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With the rapid development of open-source software, code reuse has become a common practice to accelerate de-
velopment. However, it leads to inheritance from the original vulnerability, which recurs at the reusing projects,
known as recurring vulnerabilities (RVs). Traditional general-purpose vulnerability detection approaches strug-
gle with scalability and adaptability, while learning-based approaches are often constrained by limited training
datasets and are less effective against unseen vulnerabilities. Though specific recurring vulnerability detection
(RVD) approaches have been proposed, their effectiveness across various RV characteristics remains unclear.

In this paper, we conduct a large-scale empirical study using a newly constructed RV dataset containing 4,569
RVs, achieving a 953% expansion over prior RV datasets. Our study analyzes the characteristics of RVs, evaluates
the effectiveness of the state-of-the-art RVD approaches, and investigates the root causes of false positives and
false negatives, yielding key insights. Inspired by these insights, we designAntMan, a novel RVD approach that
identifies both explicit and implicit call relations with modified functions, then employs inter-procedural taint
analysis and intra-procedural dependency slicing within those functions to generate comprehensive signatures,
and finally incorporates a flexible matching to detect RVs. Our evaluation has shown the effectiveness,
generality and practical usefulness in RVD.AntMan has detected 4,593 RVs, with 307 confirmed by developers,
and identified 73 new 0-day vulnerabilities across 15 projects, receiving 5 CVE identifiers.
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1 Introduction
With the rapid development of open-source software, reusing code has become a common practice
to accelerate software development. However, if reused code contains vulnerabilities, those vulner-
abilities can be inherited, resulting in recurring vulnerabilities (RVs) to downstream projects. These
RVs, sharing similar characteristics with the original vulnerabilities, commonly exist in real-world
projects [9, 24, 50], posing significant security risks that require timely detection.

Current general-purpose vulnerability detection approaches include traditional approaches such
as static analysis (e.g., [2, 7, 11, 16, 37, 50]), symbolic execution (e.g., [6, 27, 33, 40, 42]) and fuzzing
(e.g., [3, 4, 20, 38, 39, 52]), as well as learning-based approaches (e.g., [22, 23, 29, 32, 51]). However,
they struggle with recurring vulnerability detection (RVD). Traditional vulnerability detection ap-
proaches face scalability challenges. Static analysis relies on pre-defined rules, symbolic execution
suffers from path explosion, and fuzzing depends on compilation and input coverage, which can hin-
der broader applicability. Although learning-based approaches offer greater flexibility, they depend
on the quantity and quality of training datasets, restricting their effectiveness against previously un-
seen vulnerabilities. To address this gap, several specific RVD approaches have been proposed, from
early approaches like ReDeBug [15], VUDDY [18] to more recent ones likeMVP [49],MOVERY [45],
Tracer [17], V1scan [44], FIRE [10] and VMUD [14]. These approaches extract lexical, syntactic,
or semantic features from known vulnerability and search for similar patterns to detect RVs.
Empirical Study. Despite advances in RVD approaches, their effectiveness across various RV

characteristics remains unclear. To bridge this gap, we conduct the first large-scale empirical study
with three research questions to analyze the characteristics of RVs, evaluate the effectiveness of ex-
isting RVD approaches, and identify the root causes of false positives (FPs) and false negatives (FNs).
• RQ1 Characteristic Analysis of RVs. What are the characteristics of RVs?
• RQ2 Effectiveness Evaluation of RVD. How is the effectiveness of state-of-the-art RVD?
• RQ3 FP/FN Analysis of RVD.What are causes of false positives and false negatives of RVD?
To ensure a comprehensive and robust analysis, we construct the largest known ground truth dataset
of RVs, comprising 4,569 RVs with an increase of 953% over the largest existing dataset constructed
byMOVERY [45], which only contained 434 RVs. Our dataset construction and verification involves
approximately 2,000 human hours by three security experts.

InRQ1, our analysis reveals that only 28% of the RVs are identical with the original vulnerabilities
(Type-I clones). In contrast, 63% are quite different (Type-III clones) due to syntactic or semantic
changes in both version evolution and code reuse. Further, there are 36 detected vulnerabili-
ties that have significant discrepancy with the original functionality and code semantic, which
is regarded as 0-day, indicating RVD approaches also have the capability to detect 0-day vulner-
abilities. In RQ2, all RVD approaches suffer a significant performance drop from 0.08 to 0.34 in
F1-score when detecting Type-III vulnerabilities compared to Type-I vulnerabilities. In RQ3, we de-
construct the existing RVD approaches and analyze their strategies across different stages to identify
the root causes of FPs and FNs. Finally, we summarize three key insights for a better RVD approach,
i.e., broad context awareness (I-1), fine-grained signature (I-2), and flexible matching (I-3).

OurApproach.Wepropose a novel approach,AntMan, to detect RVsmore effectively. To achieve
I-1, AntMan begins by constructing a normalized call graph for both the original repository and
the target repository. It first performs a comprehensive normalization including macro expansion,
control block standardization, assignment statement deconstruction and permutation, and operator
rewriting. After normalization, AntMan generates normalized call graphs according to the patch
of the original vulnerability, allowing to trace broad context for vulnerability spread. To achieve
I-2, AntMan traces the sensitive variables across inter-procedural taint analysis, as well as intra-
procedural dependency slicing to extract fine-grained vulnerability path. These paths are further
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used to generate signatures, representing as comprehensive inter-procedural code property graph
to provide a detailed understanding of RVs. To achieve I-3, AntMan applies a graph matching
technique enhanced by a code language model, allowing for adaptive and nuanced detection of
RVs and addressing the rigidity of traditional matching strategies in existing RVD approaches.
Evaluation.We conducted extensive experiments to assess AntMan’s effectiveness, ablation,

generality, and usefulness. AntMan achieved a precision of 0.84 and a recall of 0.85 on the ground
truth dataset, surpassing the best RVD approach by 27% in precision and 63% in recall. Our ablation
and threshold sensitivity analyses confirm the contributions of the improved strategies in AntMan
to its overall effectiveness. We also constructed a generality datasets of RVs, where AntMan
outperformed both RVD and learning-based vulnerability detection approaches. Our experiments
also showed that AntMan excelled in identifying 0-day vulnerabilities, covering 73 (89%) 0-day
vulnerabilities, which is 13% higher than other approaches. For usefulness, AntMan successfully
detected 4,593 RVs, with 307 confirmed by developers, and uncovered 73 new 0-day vulnerabilities
across 15 projects, receiving 5 CVE identifiers.

Contribution. In summary, this work makes the following main contributions.
• Large-Scale RV Dataset.We constructed the largest ground truth dataset of RVs to date, comprising
4,569 RVs with an increase of at least 953% over all previous datasets.

• First Thorough Empirical Study.We conducted the first large-scale empirical study on RVs, ana-
lyzing their characteristics, evaluating state-of-the-art RVD approaches, and identifying the root
causes of false positives and false negatives.

• Novel RVD Approach. Guided by our empirical findings, we proposed a novel approach, AntMan,
that addresses existing limitations by incorporating broad context analysis, fine-grained signature
extraction, and flexible matching mechanism.

• Comprehensive Evaluation. AntMan outperformed existing RVD approaches by at least 27% in
precision and 63% in recall. In the generality dataset, AntMan surpassed both RVD and learning-
based approaches by at least 27% in precision and 6% in recall. AntMan also had the capabil-
ity in 0-day vulnerability detection, outperforming the best state-of-the-art by 13%. AntMan
detected 4,520 1/N-day vulnerabilities with 240 confirmed by developers, and discovered 73 0-day
vulnerabilities with 67 confirmed by developers and 5 CVE identifiers assigned.

2 Related Work
General-Purpose Vulnerability Detection.Many approaches including traditional and learning-
based approaches are proposed to detect general vulnerabilities. Traditional approaches such as static
analysis, symbolic execution, and fuzzing, encounter significant limitations in RVD. In particular,
static analysis based approaches [7, 37, 50] depend heavily on pre-defined rules, limiting adaptability
to new vulnerabilities. Symbolic execution [27, 33, 36, 42] suffers from path explosion, and fuzzing
[3, 4, 20, 38, 39, 52] requires compilation, which restricts their scalability and efficiency. In contrast,
learning-based approaches [1, 22, 32, 43, 51] offer more flexible detection by learning patterns from
the vulnerabilities in training dataset. However, their effectiveness largely depends on the quality
and the quantity of training dataset. In summary, they are not applicable to RVD.

Recurring Vulnerability Detection. Several RVD approaches have been proposed [10, 15, 17,
18, 44, 45, 49].ReDeBug [15] andVUDDY [18] are the pioneerworks.WhileReDeBug [15] uses hunk-
level hard matching, VUDDY [18] uses function-level hard matching. VUDDY [18] first extracts
all functions involving deleted lines from the patch and all functions from the target repository.
Then, it normalizes each function by removing comments and abstracting code elements (e.g.,
local variables) into placeholders before computing their MD5 hashes. Matching hashes indicates
potential RVs. This approach is efficient for RVD, but its coarse-grained matching limits the effec-
tiveness in identifying variations with substantial modifications. To address this limitation,MVP
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[49] uses program slicing to extract modified statements and their corresponding dependencies
from patches, while simultaneously extracting all statements and dependencies from each function
in the target repository. After normalizing and abstracting these statements, it computes their
MD5 hashes, with matching hashes suggesting potential RVs. MOVERY [45] extracts the modified
statements from a patch and confirms their relevance by verifying that these statements appear
in the earliest known vulnerable version. It then retrieves all statements from the corresponding
functions, which are identified by software composition analysis in the target repository. After
normalization and abstraction, it performs exact string matching between the patched statements
and those in the target code. A match indicates a potential RV. However, the coarse-grained slicing
strategy inMVP andMOVERY often includes irrelevant statements, and their inaccurate abstraction
obscures vulnerability characteristics. Besides, MOVERY incorporates characteristics from the
oldest version of vulnerabilities revealed in CPE, which is often incomplete or inaccurate [46, 48].
Tracer [17] focuses on memory-related RVs by taint analysis and requires specific compilation
conditions, limiting its generality. V1scan [44] employs a dual-detection methodology that in-
tegrates version-based and code-based detectors to identify potential RVs. An alert from either
detector is sufficient to flag an RV. For version-based detector, it extracts signatures from the entire
codebases of both the original and the target repositories. Using software composition analysis,
it checks if the target repository is more similar to the vulnerable version than the fixed one.
If yes, it flags a potential RV. For code-based detector, it extracts functions from the vulnerable
version and all functions from the target repository, normalizes them, and uses locality-sensitive
hashing to match. For matched functions, it extracts the modified statements from the patch and
the statements from the target function, normalizes them, and performs exact string matching
on them. A match indicates a potential RV. This approach is efficient for RVD, but its function-
level matching and exact string matching also struggle to detect variations involving extensive
modifications. VMUD [14] specifically focuses on detecting RVs with multiple fixing functions by
critical function selection and contextual semantic equivalent statement matching. FIRE [10] is a
scalable approach for detecting RVs. It extracts tokens from the patch’s modified functions and all
functions in the target repository, then uses Jaccard similarity to quickly identify related candidates.
It then refines this selection by extracting tokens from the functions’ ASTs and reapplying Jaccard
similarity to capture structural similarities. For the remaining functions, it normalizes and exactly
matches modified statements from the patch with those in candidate functions. When matches
occur, FIRE constructs and normalizes taint paths that capture data flow, comparing them using
cosine similarity. A high similarity indicates a potential RV.

