ECUFuzz
[16] Michael Eddington. 2008. Peach Fuzzer. https://peachtech.gitlab.io/peach-fuzzer-community/
[17] Max Eisele, Daniel Ebert, Christopher Huth, andAndreas Zeller. 2023. Fuzzing embedded systems using debug interfaces.

In Proceedings of the 32nd ACM SIGSOFT International Symposium on Software Testing and Analysis. 1031–1042.
[18] Embien Technologies. 2024. Exploring the Major Electronic Control Units (ECUs) in Vehicle Systems. https:

//www.embien.com/automotive-insights/major-electronic-control-units-ecus-in-vehicle-systems Accessed: 2024-10-
31.

[19] Krisztian Enisz, Denes Fodor, Istvan Szalay, and Laszlo Kovacs. 2014. Reconfigurable real-time hardware-in-the-loop
environment for automotive electronic control unit testing and verification. IEEE Instrumentation & Measurement
Magazine 17, 4 (2014), 31–36.

[20] Bo Feng, Alejandro Mera, and Long Lu. 2020. {P2IM}: Scalable and hardware-independent firmware testing via
automatic peripheral interface modeling. In Proceedings of 29th USENIX Security Symposium. 1237–1254.

[21] International Organization for Standardization. 2021. ISO/SAE 21434: Road vehicles — Cybersecurity engineering.
Technical Report ISO/SAE 21434:2021. ISO. https://www.iso.org/standard/70918.html

[22] Ford Motor Company. 2024. Part 573 Safety Recall Report 24V-267. Safety Recall Report 24V-267. National Highway
Traffic Safety Administration. https://static.nhtsa.gov/odi/rcl/2024/RCLRPT-24V267-6161.PDF OMB Control No.:
2127-0004.

[23] Daniel S Fowler, Jeremy Bryans, Siraj Ahmed Shaikh, and Paul Wooderson. 2018. Fuzz testing for automotive cyber-
security. In Proceedings of the 2018 48th Annual IEEE/IFIP International Conference on Dependable Systems and Networks
Workshops. 239–246.

[24] Orhan Gazi, A Çağrı Arlı, Orhan Gazi, and A Çağrı Arlı. 2021. Serial Peripheral Interface. State Machines using VHDL:
FPGA Implementation of Serial Communication and Display Protocols (2021), 143–192.

[25] PEAK-System Technik GmbH. 2024. PEAK-System Technik. https://www.peak-system.com/Products.57.0.html
Accessed: 2024-10-31.

[26] Vector Informatik GmbH. 2024. Development and Test Tools for Automotive HIL and SIL Projects. https://www.
vector.com/int/en/products/products-a-z/software/canoe/ Accessed: 2024-10-31.

[27] Oscar Haris, Sigit Wicaksono, Bambang Kurniawan, Gea Edytia, and Agus Darmawan. 2020. Design & analysis of
external airbag system at the Toyota Venza vehicle. In Proceedings of the 2020 6th International Conference on Computing
Engineering and Design. 1–5.

Proc. ACM Softw. Eng., Vol. 2, No. ISSTA, Article ISSTA039. Publication date: July 2025.

https://www.autosar.org/
https://www.autosar.org/fileadmin/standards/R22-11/CP/AUTOSAR_SWS_OS.pdf
https://www.autosar.org/fileadmin/standards/R22-11/CP/AUTOSAR_SWS_OS.pdf
https://www.autosar.org/fileadmin/standards/R22-11/CP/AUTOSAR_SWS_SPIHandlerDriver.pdf
https://www.autosar.org/fileadmin/standards/R22-11/CP/AUTOSAR_SWS_SPIHandlerDriver.pdf
https://github.com/eerimoq/cantools
https://github.com/richClubb/python-uds
https://en.wikipedia.org/wiki/System_basis_chip
https://github.com/ECUFuzz/ECUFuzz
https://peachtech.gitlab.io/peach-fuzzer-community/
https://www.embien.com/automotive-insights/major-electronic-control-units-ecus-in-vehicle-systems
https://www.embien.com/automotive-insights/major-electronic-control-units-ecus-in-vehicle-systems
https://www.iso.org/standard/70918.html
https://static.nhtsa.gov/odi/rcl/2024/RCLRPT-24V267-6161.PDF
https://www.peak-system.com/Products.57.0.html
https://www.vector.com/int/en/products/products-a-z/software/canoe/
https://www.vector.com/int/en/products/products-a-z/software/canoe/

ISSTA039:22 Chen et al.

