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ABSTRACT
Data-driven techniques are promising for automatically locating
and fixing bugs, which can reduce enormous time and effort for
developers. However, the effectiveness of these techniques heavily
relies on the quality and scale of bug datasets. Despite that emerging
approaches to automatic bug dataset construction partially provide
a solution for scalability, data quality remains a concern. Specifically,
it remains a barrier for humans to isolate the minimal set of bug-
inducing or bug-fixing changes, known as critical changes. Although
delta debugging (DD) techniques are capable of extracting critical
changes on benchmark datasets in academia, the efficiency and
accuracy are still limited when dealing with real-world bugs, where
code change dependencies could be overly complicated.

In this paper, we propose C2D2, a novel delta debugging ap-
proach for critical change extraction, which estimates the prob-
abilities of dependencies between code change elements. C2D2
considers the probabilities of dependencies and introduces a matrix-
based search mechanism to resolve compilation errors (CE) caused
by missing dependencies. It also provides hybrid mechanisms for
flexibly selecting code change elements during the DD process.
Experiments on Defects4J and a real-world regression bug dataset
reveal that C2D2 is significantly more efficient than the traditional
DD algorithm ddmin with competitive effectiveness, and signifi-
cantly more effective and more efficient than the state-of-the-art
DD algorithm ProbDD. Furthermore, compared to human-isolated
critical changes, C2D2 produces the same or better critical change
results in 56% cases in Defects4J and 86% cases in the regression
dataset, demonstrating its usefulness in automatically extracting
critical changes and saving human efforts in constructing large-
scale bug datasets with real-world bugs.
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1 INTRODUCTION
Locating and fixing bugs is a time-consuming and labor-intensive
task for developers. Data-driven techniques [18, 23, 25, 26] hold
promise in efficiently locating and automatically fixing bugs. How-
ever, the effectiveness of such techniques heavily relies on the qual-
ity and scale of bug datasets. Currently, real-world bug datasets [5,
34, 39, 43] are typically derived from actual commits in code repos-
itories, where some source code changes may be unrelated to the
bug, such as feature additions or refactorings. The quality of bug
datasets depends on whether the minimum set of changes that
cause or fix bugs, also known as critical changes, is precisely an-
notated. Hence, efficiently identifying precise critical changes is
valuable for high-quality bug datasets.

Delta debugging (DD) [46] provides an automatic way to identify
critical changes for bugs based on testing feedback. The basic idea
is to apply or revert different portions of source code changes
before running the test code to check whether the program still
contains the bug (𝑇 ) or not (𝐹 ). A traditional DD implementation
is ddmin [47], which basically performs a binary search among all
elements. Although ddmin is capable of finding critical changes, the
computational overhead is enormous because numerous possible
combinations of change elements must be tested to decide whether
the combination contains critical changes. Various techniques [14,
15, 36] have been proposed to improve the efficiency of the original
ddmin. However, the core algorithm of ddmin was not changed.

ProbDD [44] is a new technical attempt different from ddmin,
which estimates the probabilities of code change elements being
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part of critical changes based on the history of test results. It is
reported as the state-of-the-art DD algorithm. Guided by the prob-
abilistic model, ProbDD chooses the change elements that are most
likely to be in the critical changes. ProbDD is highly efficient. How-
ever, it suffers from the assumption that the code change elements
are independent to each other. Unfortunately, this assumption does
not often hold in real-world code commits. The missing dependent
change elements cause compilation errors (CE), which ultimately
lead ProbDD to include more elements than expected (as will be
explained in Section 2.3).

To mitigate the problem of missing dependencies between code
change elements, grouping the elements that have dependencies
is a possible choice. Existing techniques, such as DDJ [14], can be
used to preprocess source code changes so that the grouped code
change elements are independent of each other. However, due to the
technical limit of program analysis, the reported dependencies are
neither sound nor complete, providing less reliable enhancement
to ProbDD.