3 Motivation Example
We use a vulnerability CVE-2022-46489 [25] to illustrate the limitations of existing RVD approaches
(i.e., VUDDY [18], MVP [49], MOVERY [45], V1scan [44], and FIRE [10]). As shown in Figure 1(a),
a memory leak vulnerability is introduced in function gf_isom_box_parse_ex in project gpac. It
arises when memory allocated for uncomp_bs (Line 62) remains unreleased across multiple function
exit points (Lines 77, 84, 92, 96, 101, 106, and 131), leading to resource exhaustion. Its patch [12]
introduces an ERR_EXIT macro (Lines 67-73), ensuring memory cleanup before any function return.
An RV is observed in version 1.0.1 of gpac, as shown in Figure 1(b), where the function contains
similar vulnerable code with Figure 1(a) but includes additional vulnerability-irrelevant code.

VUDDY,MVP,MOVERY and V1Scan fail to identify this RV due to their improper handling of ir-
relevant code.VUDDY andV1Scan, relying on function-level codematching between vulnerable and
target functions, erroneously include irrelevant code lines (Lines 131-147) in their target signature,
resulting in failed RV detection.MVP andMOVERY first incorporate the vulnerability-irrelevant
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GF_Err gf_isom_box_parse_ex(..., Bool is_root_box, u64 parent_size) {
...
GF_BitStream *uncomp_bs = NULL;
u8 *uncomp_data = NULL;
u32 compressed_size=0;
GF_Box *newBox;
...
if ((size >= 2) && (size <= 4)) {...} else {

...
if (is_root_box && (size>=8)) {

Bool do_uncompress = GF_FALSE;
...
if (do_uncompress) {

compb = gf_malloc((u32) (size‐8));
if (!compb) return GF_OUT_OF_MEM;
... 
e = gf_gz_decompress_payload(..., &uncomp_data, &osize);
if (e) {

gf_free(compb);
...
return e;}

...
uncomp_bs = gf_bs_new(uncomp_data, ...);
...

}}}
#define ERR_EXIT(_e) { \

if (uncomp_bs) {\
gf_free(uncomp_data);\
gf_bs_del(uncomp_bs); \

}\
return _e;\

}
memset(uuid, 0, 16);
if (type == GF_ISOM_BOX_TYPE_UUID ) {

if (gf_bs_available(bs) < 16) {
return GF_ISOM_INCOMPLETE_FILE; }

... }
if (size == 1) {

if (gf_bs_available(bs) < 8) {
return GF_ISOM_INCOMPLETE_FILE;   }

... }  ...
if ( size < hdr_size ) {

...
return GF_ISOM_INVALID_FILE; }

if (parent_size && (parent_size<size)) {
...

return GF_ISOM_INVALID_FILE;  }

...
if (parent_type && (parent_type == GF_ISOM_BOX_TYPE_TREF)) {

newBox = gf_isom_box_new(GF_ISOM_BOX_TYPE_REFT);
if (!newBox) return GF_OUT_OF_MEM;
if (!newBox) ERR_EXIT(GF_OUT_OF_MEM);
((GF_TrackReferenceTypeBox*)newBox)‐>reference_type = type;

} else if (...) {
newBox = gf_isom_box_new(GF_ISOM_BOX_TYPE_REFI);
if (!newBox) return GF_OUT_OF_MEM;
if (!newBox) ERR_EXIT(GF_OUT_OF_MEM);
((GF_ItemReferenceTypeBox*)newBox)‐>reference_type = type;}
...

if (size ‐ hdr_size > end ) {
...

}

...
if (e && (e != GF_ISOM_INCOMPLETE_FILE)) {

gf_isom_box_del(newBox);
*outBox = NULL;

if (!skip_logs && (e!=GF_SKIP_BOX)) {...}
return e;}

...
return e;

}

(a) Patch for CVE-2022-46489

1
2‐5
6
7
8
9

10‐19
20

21‐34
35
36

36‐50
51
52

53‐54
55

56
57

58‐64
65

66
67
68
69

70‐72
73
74
75

76‐79
80
81
82

83
84
85
86

87
88
89
90

91
92‐100
101

102‐103
104

105‐130
131
132
133
134
135
136
137
138
139
140
141

142‐146
147

148‐162
163
164

return GF_ISOM_INCOMPLETE_FILE; 

return GF_ISOM_INVALID_FILE;

return GF_ISOM_INCOMPLETE_FILE;

GF_Err gf_isom_box_parse_ex(..., Bool is_root_box){
...
GF_BitStream *uncomp_bs = NULL;
u8 *uncomp_data = NULL;
u32 compressed_size=0;
GF_Box *newBox;
...
if ((size >= 2) && (size <= 4)) {...} else {

...
if (is_root_box && (size>=8)) {

Bool do_uncompress = GF_FALSE;
...
if (do_uncompress) {

compb = gf_malloc((u32) (size‐8));

...
gf_gz_decompress_payload(..., &uncomp_data, &osize);

...
uncomp_bs = gf_bs_new(uncomp_data, ...);
...

}}}

memset(uuid, 0, 16);
if (type == GF_ISOM_BOX_TYPE_UUID ) {

if (gf_bs_available(bs) < 16) {
return GF_ISOM_INCOMPLETE_FILE; }

... }
if (size == 1) {

if (gf_bs_available(bs) < 8) {
}

... } ...
if ( size < hdr_size ) {

...
} 

...
if (parent_type && (parent_type == GF_ISOM_BOX_TYPE_TREF)) {

newBox = gf_isom_box_new(GF_ISOM_BOX_TYPE_REFT);
if (!newBox) return GF_OUT_OF_MEM;

((GF_TrackReferenceTypeBox*)newBox)‐>reference_type = type;
} else if (...) {

newBox = gf_isom_box_new(GF_ISOM_BOX_TYPE_REFI);
if (!newBox) return GF_OUT_OF_MEM;

((GF_ItemReferenceTypeBox*)newBox)‐>reference_type = type;} 
...
if (size ‐ hdr_size > end ) {

...
}

...
if (e && (e != GF_ISOM_INCOMPLETE_FILE)) {

gf_isom_box_del(newBox);
*outBox = NULL;
if (parent_type==GF_ISOM_BOX_TYPE_STSD) {

newBox = gf_isom_box_new(GF_ISOM_BOX_TYPE_UNKNOWN);
if (!newBox) return GF_OUT_OF_MEM;
((GF_UnknownBox *)newBox)‐>original_4cc = type;
newBox‐>size = size;
gf_bs_seek(bs, payload_start);
goto retry_unknown_box;

}
if (!skip_logs) {...}
return e;}

...
return e;

}

(b) An RV of CVE-2022-46489

Fig. 1. Patch 44e8616e for CVE-2022-46489 in gpac and Vulnerable Version 1.0.1 of gpac

variable newBox (Line 86) into their target signature. Then through control and data dependency re-
lations with newBox, they extract the irrelevant code (Lines 135-138), resulting in failed RV detection.
FIRE detects RVs by extracting taint paths from identifier nodes to call nodes. In this case, it success-
fully identifies the RV because Lines 131-147 contain no function calls involving newBox. However,
it remains prone to including irrelevant identifiers, leading to potential false positives. This example
motivates the need of our empirical study to comprehensively uncover their limitations.

4 Empirical Study
To better understand RV and RVD approaches, we conducted the first large-scale empirical study
of analyzing RV characteristics and evaluating the effectiveness of existing RVD approaches to
gain deeper insights into the limitations of current RVD approaches.
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4.1 Study Design
4.1.1 RVDApproach Selection. To select RVD approaches as our baselines, we conducted a literature
review startingwithVMUD [14], themost recent RVDwork.We applied literature snowballingwhile
focusing specifically on the latest RVD approaches since 2014. This process led us to seven source
code-based RVD approaches, i.e., VUDDY [18],MVP [49],MOVERY [45], Tracer [17], V1scan [44],
FIRE [10] and VMUD [14]. We excluded VMUD because of its limited scope in detecting RVs with
multiple fixing functions and Tracer along with all binary-based RVD approaches due to their
reliance on compiling, which limits the applicability for large-scale RV detection. Finally, we adopted
the default configurations from the original publications of the five selected RVD approaches.

4.1.2 Ground Truth Dataset Construction. Since no open-source dataset on RVswas available, we con-
structed the largest known ground truth dataset of RVs, enabling rigorous empirical analysis. Each
sample in our dataset is denoted as a six-tuple ⟨𝑐𝑣𝑒𝑖𝑑, 𝑝𝑎𝑡, 𝑟𝑒𝑝𝑜o, 𝑟𝑒𝑝𝑜t, 𝑖 𝑓rv, 𝐹rv⟩, where 𝑐𝑣𝑒𝑖𝑑 is the
CVE identifier of the original vulnerability; 𝑝𝑎𝑡 is a patch commit from the original repository 𝑟𝑒𝑝𝑜o
where the original vulnerability locates; 𝑟𝑒𝑝𝑜t is the target repository to be detected with its specific
version; 𝑖 𝑓rv is a boolean indicating whether 𝑟𝑒𝑝𝑜t contains an RV; and 𝐹rv is the detected vulnerable
function set by RVD approaches and verified by experts. Unlike existing RVD approaches that took
baseline-detected samples as ground truth [10, 18, 44, 45, 49], we employed a three-step process
integrated by additional human effort to mitigate baseline-induced false positives and negatives.

Step 1: Vulnerability and Patch Collection. We first selected the original vulnerability 𝑐𝑣𝑒𝑖𝑑
and its patch commit 𝑝𝑎𝑡 of 𝑟𝑒𝑝𝑜o from the NVD Data Feeds [26]. After filtering for C/C++ vulner-
abilities from 1 January 2020 to 1 January 2024, we collected a total of 2,115 vulnerabilities with
their associated patches. Then, we further excluded patches that modified only global declarations
(e.g., macros and structures), C/C++ configuration files, or non-C/C++ files. This restricted our
selection to a final dataset of 2,088 vulnerabilities with their associated patches.