[28] Andreas Himmler, Klaus Lamberg, and Michael Beine. 2012. Hardware-in-the-Loop Testing in the Context of ISO 26262.
Technical Report 2012-01-0035. SAE Technical Paper.

[29] Ikenna Chinazaekpere Ijeh. 2020. A collision-avoidance system for an electric vehicle: a drive-by-wire technology
initiative. SN Applied Sciences 2, 4 (2020), 744.

[30] K Indu and M Aswatha Kumar. 2023. Electric vehicle control and driving safety systems: A review. IETE Journal of
Research 69, 1 (2023), 482–498.

[31] International Organization for Standardization. 2011. ISO 26262: Road Vehicles - Functional Safety. Standard 26262. ISO.
[32] International Organization for Standardization. 2020. Road vehicles – Unified diagnostic services (UDS). Standard 14229.

ISO. https://cdn.standards.iteh.ai/samples/72439/d6db7450800d4ccf859284e1a57bb23d/ISO-14229-1-2020.pdf
[33] Rolf Isermann, Jochen Schaffnit, and Stefan Sinsel. 1999. Hardware-in-the-loop simulation for the design and testing

of engine-control systems. Control Engineering Practice 7, 5 (1999), 643–653.
[34] Parag Kharche, Meera Murali, and Geetanjali Khot. 2018. Uds implementation for ecu i/o testing. In Proceedings of the

2018 3rd IEEE International Conference on Intelligent Transportation Engineering. 137–140.
[35] Hyunghoon Kim, Yeonseon Jeong, Wonsuk Choi, Doon Hoon Lee, and Hyo Jin Jo. 2022. Efficient ECU analysis

technology through structure-aware CAN fuzzing. IEEE Access 10 (2022), 23259–23271.
[36] Philip Koopman. 2014. A Case Study of Toyota Unintended Acceleration and Software Safety. https://users.ece.cmu.

edu/~koopman/pubs/koopman14_toyota_ua_slides.pdf Accessed: 2024-10-31.
[37] Younho Lee, YangNam Lim, KokCheng Gui, Jin Seo Park, Pawan Reddy, and Syed Arshad Kazmi. 2015. The study of

AUTOSAR communication for automotive requirement. Technical Report 2015-01-0185. SAE Technical Paper.
[38] Wenqiang Li, Jiameng Shi, Fengjun Li, Jingqiang Lin, Wei Wang, and Le Guan. 2022. 𝜇AFL: non-intrusive feedback-

driven fuzzing for microcontroller firmware. In Proceedings of the 44th International Conference on Software Engineering.
1–12.

[39] Alejandro Mera, Bo Feng, Long Lu, and Engin Kirda. 2021. DICE: Automatic emulation of DMA input channels for
dynamic firmware analysis. In Proceedings of 2021 IEEE Symposium on Security and Privacy. 1938–1954.

[40] Alejandro Mera, Changming Liu, Ruimin Sun, Engin Kirda, and Long Lu. 2024. SHiFT: Semi-hosted Fuzz Testing for
Embedded Applications. In Proceedings of the 33th USENIX Security Symposium. 5323–5340.

[41] Charlie Miller. 2015. Remote exploitation of an unaltered passenger vehicle. Black Hat USA (2015), 1–91.
[42] Inc. Mitsubishi Motors North America. 2022. Inappropriate CVT ECU Software Programming – Safety Recall Campaign.

https://static.nhtsa.gov/odi/rcl/2022/RCRIT-22V563-4075.pdf Accessed: 2024-10-31.
[43] Alexandros Mouzakitis, David Copp, Richard Parker, and Keith Burnham. 2009. Hardware-in-the-loop system for

testing automotive ECU diagnostic software. Measurement and control 42, 8 (2009), 238–245.
[44] Sen Nie, Ling Liu, and Yuefeng Du. 2017. Free-fall: Hacking tesla from wireless to can bus. Briefing, Black Hat USA 25,

1 (2017), 16.
[45] Sen Nie, Ling Liu, Yuefeng Du, and Wenkai Zhang. 2018. Over-the-air: How we remotely compromised the gateway,

BCM, and autopilot ECUs of Tesla cars. Briefing, Black Hat USA 91 (2018), 1–19.
[46] Tugsmandakh Nyamdelger, Munkhdelgerekh Batzorig, Esam Ali Albhelil, Yeji Koh, and Kangbin Yim. 2023. Fuzz

testing and safe framework development for vehicle security analysis. In Proceedings of the International Conference on
Innovative Mobile and Internet Services in Ubiquitous Computing. 103–111.