Solving this dependency problem is not trivial. First, the proba-
bilistic model of ProbDD is inherently not designed for dealing with
CE because it has only one probability of a code change element
“contained in the critical change set”. When encountering CE, the
model has no choice but to increase the probability of the code
change elements in the complement set; otherwise, the reduction
process will stall. Second, ProbDD does not have a mechanism to
recognize or rectify dependencies between the code change ele-
ments, and thus cannot reduce the critical change set correctly in
the cases of unrevealed or incorrect dependencies.

Therefore, to achieve an improved balance between the efficiency
and accuracy of extracting critical changes of bugs, we seek a novel
DD approach that has the ability to (1) accurately and efficiently
select appropriate code change elements during DD iterations and
(2) not only utilize the dependencies between code change elements
but also rectify erroneous or missing ones to improve the accuracy
of DD results.

In this work, we propose C2D2 (inspired by the Star Wars charac-
ter R2-D2), a dependency-sensitive DD approach for critical change
extraction. It models and tracks the probability of dependencies
between code change elements and is able to resolve CE status by
adding and removing dependent elements based on the estimation
of the dependency probabilities. Specifically, we design a proba-
bility model to calculate the possibility of dependencies reported
by program analysis and propose a matrix representation to track
potential dependencies by filling and updating the probabilities.
We develop a matrix-based search mechanism to search for the
code change elements that are more likely to resolve CE. Moreover,
we employ hybrid strategies, including heuristics considering the
code structure and the number of times for which the code change
elements are selected, to improve the selection of code change
elements in the iterations of DD process.

In evaluation, we first evaluate the effectiveness and efficiency of
C2D2 against the traditional DD approach ddmin and the state-of-
the-art ProbDD1, using the Defects4J dataset [20] and a regression
bug dataset [39]. The results show that C2D2 is 28.74% and 17.13%

1The code-change-element-dependency detection algorithm provided by DDJ is used
in all approaches for a fair comparison.

more efficient in Defects4J and the regression dataset, respectively,
with little loss in the number of successful reductions, compared
to ddmin. Compared to ProbDD, it increases the number of opti-
mal reductions by 37.59% and improves the reduction rate by 14
percentage points (pts) in the regression dataset, with 4.38% im-
provement in efficiency. Second, we conduct an ablation study and
observe the contributions of each technical decision of C2D2. Third,
we compare the critical changes extracted by C2D2 with human-
isolated critical changes. We find that 56% cases in Defects4J and
86% cases in the regression dataset are the same as or better than
human-isolated ones. By examining the cases, we confirm that
C2D2 is helpful for automatically extracting critical changes when
constructing large-scale bug datasets.

In summary, this work makes the following contributions.

• We propose C2D2, a novel dependency-sensitive DD approach
to extracting critical changes of real-world bugs, which models
and tracks the dependencies between code change elements and
has the ability to rectify incorrect dependencies between code
change elements.

• We conduct experiments to demonstrate the improvement in
effectiveness and efficiency of C2D2 over existing DD techniques
on critical change extraction tasks.

• We implement the tool C2D2 and publicize the source code that
can be used to build large-scale bug datasets with automatically
annotated critical changes.

2 BACKGROUND AND MOTIVATING
EXAMPLE

We first introduce the concept of delta debugging and its usage
for critical change extraction. Then, we introduce the key idea of
probabilistic delta debugging. Finally, we discuss its limitation when
dealing with code elements that have unrevealed dependencies
through a motivating example.

2.1 Delta Debugging (DD)
DD is an automatic process to find a subset of elements while pre-
serving a certain property [14, 44, 47]. In critical change extraction,
the elements are the source code changes that can be counted in
terms of chunks, lines, or any specified units. The universe is all sub-
sets of the code changes, which we denote asX. Let 𝜙 : X→ {𝑇, 𝐹 }
be the function where 𝜙 (𝑋 ) tests whether the set of code change
elements 𝑋 ∈ X contains the critical changes (𝑇 ) or not (𝐹 ).

Specifically, for bug-inducing changes, the function 𝜙 (𝑋 ) is to
run the test that is related to the bug in the buggy revision by
reverting the code change elements in 𝑋 . If the test passes, 𝜙 (𝑋 ) =
𝑇 , meaning that 𝑋 contains the critical changes that induce the
bug. For bug-fixing changes, the function 𝜙 (𝑋 ) is to run the bug-
related test in the bug-fixing revision by reverting the code change
elements in 𝑋 . If the test fails, 𝜙 (𝑋 ) = 𝑇 , meaning that 𝑋 contains
the critical changes that fix the bug.