Step 2: Target Repository Collection. To ensure a diverse set of RVs, we targeted high-profile
GitHub repositories, selected based on star counts, while excluding archived or outdated projects. By
August 2024, we gathered the top 600 active C/C++ repositories. We then gathered all the released
versions (i.e., 12,088) of the repositories. Given the large number of versions, we opted for sampling to
reduce approach runtime and manual effort. To achieve this, we first sorted versions of a repository
in chronological order and divided the versions by season.We then selected the first version released
within each season to represent the evolution of code over specific periods, discarding all other
versions from that period. If no version was available for a particular season, it was simply excluded.
This process resulted in 3,873 distinct repositories with version tags, and each is denoted as 𝑟𝑒𝑝𝑜t.

Step 3: RV Detection and Confirmation. To maximize detection coverage and mitigate single-
tool bias, we ran all selected five RVD approaches to identify RVs in each 𝑟𝑒𝑝𝑜t with each patch 𝑝𝑎𝑡 as
input. This process generated samples that were detected by at least one RVD approach. False alarms
were classified by human experts verification. If a detected sample was confirmed as an RV, it was
marked as a positive sample, with 𝑖 𝑓rv set to True and the corresponding vulnerable functions listed
in 𝐹rv. If a detected sample was not an RV, it was classified as a negative sample, with 𝑖 𝑓rv set to False
and 𝐹rv left empty. This confirmation was conducted by two experienced security professionals,
each with over three years of experience. Any disagreements were resolved by a third expert,
ensuring consensus. This process identified 3,834 positive samples and 4,469 negative samples.
Moreover, as RVs can persist across multiple versions, the experts extended their manual analysis
by recursively checking earlier and later versions of 𝑟𝑒𝑝𝑜t where no sample was identified by RVD
approaches, continuing until no further vulnerable versions were found. This thorough examination
mitigates the risk of missing RVs and avoids potential false negatives, providing a more complete
set of RVs. Any discrepancies were resolved through consultation with a third expert to maintain
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Table 1. Distribution w.r.t. Similarity Types, Patch Scopes, and ∗-Day Vulnerability Types

Original Repositories Transferred Repositories Original Repositories Transferred Repositories

Type-I Type-II Type-III Type-I Type-II Type-III 1/N-day 0-day 1/N-day 0-day

S 818 (34%) 262 (11%) 1,295 (55%) 101 (39%) 29 (12%) 126 (49%) 2,365 (99.6%) 10 (0.4%) 244 (95.3%) 12 (4.7%)

M 300 (19%) 81 (5%) 1,221 (76%) 50 (15%) 34 (10%) 252 (75%) 1,597 (99.7%) 5 (0.3%) 327 (97.3%) 9 (2.7%)

S ∪ M 1,118 (28%) 343 (9%) 2,516 (63%) 151 (26%) 63 (11%) 378 (63%) 3,962 (99.6%) 15 (0.4%) 571 (96.5%) 21 (3.5%)

accuracy and consistency. Ultimately, we gathered 4,569 positive samples across 1,300 𝑟𝑒𝑝𝑜t and
4,469 negative samples across 1,234 𝑟𝑒𝑝𝑜t, costing 2,000 human hours. We achieved a Cohen’s
Kappa coefficient of 0.934 for sample confirmation and 0.936 for sample expansion.

4.1.3 Metrics. We measured RVD approaches using true positives (TP), false positives (FP), false
negatives (FN), precision (Pre.), recall (Rec.), and F1-score (F1.).

4.2 Characteristic Analysis of RVs (RQ1)
We focus on three characteristics of RVs, similarity types, patch scopes, and ∗-day vulnerability types.
We analyzed the characteristics of RVs in two contexts: (1) RVs recurring within the same repository
(where 𝑟𝑒𝑝𝑜t and 𝑟𝑒𝑝𝑜o are the same, referred to as the “original repository”), and (2) RVs recurring in
different repositories (where 𝑟𝑒𝑝𝑜t and 𝑟𝑒𝑝𝑜o are different, referred to as the “transferred repository").
This distinction helps us understand how RVs distribute in different repositories.

Setup of RV Similarity Type Analysis. To analyze the impact of code duplication and variation
on RVD, we categorized RVs into three distinct similarity types based on well-established definitions
of code clones [41], i.e., Type-I (Exact Clones): if all functions in 𝐹rv are identical with the cor-
responding functions in 𝑝𝑎𝑡 , Type-I is detected; Type-II (Renamed Clones): if all functions in
𝐹rv are identical with the corresponding functions in 𝑝𝑎𝑡 after identifier (i.e., variables, function
calls, type declarations, and string literals) renaming, Type-II is detected; and Type-III (Semantic

Clones): if there exists at least one function in 𝐹rv that differs from its corresponding function in
𝑝𝑎𝑡 after identifier renaming, Type-III is detected.

Setup of Patch Scope Analysis. Since current RVD approaches primarily rely on analyzing the
modified functions within a patch (with V1scan also considering changes to global identifiers), it
is essential to understand how different types of function modifications impact RVD. Therefore, we
categorized patches into two distinct groups based on their function modification scope: (1) patches
with single-function modifications (𝑝𝑎𝑡s) and (2) patches with multi-function modifications (𝑝𝑎𝑡m).
This classification allows us to distinguish between two RV detection scenarios, S for 𝑝𝑎𝑡s, where
changes are isolated to a single function, and M for 𝑝𝑎𝑡m, where changes span multiple functions.

Setup of ∗-day Vulnerability Type Analysis. RVD approaches are primarily designed to detect
1/N-day vulnerabilities. To assess their capability of detecting 0-day vulnerabilities, we focused on
scenarios where the functionality and semantics of functions in 𝐹rv significantly differ from those
in 𝑝𝑎𝑡 , sharing only the underlying vulnerability logic without direct code reuse. To distinguish
0-day vulnerabilities, we conducted a manual review. Finally, we tagged 36 0-day vulnerabilities,
and reported them to repository owners with 21 confirmed and 15 in progress.

RV Distribution w.r.t. Similarity Types. As shown in Table 1, there is a consistent distribution
of Type-I, Type-II, and Type-III clones across both original and transferred repositories. Type-III
clones were themost prevalent, accounting for 63% in both original and transferred repositories. This
suggests that significant syntactic or semantic changes are common among RVs. Type-I clones were
also present in substantial numbers, comprising 28% in original repositories, and 26% in transferred
repositories, reflecting frequent direct reuse of vulnerable code. In contrast, Type-II clones were
relatively rare, making up 9% in original repositories, and 11% in transferred repositories.
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Finding 1: The distribution of similarity types is similar across original and transferred repos-
itories, with Type-III clones being the most prevalent, accounting for 63%.

RV Distribution w.r.t. Patch Scopes. 2,375 (60%) and 1,602 (40%) RVs belonged to S and M in
original repositories, respectively. 256 (43%) and 336 (57%) RVs belonged to S andM in transferred
repositories, respectively. Specifically, for S, Type-I and Type-III clones were prominent, accounting
for 34% and 55% in original repositories, and 39% and 49% in transferred ones, respectively. Type-II
clones remained relatively rare. In contrast, for M, Type-III clones were dominant, making up 76%
and 75% in original and transferred repositories, respectively. This trend underscores that M is
often extensive, resulting in significant modifications threatening RVD approaches.

Finding 2: RVs whose patches involve multi-function modifications (i.e., M) are common, ac-
counting for 40% and 57% in original and transferred repositories, respectively. Type-I and Type-
III clones are prominent in S, while Type-III clones are dominant in M.

RV Distribution w.r.t. ∗-Day Vulnerability Types. As shown in Table 1, in original reposito-
ries, the majority (99.6%) of RVs were classified as 1/N-day vulnerabilities, indicating a high preva-
lence of code reusewithin the same repository. This overall trend remains consistent acrossM andS.
Further analysis on the 15 0-day vulnerabilities revealed that 7 of them consistently appeared within
the same file as the original vulnerabilities, while the remaining 8 were located in different files
within the same folder, suggesting a proximity-based occurrence of 0-day vulnerabilities. In trans-
ferred repositories, the distribution shifts slightly but still maintains a dominant presence of 1/N-day
vulnerabilities acrossM and S. It is worth mentioning that while 1/N-day vulnerabilities are preva-
lent in both original and transferred repositories, the likelihood of encountering a 0-day vulnerability
in transferred repositories is significantly higher, with an increase of 842% compared to original
repositories. It underscores the potential risk of 0-day vulnerabilities in transferred code, where
variations in code logic can lead to unique vulnerabilities that are less common in original code.

Finding 3: Although 1/N-day vulnerabilities are dominant across both original and transferred
repositories, some RVD approaches demonstrate the capability to detect 0-day vulnerabilities
within both contexts, highlighting the potential applicability of RVD approaches.

4.3 Effectiveness Evaluation of RVD (RQ2)
Detection Criteria Setup. In current RVD approaches, only V1scan is designed to support multi-
function modification scenarios, where an RV is detected if at least one modified function from 𝑝𝑎𝑡m
matches in 𝑟𝑒𝑝𝑜t. The other approaches (VUDDY,MVP,MOVERY and FIRE) are designed primarily
for single-function modification scenarios. As our dataset includes both single-function and multi-
function RVs, we extended the detection criteria of these four approaches to align with V1scan,
allowing them to detect RVs based on matching at least one modified function from 𝑝𝑎𝑡m.

Effectiveness w.r.t. Similarity Types. As shown in Table 2, for Type-I clones, VUDDY achieves
the highest recall (0.85) but a lower precision (0.67), resulting in the highest F1-score of 0.75. Con-
versely, MVP prioritizes precision (0.74) over recall (0.52), and has the lowest F1-score of 0.61. For
Type-II clones, VUDDY maintains the balance with a precision of 0.72 and a recall of 0.66, yielding
the highest F1-score of 0.69. However,MOVERY, with the lowest F1-score of only 0.39, struggles
significantly due to its low precision (0.29) and moderate recall (0.57). For the more complex Type-III
vulnerabilities, all approaches suffer a steep decline. FIRE performs the best with an F1-score of 0.55.
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Table 2. Effectiveness of the State-of-the-Art RVD Approaches

VUDDY MVP MOVERY V1scan FIRE

S M S∪M S M S∪M S M S∪M S M S∪M S M S∪M

Type-I

TP 761 319 1,080 447 215 662 646 295 941 598 258 856 559 211 770
FP 325 199 524 144 88 232 407 237 644 189 129 318 280 142 422
FN 158 31 189 472 135 607 273 55 328 321 92 413 360 139 499
Pre. 0.70 0.62 0.67 0.76 0.71 0.74 0.61 0.55 0.59 0.76 0.67 0.73 0.67 0.60 0.65
Rec. 0.83 0.91 0.85 0.49 0.61 0.52 0.70 0.84 0.74 0.65 0.74 0.67 0.61 0.60 0.61
F1. 0.76 0.74 0.75 0.59 0.66 0.61 0.66 0.67 0.66 0.70 0.70 0.70 0.64 0.60 0.63