[47] ODERA OHAZURIKE, CHISOM ONYENAGUBO, and CHRYSOGONUS OGOMAKA. 2024. Integrated Control Systems
in Modern Automobiles. Iconic Research And Engineering Journals 7, 11 (2024), 126–132.

[48] Pranav Patki, Ajey Gotkhindikar, and Sunil Mane. 2018. Intelligent fuzz testing framework for finding hidden
vulnerabilities in automotive environment. In Proceedings of the 2018 Fourth International Conference on Computing
Communication Control and Automation. 1–4.

[49] Joshua Pereyda. 2015. boofuzz: Network Protocol Fuzzing for Humans. https://github.com/jtpereyda/boofuzz
[50] Van-Thuan Pham, Marcel Böhme, Andrew E Santosa, Alexandru Răzvan Căciulescu, and Abhik Roychoudhury. 2019.

Smart greybox fuzzing. IEEE Transactions on Software Engineering 47, 9 (2019), 1980–1997.
[51] Jiayi Qiang, Yong Gu, and Guochu Chen. 2020. FPGA Implementation of SPI bus communication based on state

machine method. Journal of Physics: Conference Series 1449, 1 (2020), 012027.
[52] Ltd. Qingdao Kingst Electronics Co. 2020. Kingst Virtual Instruments User Guide. https://download.kamami.pl/p580653-

Kingst_Virtual_Instruments_User_Guide.pdf Accessed: 2024-10-31.
[53] Andreea-Ina Radu and Flavio D Garcia. 2020. Grey-box analysis and fuzzing of automotive electronic components via

control-flow graph extraction. In Proceedings of the 4th ACM Computer Science in Cars Symposium. 1–11.
[54] Md Abdur Rahim, Md Arafatur Rahman, Md Mustafizur Rahman, A Taufiq Asyhari, Md Zakirul Alam Bhuiyan, and D

Ramasamy. 2021. Evolution of IoT-enabled connectivity and applications in automotive industry: A review. Vehicular
Communications 27 (2021), 100285.

[55] Matteo Sonza Reorda and Massimo Violante. 2006. Hardware-in-the-loop-based dependability analysis of automotive
systems. In Proceedings of the 12th IEEE International On-Line Testing Symposium. 6–pp.

Proc. ACM Softw. Eng., Vol. 2, No. ISSTA, Article ISSTA039. Publication date: July 2025.

https://cdn.standards.iteh.ai/samples/72439/d6db7450800d4ccf859284e1a57bb23d/ISO-14229-1-2020.pdf
https://users.ece.cmu.edu/~koopman/pubs/koopman14_toyota_ua_slides.pdf
https://users.ece.cmu.edu/~koopman/pubs/koopman14_toyota_ua_slides.pdf
https://static.nhtsa.gov/odi/rcl/2022/RCRIT-22V563-4075.pdf
https://github.com/jtpereyda/boofuzz
https://download.kamami.pl/p580653-Kingst_Virtual_Instruments_User_Guide.pdf
https://download.kamami.pl/p580653-Kingst_Virtual_Instruments_User_Guide.pdf

Structure-Aware, Diagnosis-Guided ECU Firmware Fuzzing ISSTA039:23

[56] Memoona Sadaf, Zafar Iqbal, Abdul Rehman Javed, Irum Saba, Moez Krichen, Sajid Majeed, and Arooj Raza. 2023.
Connected and automated vehicles: Infrastructure, applications, security, critical challenges, and future aspects.
Technologies 11, 5 (2023), 117.

[57] Muhammad Salman Sarfraz, Hyunsoo Hong, and Seong Su Kim. 2021. Recent developments in the manufacturing
technologies of composite components and their cost-effectiveness in the automotive industry: A review study.
Composite Structures 266 (2021), 113864.