Extracting critical changes with DD can be formally formulated
as a task to find a smallest set of code change elements (i.e., Eq. 1).

𝑋 ∗ = argmin𝑋 ′∈X |𝑋 ′ | 𝑠 .𝑡 . 𝜙 (𝑋 ∗) = 𝑇 (1)
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CFLint

+ catch(StackOverflowError soe){…
+fireCFLintException(soe,…)…}

- fireCFLintException(final Exception e,…)
+ fireCFLintException(final Throwable e,…){
for (final CFLintExceptionListener p: …
p.exceptionOccurred(e, …)…}

interface CFLintExceptionListener

- exceptionOccurred(Exception e,…
+ exceptionOccurred(Throwable e,…

DefaultCFLintExceptionListener

- exceptionOccurred(final Exception e,…
+ exceptionOccurred(final Throwable e,…

𝑥4

𝑥6

𝑥5

𝑥14

call call

implements
missing

missing
𝑥6 ⟼ 𝑥4 𝑥14 ⟼ 𝑥5

𝑥5 ⟼ 𝑥14

Figure 1: An example of missing code change dependencies

In other words, a DD process is to search for the smallest non-
empty set 𝑋 ∗ of code changes that contains the critical changes by
reducing the running set 𝑋 ′.

2.2 Probabilistic Delta Debugging (ProbDD)
ProbDD proposes a probabilistic model that learns the probability
of each change element 𝑥𝑖 ∈ 𝑋 to be chosen in the running set. The
probability of each change element is calculated based on the test
results during the DD process. ProbDD selects a running set 𝑋 ′

from the set of all elements by iteratively eliminating the element
𝑥 𝑗 with the lowest probability until the expected gain starts to
decrease [44]. ProbDD maintains the probabilities by evaluating
𝜙 (𝑋 ′). If 𝜙 (𝑋 ′) = 𝑇 , the probabilities of all eliminated elements are
set to zero; otherwise, ProbDD increases the probabilities of the
eliminated elements. Details of the probability-increasing algorithm
can be found in the literature [44].

ProbDD distinguishes itself from traditional DD algorithms by
not relying on fixed partitions of the interesting element set, and
thus is able to flexibly and quickly focus on a small set of the
elements that has the highest probability of being the minimal set
𝑋 ∗. However, an important assumption of the probabilistic model
is that the elements under consideration are independent from each
other. If a code change element 𝐴 depends on another code change
element 𝐵, the probability of 𝐵 may be misleadingly increased when
the running set 𝑋 ′ contains 𝐴 but does not contain 𝐵 because the
result of𝜙 (𝑋 ′) will be 𝐹 due to a compilation error (CE). We present
the following motivating example to clarify this argument.

2.3 A Motivating Example
We present a bug-inducing commit2 to demonstrate how ProbDD
iterates to find the critical bug-inducing changes. We use DDJ to
group the preliminary code changes into independent change el-
ements by detecting the dependencies between code changes at
the granularity of the AST nodes. In this commit, 23 “independent”
code change elements, namely 𝑋 = {𝑥1, 𝑥2, ...𝑥23}, are identified.
However, due to the limitation of DDJ, three dependencies are
missing: 𝑥6 ↦→ 𝑥4, 𝑥14 ↦→ 𝑥5, and 𝑥5 ↦→ 𝑥14, where 𝑎 ↦→ 𝑏 de-
notes “element 𝑎 depends on element 𝑏”, which means that if the
change 𝑎 is reverted, 𝑏 must revert; otherwise CE will occur. Fig-
ure 1 details the elements 𝑥4, 𝑥5, 𝑥6, and 𝑥14. Code change element
𝑥4 introduces a catch block to catch StackOverflowError errors
and call fireCFLintException; 𝑥6 correspondingly changes the
type of parameter e of fireCFLintException from Exception to
Throwable to accept the new type StackOverflowError. We say
𝑥6 ↦→ 𝑥4 because if we revert 𝑥6 but do not revert 𝑥4, then the