Type-II

TP 172 96 268 81 61 142 147 83 230 97 58 155 127 68 195
FP 29 77 106 2 19 21 414 144 558 8 35 43 24 36 60
FN 119 19 138 210 54 264 144 32 176 194 57 251 164 47 211
Pre. 0.86 0.55 0.72 0.98 0.76 0.87 0.26 0.37 0.29 0.92 0.62 0.78 0.84 0.65 0.76
Rec. 0.59 0.83 0.66 0.28 0.53 0.35 0.51 0.72 0.57 0.33 0.50 0.38 0.44 0.59 0.48
F1. 0.70 0.67 0.69 0.43 0.63 0.50 0.35 0.49 0.39 0.49 0.56 0.51 0.57 0.62 0.59

Type-III

TP 0 817 817 434 849 1,283 697 1,159 1,856 105 654 759 547 845 1,392
FP 0 285 285 275 595 870 1,276 1,240 2,516 24 198 222 310 441 751
FN 1,421 656 2,077 987 624 1,611 724 314 1,038 1,316 819 2,135 874 628 1,502
Pre. 0.0 0.74 0.74 0.61 0.59 0.60 0.35 0.48 0.42 0.81 0.77 0.77 0.64 0.66 0.65
Rec. 0.0 0.55 0.28 0.31 0.58 0.44 0.49 0.79 0.64 0.07 0.44 0.26 0.38 0.57 0.48
F1. 0.0 0.63 0.41 0.41 0.58 0.51 0.41 0.60 0.51 0.14 0.56 0.39 0.48 0.61 0.55

All

TP 933 1,232 2,165 962 1,125 2,087 1,490 1,537 3,027 800 970 1,770 1,233 1,124 2,357
FP 354 561 915 421 702 1,123 2,097 1,621 3,718 221 362 583 614 619 1,233
FN 1,698 706 2,404 1,669 813 2,482 1,141 401 1,542 1,831 968 2,799 1,398 814 2,212
Pre. 0.72 0.69 0.70 0.70 0.62 0.65 0.42 0.49 0.45 0.78 0.73 0.75 0.67 0.64 0.66
Rec. 0.35 0.64 0.47 0.37 0.58 0.46 0.57 0.79 0.66 0.30 0.50 0.39 0.47 0.58 0.52
F1. 0.48 0.66 0.57 0.48 0.60 0.54 0.48 0.60 0.54 0.44 0.59 0.51 0.55 0.61 0.58

V1Scan has the highest precision of 0.77 but the lowest recall of 0.26, which leads to the lowest F1-
score of 0.39.VUDDY performs the best in Type-I and Type-II vulnerabilities, but drops to the second
worst in Type-III vulnerabilities, achieving decent precision (0.74) but very low recall (0.28).

Finding 4: VUDDY performs the best in Type-I and Type-II vulnerability detection, but suffers
a significant drop in Type-III vulnerability detection. FIRE demonstrates relatively consistent
performance across all similarity types, achieving an F1-score around 0.60.MVP,MOVERY,
and V1scan show well performance in Type-I but suffer a drop in Type-II and Type-III.

Effectiveness w.r.t. Patch Scopes. As shown in Table 2, the F1-score on S andM are very close
in Type-I and Type-II. In contrast, in Type-III, the F1-score onM is higher than that on S across all
the approaches by 0.13 to 0.63. The underlying reason is that according to the detection criteria, RVs
inM are detected if only one of the modified multiple functions is matched for 𝑟𝑒𝑝𝑜o and 𝑟𝑒𝑝𝑜t,
which latently increases the matching probability and increases the recall of all the RVD approaches.
On the other hand, not all modified functions in 𝑝𝑎𝑡𝑚 are directly related to vulnerabilities. Matching
such unrelated functions can lead to a drop in precision. An exception isMOVERY, which shows an
increase of 0.07 in precision for M. This anomaly may be attributed to the inherent randomness in
MOVERY that affects its low precision performance.

Finding 5: The effectiveness of all RVD approaches consistently declines as the complexity of
vulnerabilities increases, particularly fromType-I to Type-II and Type-III vulnerabilities. The F1-
score onS andM are very close in Type-I and Type-II, but in Type-III, a higher recall but a lower
precision are achieved onM than on S due to the single-function matching criteria.

4.4 FP/FN Analysis of RVD (RQ3)
Sampling Setup.We began by sampling FPs and FNs for each RVD approach to reduce manual cost,
resulting in 173, 814, 427, 208, 299 FPs and 881, 1,180, 314, 1,323, 879 FNs for the five approaches
respectively. Sampling was performed at a 99% confidence level with a 3% confidence interval.
Two authors independently selected 100 FPs and 100 FNs from each approach for a pilot study.
Following an open coding procedure [30], they identified the approach stages and atomic approach
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Table 3. Taxonomy of Stages and Strategies Used in the State-of-the-Art RVD Approaches

Stage Granularity Strategy VUDDY MVP MOVERY V1scan FIRE

Stage 1

Component-Level S1-1: extract signatures of the entire codes in 𝑟𝑒𝑝𝑜o
and 𝑟𝑒𝑝𝑜t

✔

Function-Level
S1-2: extract the entire pre-patch functions in 𝑟𝑒𝑝𝑜o
and all the functions in 𝑟𝑒𝑝𝑜t

✔ ✔

S1-3: extract function relations in 𝑝𝑎𝑡 and in 𝑟𝑒𝑝𝑜t

Statement-Level

S1-4: extract modified statements in 𝑝𝑎𝑡 and all the

statements in the target function ✔ ✔ ✔ ✔

S1-5: extract modified statements with their depen-

dency context in 𝑝𝑎𝑡 verified in earliest vulnerable
version, and all the statements in the target function

✔

S1-6: extract modified statements with their depen-

dency context in 𝑝𝑎𝑡 and pair them with dependency

relation, and extract all the statements and their de-

pendency pair in the target function

✔

S1-7: extract taint paths for variables within 𝑝𝑎𝑡 and
the target function ✔

Token-Level
S1-8: extract tokens of unstructured C/C++ keywords

from the functions in 𝑝𝑎𝑡 and 𝑟𝑒𝑝𝑜t
✔

S1-9: extract tokens of AST from the functions in 𝑝𝑎𝑡
and 𝑟𝑒𝑝𝑜t

✔

Stage 2 Statement-Level
S2-1: normalize by removing irrelevant syntactic

structures (e.g., comment) ✔ ✔ ✔ ✔ ✔

S2-2: abstract identifier (e.g., local variables to LVAR) ✔ ✔ ✔

Stage 3

Component-Level S3-1: match by SCA tools ✔

Function-Level S3-2: match byMD5 hash ✔
S3-3: match by local sensitive hash ✔

Statement-Level S3-4:match byMD5 hash or string exactlymatching ✔ ✔ ✔ ✔
S3-5: match by cosine similarity ✔

Token-Level S3-6: match by Jaccard similarity ✔

Table 4. The Top Three Strategies That Introduced the Most FPs and FNs

S M S ∪ M
Top 3 Strategies Sum Top 3 Strategies Sum Top 3 Strategies Sum

Type-I FP S1-4 (35%) | S1-7 (19%) | S2-2 (13%) 67% S1-7 (22%) | S1-3 (21%) | S2-1 (15%) 58% S1-4 (21%) | S1-7 (21%) | S1-3 (16%) 58%
FN S3-4 (32%) | S1-4 (19%) | S2-2 (12%) 63% S3-4 (34%) | S1-4 (16%) | S1-6 (10%) 60% S3-4 (32%) | S1-4 (18%) | S3-2 (11%) 61%

Type-II FP S1-7 (36%) | S1-4 (36%) | S1-3 (28%) 100% S1-3 (40%) | S2-2 (24%) | S1-4 (15%) 79% S1-3 (39%) | S2-2 (21%) | S1-4 (18%) 78%
FN S3-4 (29%) | S3-2 (16%) | S1-4 (14%) 59% S3-4 (31%) | S1-4 (16%) | S1-6 (10%) 57% S3-4 (30%) | S3-2 (14%) | S1-4 (13%) 57%

Type-III FP S2-2 (38%) | S1-4 (31%) | S1-5 (12%) 81% S2-2 (27%) | S1-4 (23%) | S1-6 (15%) 65% S2-2 (30%) | S1-4 (25%) | S1-6 (12%) 67%
FN S3-2 (30%) | S3-3 (26%) | S3-4 (17%) 73% S3-2 (25%) | S3-3 (21%) | S3-4 (20%) 66% S3-2 (28%) | S3-3 (24%) | S3-4 (18%) 70%

All FP S1-4 (33%) | S2-2 (30%) | S1-7 (9%) 72% S2-2 (24%) | S1-4 (21%) | S1-3 (14%) 59% S2-2 (26%) | S1-4 (24%) | S1-3 (12%) 62%
FN S3-2 (25%) | S3-4 (21%) | S3-3 (21%) 67% S3-2 (22%) | S3-4 (21%) | S3-3 (19%) 62% S3-2 (24%) | S3-4 (21%) | S3-3 (20%) 65%

strategies where inaccuracy was introduced into each RVD approach. We determined the root
cause in each strategy that could cause FPs and FNs. To ensure inter-rater reliability, Cohen’s Kappa
was calculated, yielding 0.937 for FPs and 0.949 for FNs. Discrepancies were resolved with the
involvement of a third author during both the pilot and final labeling phases. After labeling, each
FP and FN was paired with the associated strategy where the root cause was introduced. Since
multiple approaches could employ the same strategy, duplicate FP-strategy and FN-strategy pairs
were consolidated. This deduplication process led to a total of 1,456 FP-strategy pairs and 3,643
FN-strategy pairs. The subsequent analysis of RQ3 is based on these deduplicated FP-strategy and
FN-strategy pairs. This analysis involves about 600 human hours by three security experts.
Taxonomy of Stages and Strategies.We summarized three primary stages in current RVD

approaches, as detailed in Table 3. Each stage adopts various strategies, which can introduce FPs/FNs.
(1) Stage 1: Original & Target Signature Extraction. This stage involves extracting signatures from

the original and target repositories across multiple levels (e.g., component, function, statement).
(2) Stage 2: Signature Generalization. This stage normalizes and abstracts the extracted signatures.
(3) Stage 3: RV Detection. This stage matches the generalized signatures to detect RVs.
Table 4 provides a detailed breakdown of the primary strategies that lead to most FPs and FNs

across different similarity types and patch scopes, highlighting recurring challenges in RVD.
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False Positive Analysis. As shown in Table 4, our analysis uncovers the following three root
causes in the corresponding strategies that are the most significant contributors to FPs, collectively
accounting for 62% of the total FP-strategy pairs. These FPs primarily stem from the design
limitations within these strategies, resulting in a high rate of misclassification.
• Inaccurate Abstraction in S2-2. Inaccurate abstraction is a major cause of false positives, ac-
counting for approximately 26% of the FPs across VUDDY, MVP and MOVERY. This strategy
excessively abstracts variables, function calls and strings, failing to preserve essential fine-grained
contextual details and relationships between statements, which leads to false alarms. Besides, the
global-insensitive nature of RVD approaches often results in inaccurate abstraction of macros
into local variables, causing the loss of critical semantics and false alarms.