[58] Brian Thorne et al. 2024. python-can: The Controller Area Network (CAN) package for Python. https://github.com/
hardbyte/python-can Latest commit: a39e63e (as of April 14, 2024).

[59] Luc van Dijk. 2017. Future Vehicle Networks and ECUs: Architecture and Technology Considerations. https:
//www.nxp.com/docs/en/white-paper/FVNECUA4WP.pdf Accessed: 2024-10-31.

[60] Manu Jo Varghese, Adnan Anwar, Frank Jiang, and Robin Doss. 2024. Novel CAN Bus Fuzzing Framework for
Finding Vulnerabilities in Automotive Systems. In Proceedings of the 54th Annual IEEE/IFIP International Conference on
Dependable Systems and Networks - Supplemental Volume. 56–58.

[61] Manu Jo Varghese, Frank Jiang, Robin Doss, Adnan Anwar, and Abdur Rakib. 2024. Adaptive Fuzz Testing for
Automotive ECUs: A Modular Testbed Approach for Enhanced Vulnerability Detection. In Proceedings of the ACM
SIGCOMM 2024 Conference: Posters and Demos. 110–112.

[62] Junjie Wang, Bihuan Chen, Lei Wei, and Yang Liu. 2019. Superion: Grammar-aware greybox fuzzing. In Proceedings of
2019 IEEE/ACM 41st International Conference on Software Engineering. 724–735.

[63] Timothy Werquin, Mathijs Hubrechtsen, Ashok Samraj Thangarajan, Frank Piessens, and Jan Tobias Muehlberg. 2019.
Automated Fuzzing of Automotive Control Units. In Proceedings of the 2019 International Workshop on Secure Internet
of Things. 1–8.

[64] Samuel Woo, Hyo Jin Jo, and Dong Hoon Lee. 2014. A practical wireless attack on the connected car and security
protocol for in-vehicle CAN. IEEE Transactions on intelligent transportation systems 16, 2 (2014), 993–1006.

[65] Anthony Kee Teck Yeo, Matheus E Garbelini, Sudipta Chattopadhyay, and Jianying Zhou. 2023. VitroBench: manipulat-
ing in-vehicle networks and COTS ECUs on your bench: a comprehensive test platform for automotive cybersecurity
research. Vehicular Communications 43 (2023), 100649.

[66] Clinton Young, Joseph Zambreno, Habeeb Olufowobi, and Gedare Bloom. 2019. Survey of automotive controller area
network intrusion detection systems. IEEE Design & Test 36, 6 (2019), 48–55.

[67] Joobeom Yun, Fayozbek Rustamov, Juhwan Kim, and Youngjoo Shin. 2022. Fuzzing of embedded systems: A survey.
Comput. Surveys 55, 7 (2022), 1–33.

[68] Haichun Zhang, Kelin Huang, Jie Wang, and Zhenglin Liu. 2021. Can-ft: A fuzz testing method for automotive
controller area network bus. In Proceedings of the 2021 International Conference on Computer Information Science and
Artificial Intelligence. 225–231.

[69] Wei Zhou, Le Guan, Peng Liu, and Yuqing Zhang. 2021. Automatic firmware emulation through invalidity-guided
knowledge inference. In Proceedings of 30th USENIX Security Symposium. 2007–2024.

Received 2025-02-18; accepted 2025-03-31

Proc. ACM Softw. Eng., Vol. 2, No. ISSTA, Article ISSTA039. Publication date: July 2025.

https://github.com/hardbyte/python-can
https://github.com/hardbyte/python-can
https://www.nxp.com/docs/en/white-paper/FVNECUA4WP.pdf
https://www.nxp.com/docs/en/white-paper/FVNECUA4WP.pdf

	Abstract
	1 Introduction
	2 Background
	3 Approach
	3.1 Overview
	3.2 SPI Sequence Mutator
	3.3 CAN Message Mutator
	3.4 Peripheral Emulator
	3.5 UDS Analyzer

	4 Evaluation
	4.1 Compatibility Evaluation (RQ1)
	4.2 Effectiveness Evaluation (RQ2)
	4.3 Ablation Study (RQ3)
	4.4 Threats to Validity

	5 Related Work
	6 Conclusion
	7 Data Availability
	References