2https://github.com/cflint/CFLint/commit/4731bf45805725bb1d3eac58f9fad8a4b8701f3f

x1 x2 x3 x4 x5 x6 x7 x8 x9 x14
0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15

1 x1 x2 x3 x4 x5 x6 x7 x8 x9 x14 F#
0.24 0.24 0.24 0.24 0.24 0.24 0.15 0.15 0.15 0.15

2 x1 x2 x3 x4 x5 x6 x7 x8 x9 x14 F#
0.24 0.24 0.24 0.24 0.24 0.24 0.32 0.32 0.32 0.32

3 x1 x2 x3 x4 x5 x6 x7 x8 x9 x14 F#
0.36 0.36 0.36 0.36 0.24 0.24 0.32 0.32 0.32 0.32

4 x1 x2 x3 x4 x5 x6 x7 x8 x9 x14 F#
0.36 0.36 0.36 0.36 0.4 0.4 0.52 0.32 0.32 0.32

5 x1 x2 x3 x4 x5 x6 x7 x8 x9 x14 F#
0.36 0.36 0.36 0.36 0.4 0.4 0.52 0.46 0.46 0.46

6 x1 x2 x3 x4 x5 x6 x7 x8 x9 x14 F
0.61 0.61 0.36 0.36 0.4 0.4 0.52 0.46 0.46 0.46

7 x1 x2 x3 x4 x5 x6 x7 x8 x9 x14 F#
0.61 0.61 0.61 0.61 0.4 0.4 0.52 0.46 0.46 0.46

8 x1 x2 x3 x4 x5 x6 x7 x8 x9 x14 F#
0.61 0.61 0.61 0.61 0.62 0.62 0.52 0.46 0.46 0.46

9 x1 x2 x3 x4 x5 x6 x7 x8 x9 x14 T
0.61 0.61 0.61 0.61 0.62 0.62 0.52 0 0 0.46

10 x1 x2 x3 x4 x5 x6 x7 x8 x9 x14 F#
0.61 0.61 0.61 0.61 0.62 0.62 0.52 0 0 1

11 x1 x2 x3 x4 x5 x6 x7 x8 x9 x14 T
0.61 0.61 0.61 0.61 0.62 0.62 0 0 0 1

12 x1 x2 x3 x4 x5 x6 x7 x8 x9 x14 F
1 0.61 0.61 0.61 0.62 0.62 0 0 0 1

13 x1 x2 x3 x4 x5 x6 x7 x8 x9 x14 F
1 1 0.61 0.61 0.62 0.62 0 0 0 1

14 x1 x2 x3 x4 x5 x6 x7 x8 x9 x14 F
1 1 1 0.61 0.62 0.62 0 0 0 1

15 x1 x2 x3 x4 x5 x6 x7 x8 x9 x14 F#
1 1 1 1 0.62 0.62 0 0 0 1

16 x1 x2 x3 x4 x5 x6 x7 x8 x9 x14 F#
1 1 1 1 1 0.62 0 0 0 1

17 x1 x2 x3 x4 x5 x6 x7 x8 x9 x14 T
1 1 1 1 1 0 0 0 0 1

Figure 2: An example illustrating the iterations of ProbDD

program would not compile because of the type incompatibility
between StackOverflowError and Exception. The dependencies
between 𝑥5 and 𝑥14 are missing because DDJ does not properly
treat class inheritance and interface implementation.

Figure 2 demonstrates part of the iteration process performed by
ProbDD3. Each iteration is numbered on the left side; the elements
in the running set 𝑋 ′ are marked in blue; the value below each
element is the probability calculated by ProbDD after each iteration;
the results of 𝜙 (𝑋 ′) are marked on the right side. Recalling that
ProbDD does not recognize compilation errors (CE), we add a hash
mark (#) after the 𝐹 if a CE occurs in that iteration. ProbDD first
initializes the probabilities of all elements to the same value 0.15.
Then it starts with a random selection of change elements as the
running set 𝑋 ′ ({𝑥7, 𝑥8, 𝑥9, 𝑥14}, marked dark green) in Iteration 1.
Since 𝑋 ′ does not include 𝑥5, dependency 𝑥14 ↦→ 𝑥5 is broken so
the program does not compile. However, ProbDD does not consider
the CE status but simply evaluates 𝜙 (𝑋 ′) to 𝐹 , and increases the
probabilities of 𝑥1 to 𝑥6 from 0.15 to 0.24. Subsequently, based on
the probabilities, ProbDD employs a greedy strategy to select 𝑥1
to 𝑥6 to be tested by 𝜙 in Iteration 2. Although 𝑋 ′ now contains