• Modified Statements without Context in S1-4. Except for VUDDY, all RVD approaches only
consider modified statements in signature extraction, but do not consider unmodified statements
that have control or data dependency on the modified statements, contributing to 24% of the FPs.

• Missing FunctionRelations in S1-3.None of the approaches effectively handle inter-procedural
dependencies in multi-function patches (𝑝𝑎𝑡m). Approaches that treat multi-function patches as
isolated modifications often overlook these dependencies. Therefore, such missing function rela-
tions lead to false alarms, accounting for about 12% of the FPs across all RVD approaches.
Interestingly, statement-level strategies frequently rank among the top contributors to FPs in both

single-function and multi-function modification scenarios. Notably, S1-6, which pairs statements
based on dependencies, accounts for a significant share of FPs (i.e., 3% in single-function scenarios
and 14% in multi-function scenarios). Similarly, S1-7, which extracts taint paths from vulnerable
function variables, also contributes to FPs notably (i.e., 9% in single-function scenarios and 12%
in multi-function scenarios). These strategies often falter due to inadequate consideration of fine-
grained relationships or excessive slicing. For example, S1-4 and S1-5 extract modified statements
or their context without addressing inter-dependencies, while S1-6 pairs statements after over-
slicing, which can lead to unnecessary or irrelevant associations. Likewise, S1-7 extracts taint paths
indiscriminately, including those unrelated to vulnerabilities, resulting in false matches.

False Negative Analysis. FNs primarily arise from issues in matching strategies, particularly at
the function level (S3-2 and S3-3) and statement level (S3-4). Such strategies collectively introduce
65% of the total FN-strategy pairs, highlighting the limitations of current RVD approaches.
• Coarse-Grained Signature Matching in S3-2 and S3-3. Function-level matching introduces
significant FNs, accounting for 44% of the FNs (24% from S3-2 and 20% from S3-3), which is used in
VUDDY and V1scan. Such coarse-grained strategies often fail to detect subtle structural changes,
particularly with Type-II and Type-III vulnerabilities, leading to missed RVs.

• InflexibleMatching in S3-4.Hard matching like MD5 hash matching or string exactly matching
also contributes to a substantial portion of FNs, accounting for 21%, which is used in MVP,
MOVERY,V1scan and FIRE. Such inflexibility prevents it from recognizing complex code changes,
which is a major issue discussed in RQ1 for Type-III vulnerabilities. This rigidity directly impacts
recall, as seen in RQ2 where approaches like VUDDY under-perform on Type-III vulnerabilities.
Beyond the inflexibility in S3-4, specific statement-level strategies (e.g., S1-4 and S1-6) and ab-

straction techniques (e.g., S2-2) are also among the top contributors to FNs across various similarity
types and patch scopes. Inaccurate signature generation in Stage 1 often misguides matching strate-
gies, particularly when hard matching, such as MD5 hashing and string exactly matching. Likewise,
overly generalized signatures in Stage 2 can obscure sensitive vulnerability-related identifiers, fur-
ther increasing FNs. These challenges in Stages 1 and 2 not only contribute to FPs but also indirectly
lead to FNs in the final matching stages. This underscores the need for more flexible matching strate-
gies and higher-quality signatures to improve overall detection performance.
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Fig. 2. Overview of AntMan

Finding 6: FPs and FNs are introduced in specific stages of existing RVD approaches. FPs
are significantly influenced by inaccurate abstraction (in S2-2), insufficient handling of multi-
function patches (in S1-3), and issues in statement-level signature generation (in S1-4, S1-5,
S1-6 and S1-7). On the other hand, FNs are primarily caused by the inability to detect subtle
variations at both the function level and statement level (in S3-2, S3-3 and S3-4).

4.5 Insights
With our FP and FN analysis, we obtain three key insights that can improve RVD’s effectiveness.
• I-1: Broad Context Awareness.A context-aware approach is crucial for handling multi-function
patches, especially those with global changes like macro adjustments. Expanding the detection
process to capture broader context across functions and global identifiers can help mitigate limi-
tations found in S1-3 and S2-2, improving precision and recall in RVD.

• I-2: Fine-Grained Signature. A fine-grained strategy in signature extraction, with a focus on
refined statement-level analysis, can address issues related to inadequate extraction (as seen in
S1-4 through S1-7) and overly broad abstractions (S2-2). This refined approach targets sensitive
contextual details, improving precision and recall in RVD.

• I-3: Flexible Matching. The need for flexible matching mechanisms is evident in addressing the
nuanced detection of RVs. Shifting from rigid, coarse-grained strategies towards more adaptable
matching strategies can overcome challenges in S3-2, S3-4 and S3-3, improving recall in RVD.

5 Approach
Based on these insights, we propose a novel approach, AntMan, to detect RVs more effectively. To
achieve I-1,AntMan begins by constructing a normalized call graph for both the original repository
(𝑟𝑒𝑝𝑜o) and the target repository (𝑟𝑒𝑝𝑜t). It first performs a syntactic normalization, and then gen-
erates call graphs 𝑁𝐶𝐺 based on the patch (𝑝𝑎𝑡 ) of the original vulnerability, allowing to trace
broad context for vulnerability spread. To achieve I-2, AntMan traces the sensitive variables across
inter-procedural taint analysis as well as intra-procedural dependency slicing to generate the RV
signatures, representing as comprehensive inter-procedural code property clusters 𝐼𝐶𝑃𝐶 , to provide
a detailed understanding of RVs. To achieve I-3, AntMan applies a graph matching technique
enhanced by a code language model, allowing for adaptive and nuanced detection of RVs. To
implement the three goals, AntMan works in the following five steps as shown in Figure 2.
(1) Original Normalized Call Graph Construction. Taking 𝑝𝑎𝑡 as an input, AntMan identifies

the vulnerable version and the fixed version of 𝑟𝑒𝑝𝑜o, denoted as 𝑟𝑒𝑝𝑜pre and 𝑟𝑒𝑝𝑜post. Then, it
normalizes macros, control blocks, statements and operators of 𝑟𝑒𝑝𝑜pre (resp. 𝑟𝑒𝑝𝑜post). Based
on the normalized repositories, AntMan constructs normalized call graph (𝑁𝐶𝐺) for 𝑟𝑒𝑝𝑜pre
(resp. 𝑟𝑒𝑝𝑜post) based on 𝑝𝑎𝑡 , denoted as 𝑁𝐶𝐺pre (resp. 𝑁𝐶𝐺post).

(2) Original Abstracted ICPC Construction. AntMan compares the functions in 𝑁𝐶𝐺pre and
𝑁𝐶𝐺post to generate a normalized patch 𝑝𝑎𝑡𝑛𝑜𝑟𝑚 . Starting from modified functions in 𝑝𝑎𝑡𝑛𝑜𝑟𝑚 ,
it performs fine-grained inter-procedural taint path and intra-procedural dependency path
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extraction on 𝑁𝐶𝐺pre (resp. 𝑁𝐶𝐺post), generating vulnerable signature and fixed signature after
type-sensitive abstraction, denoted as 𝐼𝐶𝑃𝐶pre (resp. 𝐼𝐶𝑃𝐶post).

(3) Mapping & Target Normalized Call Graph Construction. AntMan maps functions, modi-
fied statements, and variables from 𝑁𝐶𝐺pre (resp. 𝑁𝐶𝐺post) to 𝑟𝑒𝑝𝑜t. Given mapped functions, it
constructs the potential vulnerable (resp. fixed) call graphs, denoted as 𝑁𝐶𝐺 ′

pre (resp. 𝑁𝐶𝐺 ′
post).

(4) TargetAbstracted ICPCConstruction.Givenmapped statements and variables,AntMan con-
structs the inter-procedural taint path and intra-procedural dependency path, and then con-
structs the potential vulnerable (resp. fixed) signature, denoted as 𝐼𝐶𝑃𝐶′

pre (resp. 𝐼𝐶𝑃𝐶′
post).

(5) RV Similarity Calculation. AntMan vectorizes each statement and edge within 𝐼𝐶𝑃𝐶 , assign-
ing weights according to their proximity to modified statements in 𝑟𝑒𝑝𝑜o and the corresponding
mapped modified statements in 𝑟𝑒𝑝𝑜t. It then calculates the similarity between 𝐼𝐶𝑃𝐶pre and
𝐼𝐶𝑃𝐶′

pre as well as between 𝐼𝐶𝑃𝐶post and 𝐼𝐶𝑃𝐶′
post to identify the matched vulnerable clusters

and the matched fixed clusters. If the proportion of matched vulnerable clusters exceeds a
threshold while the proportion of matched fixed clusters remains below a threshold, 𝑟𝑒𝑝𝑜t is
identified as vulnerable and a potential RV is detected.

5.1 Original Normalized Call Graph Construction
Normalization standardizes code syntax and semantics, which can recover the hidden vulnerability-
related elements while reducing the impact of stylistic or minor structural differences, ensuring
that only substantive changes are highlighted. Besides, function calls reveal critical dependencies,
allowing to trace potential pathways for vulnerability spread by identifying how functions interact.

5.1.1 Original Repository Normalization. Beyondmerely removing whitespace and line breaks from
functions, as in traditional RVD approaches, AntMan performs a comprehensive normalization on
𝑟𝑒𝑝𝑜pre (resp. 𝑟𝑒𝑝𝑜post), from coarse-grained to fine-grained adjustments across four main steps.
(1) Macro Expansion. AntMan begins by iteratively processing include statements in each file

within 𝑟𝑒𝑝𝑜pre (resp. 𝑟𝑒𝑝𝑜post) to identify dependencies. Macro definitions from these files are
consolidated into a dedicated header file, pre.h (resp. post.h), respectively. Subsequently,
AntMan expands macros across all files, including dependencies, by GCC’s pre-compilation
instruction gcc -E -w -include file.h file.c -o file.c. This expansion covers statement
hunks, statements, variables, and constants, ensuring consistency across the repository.

(2) Control Block Standardization. AntMan removes dead control blocks (e.g., while(false)
and if(0)) from each function. It expands bodies of pseudo-loops like do-while(0). AntMan
also converts all for statements into while statements to achieve consistency in control flow
representation based on C11 standard documentation [28].

(3) Assignment Statement Deconstruction and Permutation. AntMan separates compound
assignment statements (containing both declaration and assignment) into distinct declaration
and assignment statements. It reorders all declarations to the beginning of their respective
scopes, arranging data types (e.g., string, int) and variable names alphabetically for uniformity.

(4) Operator Rewriting. AntMan standardizes operators by reordering operands to canonical
forms (e.g., transforming > into <), and unifies conditional expressions within for and while
loops. Additionally, AntMan expands hybrid operators (e.g., +=, -=, >=) into their standard
equivalents, covering a set of 13 common operator transformations.

5.1.2 Patch-Based Call Graph Construction. AntMan performs selective source code extraction by
starting with the modified files and recursively following their include dependencies (via include
statements) to gather relevant source files, and generates partial call graphs using Joern [31] to ad-
dress its scalability limitation when analyzing large repositories. However, such call graphs still
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include many functions and call relations unrelated to the specific vulnerability, which can compli-
cate our analysis. Hence, AntMan restricts the call graph by isolating only those functions directly
affected by the patch and their callees, imposing a call depth limit of three during the call graph
construction. This limit aligns with typical vulnerability propagation patterns (around 2.8 [21]).
Through macro expansion, AntMan recovers hidden calls within macros, enhancing the call

graph with previously obscured relations. The resulting patch-based normalized call graphs are de-
noted as 𝑁𝐶𝐺pre and 𝑁𝐶𝐺post. Each 𝑁𝐶𝐺 is defined by a tuple ⟨𝑁𝐹, 𝑁𝐸⟩, where 𝑁𝐹 represents the
set of functions, and 𝑁𝐸 represents the set of call relations. Each relation 𝑛𝑒 ∈ 𝑁𝐸 is represented
by a pair ⟨𝑛𝑓𝑖 , 𝑛𝑓𝑗 ⟩, with 𝑛𝑓𝑖 as the caller function and 𝑛𝑓𝑗 as the callee function.

5.2 Original Abstracted ICPC Construction
Inter-procedural paths trace variable flows across functions, crucial for understanding vulnerabili-
ties that spread through interactions among functions. Meanwhile, intra-procedural paths focus on
individual functions, extracting dependency chains directly tied to modified statements. By inte-
grating both paths during signature generating, AntMan captures both the broader vulnerability
impacts across functions and the finer, localized dependencies within functions. AntMan first runs
git diff on modified functions in 𝑁𝐹pre and 𝑁𝐹post, then generates a normalized patch (𝑝𝑎𝑡𝑛𝑜𝑟𝑚)
that recovered hidden statements and variables.

5.2.1 Original Inter-Procedural Taint Path Extraction. AntMan first identifies variable changes at
both entry points (function declarations) and exit points (function calls, returns, exception handling,
and their dominating control statements) within each modified function in 𝑝𝑎𝑡𝑛𝑜𝑟𝑚 . Using Tree-
sitter [35], AntMan marks variables as sensitive when they undergo modifications (including
renaming, replacement, addition, or deletion) at these critical points.

For each identified sensitive variable in the pre-patch (and corresponding post-patch) function,
AntMan regards the variable as a sink, and performs backward taint analysis to trace statements
influencing these variables’ values, extending into caller functions. This process repeats iteratively
until variables are unreachable in the caller or the caller has no further callers in𝑁𝐶𝐺 . Subsequently,
AntMan regards the variable as a source, and conducts forward taint analysis to track how these
variables impact other statements, extending into callee functions iteratively until the variables are
unreachable or the callee has no further callees in 𝑁𝐶𝐺 . The resulting paths are termed taint paths,
denoted as 𝑝 interpre (resp. 𝑝 interpost ).

5.2.2 Original Intra-Procedural Dependency Path Extraction. AntMan first identifies hunk changes
by processing modified hunks (i.e., contiguous blocks of added or deleted statements) in each mod-
ified function in 𝑝𝑎𝑡𝑛𝑜𝑟𝑚 . Similar to sensitive variables identification in Section 5.2.1, AntMan
detects sensitive variables (i.e., renamed, replaced, added, and deleted variables) in modified hunks.
Then, AntMan employs Joern [31] for forward and backward data dependency and control depen-
dency slicing based on the program dependence graph (PDG), following MVP’s slicing criteria [49].
However, unlikeMVP, which applies slicing to all modified statements and structures, AntMan
narrows the scope by focusing exclusively on sensitive variables. Furthermore, AntMan extends
this definition of sensitive variables to include structure fields. This selective approach results in
intra-procedural dependency paths, denoted as 𝑝 intrapre (resp. 𝑝 intrapost ). When no variable or structure
field is changed, AntMan defaults to the full dependency analysis approach used by MVP.

5.2.3 Original Abstracted ICPC Construction. AntMan applies type-sensitive abstraction to each
statement in 𝑝 interpre and 𝑝 intrapre (resp. 𝑝 interpost and 𝑝

intra
post ) to enhance established RVD abstraction tech-

niques. When data type changes are detected, AntMan preserves the original data types to capture
vulnerabilities sensitive to type changes (e.g., integer overflow). Next, AntMan merges 𝑝 interpre with
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Algorithm 1 Cluster Similarity Calculation
Input: 𝑖𝑐𝑝𝑐𝑥 , a 2-tuple of ⟨𝑆𝑥 , 𝐸𝑥 ⟩; 𝑖𝑐𝑝𝑐𝑦 , a 2-tuple of ⟨𝑆𝑦, 𝐸𝑦 ⟩ Output: similarity score of 𝑖𝑐𝑝𝑐𝑥 and 𝑖𝑐𝑝𝑐𝑦

Step 1: Compute Statement Edit Cost

1: for 𝑠𝑖 ∈ 𝑆𝑥 and 𝑠 𝑗 ∈ 𝑆𝑦 do

2: 𝑐𝑠 (𝑠𝑖 , 𝑠 𝑗 ) = 1 − 𝑠sim (𝑠𝑖 , 𝑠 𝑗 ) ∗
𝑤𝑖+𝑤𝑗

2
3: end for

Step 2: Compute Statement Set Edit Cost

4: 𝑐𝑆 (𝑆𝑥 , 𝑆𝑦 ) = Hungarian𝑆 (𝑆𝑥 , 𝑆𝑦 )
Step 3: Compute Edge Edit Cost

5: for 𝑒𝑖 ∈ 𝐸𝑥 and 𝑒 𝑗 ∈ 𝐸𝑦 do

6: 𝑐𝑒 (𝑒𝑖 , 𝑒 𝑗 ) = 1 − 𝑐𝑠 (𝑒𝑖 .𝑠1,𝑒 𝑗 .𝑠1 )+𝑐𝑠 (𝑒𝑖 .𝑠2,𝑒 𝑗 .𝑠2 )
2

7: end for

Step 4: Compute Edge Set Edit Cost

8: 𝑐𝐸 (𝐸𝑥 , 𝐸𝑦 ) = Hungarian𝐸 (𝐸𝑥 , 𝐸𝑦 )
Step 5: Compute Similarity of Cluster Pair

9: 𝑐𝑖𝑐𝑝𝑐 (𝑖𝑐𝑝𝑐𝑥 , 𝑖𝑐𝑝𝑐𝑦 ) =
𝑐𝑆 (𝑆𝑥 ,𝑆𝑦 )+

√
𝑐𝑆 (𝐸𝑥 ,𝐸𝑦 )

|𝑆𝑥 |+|𝑆𝑦 |
10: 𝑠𝑖𝑚𝑖𝑐𝑝𝑐 (𝑖𝑐𝑝𝑐𝑥 , 𝑖𝑐𝑝𝑐𝑦 ) = 1 − 𝑐𝑖𝑐𝑝𝑐 (𝑖𝑐𝑝𝑐𝑥 , 𝑖𝑐𝑝𝑐𝑦 )
11: Return 𝑠𝑖𝑚𝑖𝑐𝑝𝑐 (𝑖𝑐𝑝𝑐𝑥 , 𝑖𝑐𝑝𝑐𝑦 )

𝑝 intrapre (resp. 𝑝 interpost with 𝑝 intrapost ) wherever shared statements exist, iteratively repeating this process
until no further merging is possible. The resulting structure is termed the inter-procedural code
property clusters (𝐼𝐶𝑃𝐶). The clusters derived from 𝑁𝐶𝐺pre and 𝑁𝐶𝐺post are represented as the
vulnerable signature 𝐼𝐶𝑃𝐶pre and the fixed signature 𝐼𝐶𝑃𝐶post, respectively.

5.3 Mapping & Target Normalized Call Graph Construction
AntMan first conducts the same normalization process as in Section 5.1, and then maps the func-
tions, modified statements and sensitive variables from 𝑁𝐶𝐺pre and 𝑁𝐶𝐺post to 𝑟𝑒𝑝𝑜t as follows.

(1) Normalized FunctionMapping.AntMan first performs macro expansion on the entire target
repository 𝑟𝑒𝑝𝑜t, and then maps modified functions from 𝑁𝐶𝐺pre and 𝑁𝐶𝐺post to 𝑟𝑒𝑝𝑜t using
SAGA [19], a clone detection tool optimized for high recall. Function-level clone detection is
conducted with a low similarity threshold of 0.2 to capture all potential matches. In cases where
multiple functions are matched, the one with the highest similarity score is selected.

(2) Normalized Modified Statement Mapping. AntMan maps each normalized changed state-
ment in the matched functions based on an edit distance threshold of 0.55, as suggested by
previous work [8]. Since multiple candidate statements may exist within the matched functions,
AntMan applies forward and backward dependency slicing on each candidate to identify the
matched statement with the most similar paths using edit distance comparisons.

(3) Sensitive Variables Mapping. Sensitive variables identified in 𝑟𝑒𝑝𝑜o may be difficult to match
due to changes like renaming, reordering, addition, or deletion. To address this, AntMan con-
ducts a taint analysis on each variable within the mapped statements, achieving precise one-to-
one mapping of variables despite these modifications.

Based on the mapped functions, AntMan constructs potential vulnerable and fixed normalized
call graph (denoted as 𝑁𝐶𝐺 ′

pre and 𝑁𝐶𝐺 ′
post, respectively) in the same way in Section 5.1.

5.4 Target Abstracted ICPC Construction
Givenmappedmodified statements and sensitive variables,AntMan constructs potential vulnerable
and fixed signature (denoted as 𝐼𝐶𝑃𝐶′

pre and 𝐼𝐶𝑃𝐶′
post, respectively) in the same way in Section 5.2.

5.5 RV Similarity Calculation
5.5.1 Cluster Similarity Calculation. 𝐼𝐶𝑃𝐶 consists of several clusters, and each cluster is denoted as
𝑖𝑐𝑝𝑐 . Each 𝑖𝑐𝑝𝑐 is represented as a tuple ⟨𝑆, 𝐸⟩, where 𝑆 is the set of statements and 𝐸 is the set of taint
or dependency edges. Each edge 𝑒 ∈ 𝐸 is a pair ⟨𝑠1, 𝑠2⟩, where 𝑠1 is the source statement and 𝑠2 is
the destination statement. AntMan leverages UniXcoder [13], a cross-modal language model, to
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Table 5. Results of Our Effectiveness Evaluation

Type-I Type-II

Pre. Rec. F1. SOTA Pre. Rec. F1. SOTA

AntMan
S 0.89 (↑0.19) 0.83 (–) 0.86 (↑0.10) VUDDY 0.93 (↑0.07) 0.87 (↑0.28) 0.90 (↑0.20) VUDDY
M 0.79 (↑0.17) 0.90 (↓0.01) 0.84 (↑0.10) VUDDY 0.84 (↑0.29) 0.86 (↑0.03) 0.85 (↑0.18) VUDDY
S∪M 0.86 (↑0.19) 0.85 (–) 0.85 (↑0.10) VUDDY 0.90 (↑0.18) 0.86 (↑0.20) 0.88 (↑0.19) VUDDY

Type-III All

Pre. Rec. F1. SOTA Pre. Rec. F1. SOTA

AntMan
S 0.87 (↑0.23) 0.84 (↑0.46) 0.85 (↑0.37) FIRE 0.88 (↑0.21) 0.84 (↑0.37) 0.86 (↑0.31) FIRE
M 0.80 (↑0.14) 0.85 (↑0.28) 0.82 (↑0.21) FIRE 0.80 (↑0.16) 0.86 (↑0.38) 0.83 (↑0.28) FIRE
S∪M 0.83 (↑0.18) 0.84 (↑0.36) 0.84 (↑0.29) FIRE 0.84 (↑0.18) 0.85 (↑0.33) 0.84 (↑0.26) FIRE

convert statements into vectors. After normalizing these vectors with L2 norm, it computes state-
ment similarities using cosine similarity, ensuring accurate comparison of code semantics. Based on
the statement similarities, the similarity between 𝑖𝑐𝑝𝑐𝑥 and 𝑖𝑐𝑝𝑐𝑦 from 𝐼𝐶𝑃𝐶pre and 𝐼𝐶𝑃𝐶′

pre (re-
spectively 𝐼𝐶𝑃𝐶post and 𝐼𝐶𝑃𝐶′

post) is calculated following the five steps, as shown in Algorithm 1.
Inspired by the findings of Cui et al. [5] that statements farther from the root (containing sensitive

identifiers) in a dependency path have less impact on the vulnerability, each statement’s weight𝑤 is
set to 1

𝑑+1 , where 𝑑 is the distance to the nearest statement with sensitive variables in 𝑖𝑐𝑝𝑐 . The edit
cost between two statements within 𝑖𝑐𝑝𝑐𝑥 and 𝑖𝑐𝑝𝑐𝑦 is then calculated with this weighting (Line 2
of Algorithm 1). AntMan computes the weighted edit cost of statements within 𝑖𝑐𝑝𝑐𝑥 and 𝑖𝑐𝑝𝑐𝑦
using Hungarian matching, as described by Cui et al. [5] (Line 4). Similarly, the edge edit costs and
edge set edit costs are computed (Lines 6 and 8), based on the average similarity between the source
and target statements in each edge. Finally, AntMan calculates the similarity between 𝑖𝑐𝑝𝑐𝑥 and
𝑖𝑐𝑝𝑐𝑦 by aggregating the costs of statements and edges (Lines 9 and 10). A similarity score above
the threshold 𝑡ℎvul for 𝑖𝑐𝑝𝑐𝑥 and 𝑖𝑐𝑝𝑐𝑦 from 𝐼𝐶𝑃𝐶pre and 𝐼𝐶𝑃𝐶′

pre indicates a vulnerable cluster pair
𝑖𝑐𝑝𝑐vul, while a similarity score above the threshold 𝑡ℎfix for 𝑖𝑐𝑝𝑐𝑥 and 𝑖𝑐𝑝𝑐𝑦 from 𝐼𝐶𝑃𝐶post and
𝐼𝐶𝑃𝐶′

psot marks a fixed cluster pair 𝑖𝑐𝑝𝑐fix.

5.5.2 RVDetection. Following Equation 1 and 2, if the proportion of vulnerable cluster pairs exceeds
𝑝𝑟𝑜vul and the proportion of fixed cluster pairs remains below 𝑝𝑟𝑜fix, 𝑟𝑒𝑝𝑜t is flagged as vulnerable
and an RV is detected; otherwise, 𝑟𝑒𝑝𝑜t is considered as not containing the RV.

|𝑖𝑐𝑝𝑐vul |
|𝐼𝐶𝑃𝐶pre .𝑖𝑐𝑝𝑐 |

≥ 𝑝𝑟𝑜vul (1)
|𝑖𝑐𝑝𝑐fix |

|𝐼𝐶𝑃𝐶post .𝑖𝑐𝑝𝑐 |
< 𝑝𝑟𝑜fix (2)

6 Evaluation
We design the following seven research questions to evaluate the effectiveness, efficiency and practi-
cal usefulness of AntMan.We conduct the experiments on amachinewith an Intel(R) Xeon(R) Silver
4314 CPU, a GeForce RTX 3090 GPU and 256 GB memory, running Ubuntu 22.04 OS.
• RQ4 Effectiveness Evaluation. How is the effectiveness of AntMan?
• RQ5Ablation Study.How is the contribution of each component to the effectiveness of AntMan?
• RQ6 Parameter Sensitivity Analysis. How do the configurable parameters affect AntMan?
• RQ7 Generality Evaluation. How is the generality of AntMan beyond our dataset?
• RQ8 0-Day Detection Capability. How is AntMan’s capability to detect 0-day vulnerabilities?
• RQ9 Efficiency Evaluation. How is the efficiency of AntMan?
• RQ10 Usefulness Evaluation. How is the practical usefulness of AntMan?

6.1 Effectiveness Evaluation (RQ4)
To evaluateAntMan’s effectiveness, we compared it against the best RVD approach for each similar-
ity type and patch scope, as denoted by “SOTA” in Table 5. We used F1-score as the primary metric to
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Table 6. Results of Our Ablation Study

w/o 𝑛𝑜𝑟𝑚. w/o 𝑝𝑖𝑛𝑡𝑟𝑎 w/o 𝑝𝑖𝑛𝑡𝑒𝑟 w/o 𝑎𝑏𝑠. w/o 𝑤 w/ 𝐿𝐷. w/𝐶𝑜𝑑𝑒𝐵𝐸𝑅𝑇 w/ 𝐿1.

Pre. 0.81 (↓0.03) 0.64 (↓0.20) 0.67 (↓0.17) 0.79 (↓0.05) 0.73 (↓0.11) 0.69 (↓0.15) 0.74 (↓0.10) 0.73 (↓0.11)
Rec. 0.76 (↓0.09) 0.74 (↓0.11) 0.76 (↓0.09) 0.77 (↓0.08) 0.79 (↓0.06) 0.80 (↓0.05) 0.83 (↓0.02) 0.81 (↓0.04)
F1. 0.78 (↓0.07) 0.69 (↓0.16) 0.71 (↓0.14) 0.78 (↓0.07) 0.76 (↓0.09) 0.74 (↓0.11) 0.78 (↓0.07) 0.77 (↓0.08)

determine the best-performing approach, given its comprehensive measure of both precision and re-
call. According to Table 2,VUDDY is the best RVD approach for Type-I and Type-II clones across both
S andM; and FIRE is the best RVD approach for Type-III and all clones across both S andM.
Overall Analysis.When considering all types of clones and patch scopes, AntMan achieves

the highest precision of 0.84 and recall of 0.85, leading to the highest F1-score of 0.84. AntMan
outperforms the best state-of-the-art FIRE by 0.18 (27%) in precision, 0.33 (63%) in recall, and 0.26
(45%) in F1-score, demonstrating substantial improvements over the state-of-the-arts. For Type-I
clones, AntMan has an F1-score of 0.86 for S, with an improvement by 0.10 (13%) and 0.84 for
M with an improvement by 0.10 (14%), surpassing the best state-of-the-art VUDDY. For Type-II
clones, AntMan attains an even higher F1-score of 0.90 for S, with an improvement by 0.20 (29%)
and 0.85 forM, with an improvement by 0.18 (27%), surpassing the best state-of-the-art VUDDY.
For Type-III clones, which are the most challenging and the largest proportion in RVD, AntMan
achieves the highest precision of 0.83 and recall of 0.84, leading to the highest F1-score of 0.84.
AntMan significantly outperforms the best state-of-the-art FIRE by 0.18 (28%) in precision, 0.36
(75%) in recall, and 0.29 (53%) in F1-score.

FP/FN Analysis. For our constructed dataset, AntMan generates 721 FPs and 698 FNs. We sum-
marize four major reasons for them. First, in the absence of changed variables,AntMan constructs a
dependency pathwithout sensitive variables, resulting in irrelevant dependencies, which leads to FPs
and FNs. Second, original vulnerabilities may have different fixing logics across branches, which are
not all captured by the fixed signatures, leading to FNs. Third, AntMan uses precompiled instruc-
tions for macro expansion, and some macros incorporate compilation optimizations in their seman-
tics, introducing unrelated semantic information to the signatures during macro expansion, which
leads to FPs and FNs. Fourth, AntMan leverages Joern to perform dependency slicing, but the
inaccurate slicing of Joern sometimes leads to FPs and FNs.

Summary: AntMan achieves the highest precision of 0.84 and recall of 0.85, leading to the
highest F1-score of 0.85 across all clone types and patch scopes, outperforming the best state-
of-the-art FIRE by 0.18 (27%) in precision, 0.33 (63%) in recall, and 0.26 (45%) in F1-score, demon-
strating substantial improvements over the state-of-the-arts. For Type-III clones, which are
the most challenging and the largest proportion in RVD, AntMan significantly outperforms
FIRE by 0.18 (28%) in precision, 0.36 (75%) in recall, and 0.29 (53%) in F1-score.

6.2 Ablation Study (RQ5)
We created eight ablated versions of AntMan, i.e., (1) constructing call graphs without normaliza-
tion (w/o 𝑛𝑜𝑟𝑚.); (2) constructing dependency paths without sensitive variables (w/o 𝑝𝑖𝑛𝑡𝑟𝑎); (3) con-
structing 𝐼𝐶𝑃𝐶 without inter-procedural taint paths (w/o 𝑝𝑖𝑛𝑡𝑒𝑟 ); (4) constructing 𝐼𝐶𝑃𝐶 without
abstraction (w/o𝑎𝑏𝑠.); (5) constructing 𝐼𝐶𝑃𝐶 without weights (w/o𝑤 ); (6) replacing UniXcoder in RV
similarity calculation with Levenshtein distance (w/ 𝐿𝐷.); (7) replacing UniXcoder with CodeBERT
(w/ 𝐶𝑜𝑑𝑒𝐵𝐸𝑅𝑇 ); and (8) replacing L2 norm in RV similarity calculation with L1 norm (w/ 𝐿1.).

Table 6 reports the results of our ablation study. Overall, both precision and recall decrease across
the eight ablated versions. AntMan w/o 𝑝𝑖𝑛𝑡𝑟𝑎 exhibits the most substantial precision drop of 0.20
and the most significant recall decrease of 0.11, resulting in a notable F1-score drop of 0.16, empha-
sizing the importance of dependency paths involving sensitive variables. Meanwhile, AntMan w/o
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(a) 𝑡ℎ𝑣𝑢𝑙 (b) 𝑡ℎ𝑓 𝑖𝑥 (c) 𝑝𝑟𝑜𝑣𝑢𝑙 (d) 𝑝𝑟𝑜 𝑓 𝑖𝑥

Fig. 3. Results of Our Parameter Sensitivity Analysis

Table 7. Results of Our Generality Evaluation

VUDDY MVP MOVERY V1scan FIRE SySeVR DeepDFA AntMan

TP 287 244 438 255 340 106 675 722
FP 73 170 206 92 137 146 348 137
FN 526 569 375 558 473 707 138 91
Pre. 0.80 0.59 0.68 0.73 0.71 0.42 0.66 0.84

Rec. 0.35 0.30 0.54 0.31 0.42 0.13 0.83 0.88

F1. 0.49 0.40 0.60 0.44 0.53 0.18 0.73 0.86

𝑝𝑖𝑛𝑡𝑒𝑟 suffers the second largest precision drop of 0.17 with a large recall drop of 0.09, leading to the
second largest F1-score drop of 0.14, revealing the importance of inter-procedural taint paths. In
addition, ablating other components of AntMan consistently results in performance degradation,
demonstrating the value of these components in maintaining AntMan’s effectiveness.

Summary: Ablating all components of AntMan results in substantial effectiveness drops.
Specifically, ablating dependency paths of sensitive variables (w/o 𝑝𝑖𝑛𝑡𝑟𝑎) suffers the largest
F1-score drop of 0.16, while constructing 𝐼𝐶𝑃𝐶 without inter-procedural taint paths (w/o
𝑝𝑖𝑛𝑡𝑒𝑟 ) results in the second largest F1-score drop of 0.14.

6.3 Parameter Sensitivity Analysis (RQ6)
Four parameters are configurable in AntMan, including the threshold 𝑡ℎvul for vulnerable 𝑖𝑐𝑝𝑐
cluster pair and 𝑡ℎfix for fixed 𝑖𝑐𝑝𝑐 cluster pair (see Section 5.5.1), and the proportion threshold 𝑝𝑟𝑜vul
for vulnerable detection and 𝑝𝑟𝑜fix for fixed detection (sec Section 5.5.2). We reconfigured one
parameter by a step of 0.1 and fixed the other three to evaluate affect to effectiveness of AntMan.
Figure 3 reports the results. We can observe that these parameters should be configured to a value
that is larger than 0.5 for a better performance. AntMan performs the best with 𝑡ℎvul set to 0.6,
𝑡ℎfix set to 0.6, 𝑝𝑟𝑜vul set to 0.7, and 𝑝𝑟𝑜fix set to 0.7, which is the configuration used in other RQs.

Summary: AntMan performs the best with 𝑡ℎvul, 𝑡ℎfix, 𝑝𝑟𝑜vul, 𝑝𝑟𝑜fix set to 0.6, 0.6, 0.7, 0.7.

6.4 Generality Evaluation (RQ7)
Generality Dataset Construction. AntMan was designed based on insights from our empirical
study. To evaluate its generality, we constructed a new dataset following the methodology intro-
duced in Section 4.1.2. Specifically, we collected the newest C/C++ vulnerabilities reported between
1 January 2024 and 7 August 2024, gathering a set of 186 vulnerabilities with their corresponding
patches. We then used these original vulnerability patches as inputs to detect RVs by the existing
RVD approaches and AntMan. After sample confirmation and expansion, we finally gathered 813
positive and 260 negative samples with Cohen’s Kappa coefficient of 0.958 and 0.969, respectively.

Baseline Selection. We selected the five RVD approaches previously discussed, along with two
state-of-the-art, general-purpose vulnerability detection approaches, i.e., SySeVR [22] andDeepDFA
[32], both of which employ learning-based models. We trained these models on our ground truth
dataset and evaluated their performance using the new dataset to ensure a fair comparison.
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Table 8. Results of the 0-Day Detection Capability

VUDDY MVP V1scan MOVERY FIRE SySeVR DeepDFA AntMan

#. (Proportion) 0 (0%) 42 (51%) 0 (0%) 24 (29%) 29 (35%) 6 (7%) 65 (79%) 73 (89%)

Table 9. Results of Our Efficiency Evaluation

VUDDY MVP MOVERY V1scan FIRE AntMan

Time (s) 45.3 195.1 187.3 53.9 112.9 223.1

Overall Results As shown in Table 7, for the new dataset, AntMan achieved a precision of 0.84,
a recall of 0.88, and an F1-score of 0.86. When compared to existing RVD approaches, AntMan
showed significant improvements in precision by 0.16 (24%), in recall by 0.34 (63%), and in F1-score
by 0.26 (43%). For learning-based vulnerability detection approaches, SySeVR achieved a precision
of 0.42 and a recall of 0.13, leading to an F1-score of 0.18, while DeepDFA had a precision of 0.66
and a recall of 0.83, resulting in an F1-score of 0.73. AntMan outperformed the best one DeepDFA
by 0.18 (27%) in precision, 0.05 (6%) in recall, and 0.13 (18%) in F1-score.

Summary: AntMan outperformed the best learning-based approach DeepDFA by 27% in
precision, 6% in recall, and 18% in F1-score. Compared with the best RVD approaches,AntMan
again showed superior performance with an improvement by 24% in precision, 63% in recall,
and 43% in F1-score, demonstrating AntMan’s effectiveness as the leading approach among
all RVD approaches.

6.5 0-Day Detection Capability (RQ8)
Following the same procedure as in Section 4.2, we obtained 46 0-day vulnerabilities in our generality
dataset. To assess the 0-day vulnerability detection capability of AntMan, we compared AntMan
with the five RVD approaches and the two learning-based approaches in RQ7 in terms of the pro-
portion of detected 0-day vulnerabilities in our ground truth dataset and generality dataset.

As reported in Table 8, among the 82 0-day vulnerabilities in our ground truth dataset and general-
ity dataset, AntMan detected 73 (89%) 0-day vulnerabilities, outperforming the best learning-based
approach by a significant margin of 13%. Besides, all other RVD approaches showed poor perfor-
mance in detecting 0-day vulnerabilities, with AntMan leading by a notable improvement over the
best one, indicating AntMan’s superior capability in detecting RVs with significant logic difference.

Summary:AntMan successfully detected 73 (89%) of the 0-day vulnerabilities, outperforming
the best state-of-the-art approach by a significant margin of 13%.

6.6 Efficiency Evaluation (RQ9)
Wemeasured the average time taken to detect RVs in a single repository using all the original vulner-
abilities collected in Section 4.1.2. Here, we excluded the time of original signature generation for all
the approaches because this step can be done offline. As shown in Table 9, AntMan took 223.1 sec-
onds on average to detect RVs in a single repository, which was longer than the time of the five
existing RVD approaches. Extremely, AntMan took 27,623 seconds on the largest repository (i.e.,
Linux v6.5.6) which has 17.2 million lines of code, whereas the fastest approach VUDDY took 21,102
seconds. This increased time overhead is primarily due to our 𝑁𝐶𝐺 construction facilitated by
Joern, but AntMan still scales to large repositories. We believe that this time cost is acceptable
given AntMan’s high effectiveness for RVD.

Summary: AntMan took 223.1 seconds on average to detect RVs in one repository.
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6.7 Usefulness Evaluation (RQ10)
For the RVs in our ground truth and generality dataset,AntMan have detected 4,520 1/N-day vulner-
abilities and 73 0-day vulnerabilities. We notified target repositories of 274 1/N-day vulnerabilities
and all 0-day vulnerabilities via issue reports, pull requests or emails. Among these, 188 1/N-day
vulnerabilities have been confirmed and fixed, 52 1/N-day vulnerabilities have been confirmed and
promised to be fixed in the next released version, and the other 34 1/N-day vulnerabilities are still
under confirmation. Notably, 67 0-day vulnerabilities have been confirmed and fixed due to their
high-risk nature, and the other 6 0-day vulnerabilities are still in progress. As a 0-day vulnerability
can exist in multiple versions of a repository, we deduplicated our detected 0-day vulnerabilities to
isolate 21 unique 0-day vulnerabilities, which were subsequently reported to CVE. Out of these, 5
were successfully assigned a CVE identifier and other 16 are pending to be confirmed.

To further evaluate the usefulness of AntMan, we conducted a human study by surveying 22 ac-
tive project maintainers whose projects had previously been analyzed by AntMan. 10 (45%) of the
surveyed maintainers provided detailed feedback. All respondents confirmed that AntMan en-
hanced their projects’ security and expressed interest in incorporating AntMan into their develop-
ment workflow to conduct regular scanning. In terms of improvement suggestions, they provided
two key insights: (1) the availability of patches for publicly disclosed vulnerabilities can be an issue,
and there is a need for a larger number of valid patches to enrich the signature database; and (2)
the reports generated by AntMan would be more useful if they included Proof of Concepts (PoCs)
for RVs, as this would help expedite the confirmation and remediation process.

Summary:We notified target repositories of 274 1/N-day vulnerabilities with 188 of them con-
firmed, and notified target repositories of 73 0-day vulnerabilities with 67 of them confirmed.
We reported 21 0-day vulnerabilities with 5 CVE identifiers assigned. Our human study vali-
dated AntMan’s practical value and provided constructive feedback for future improvements.

7 Limitations
First, AntMan currently accepts only one single patch as the input, which may lead to miss-
ing patch features in repositories where patches on different branches differ significantly[47].
Therefore, a multi-branch analysis capability would provide more comprehensive detection. Second,
AntMan does not currently consider patches that involve only external function modifications, e.g.,
macro or structural changes, as these are generally simpler and involve minimal functional impact.
However, some such changes could have security implications, suggesting the need for a broader
analysis scope. Third, we intentionally design AntMan at the source code level for scalability, lever-
aging Joern to conduct static analysis at the source code level. As a result, inaccuracies for dynamic
features like function pointers and virtual functions in Joern might negatively affect AntMan.
However, this is orthogonal to AntMan, and more advanced static analysis can be leveraged.
Finally, AntMan has been implemented for C/C++, and we plan to adapt it to other languages.

8 Conclusion and Data Availability
We conduct a large-scale empirical study and uncover three key insights (i.e., broad context
awareness, fine-grained signature, and flexible matching). Based on these insights, we develop a
novel approach AntMan, which demonstrates its effectiveness, generality and practical usefulness
through our extensive evaluation. The source code of AntMan is available at our website [34].
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