3For ease of understanding, we opt to omit some code change elements that are
unrelated to the missing dependencies.
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all elements in 𝑋 ∗, 𝜙 (𝑋 ′) is still evaluated as 𝐹# because 𝑥14 is not
in 𝑋 ′ and breaks 𝑥5 ↦→ 𝑥14. This misleads ProbDD to increase the
probabilities of the other elements from 0.15 to 0.32.

The similar thing happens in Iterations 3-5 and 7-8, where ProbDD
disregards CEs but only increases the probabilities of the change
elements.

In Iteration 9, the running set again contains all elements in 𝑋 ∗

(which we know later are {𝑥1, 𝑥2, 𝑥3}) and the compile succeeds, so
𝜙 (𝑋 ′) = 𝑇 . Then ProbDD sets the probability of 𝑥8 and 𝑥9 to zero
to exclude them from the running set. Now that the probabilities of
all elements exceed 0.5, ProbDD starts to remove only one element
in each iteration. Once 𝜙 (𝑋 ′) = 𝐹 (including CEs), the probability
of the removed element is updated to 1, causing the element to be
included in the result. We find that, in Iterations 10, 15, and 16, 𝑥14,
𝑥4 and 𝑥5 are erroneously included in the result set, which results
in a suboptimal critical change set {𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5, 𝑥14}.

In this example, we observe an ineffective DD process, yielding a
critical change set significantly larger than 𝑋 ∗ due to disregarding
change element dependencies and the subsequent erroneous test
results. In several iterations, the running set already contains𝑋 ∗ but
due to CEs, ProbDD is not able to correctly predict which elements
are in the critical change set. If CE could be resolved, certain non-
critical change elements would have been accurately excluded from
running set. For example, adding 𝑥14 or removing 𝑥5 in Iteration 2
could be a viable attempt.

3 THE DEPENDENCY-SENSITIVE APPROACH
3.1 Overview
The key idea of our approach is to model and keep track of the
dependencies between code change elements so that when CE is
encountered during DD process, the dependencies could be used to
add or remove code change elements so that CE could be resolved.
Moreover, the selection of code change elements during the DD
process is also specifically designed to maximize the possibility of
achieving the minimal critical change set.

Algorithm 1 presents an overview of our approach. The inputs
include a target revision 𝑉 and a set 𝑋 containing the code change
elements between revision 𝑉 and its previous revision 𝑉 − 1. The
output is the set of critical changes 𝑋 ∗ identified from 𝑋 .

It first initializes the dependencymatrix𝑀 with the dependencies
between any two elements in 𝑋 (Line 1; see Section 3.2.1). Then,
it samples a number of elements from 𝑋 as the initial running set
𝑋 ′ (Line 2; see Section 3.4.1). Next, it iterates to find the smallest
subset of𝑋 ′ that includes the critical changes by applying a greedy-
search based strategy with consideration of the probabilities of each
element being part of the critical changes. The iterations continue
until the termination criterion is satisfied (i.e., the probabilities of
all elements are either zero or one, or the time budget is reached).

Each iteration starts with predicting whether the testing re-
sult 𝜙 (𝑋 ′) is 𝐹 (Line 4). According to the monotony property [44,
46], which has been widely accepted in the literature, we predict
𝜙 (𝑋 ′) = 𝐹 if there is a super set of 𝑋 ′ whose testing result is
𝐹 .4 Otherwise, the prediction result is set to 𝑁𝑈𝐿𝐿, leading to a

4Strictly speaking, if there is a super set of 𝑋 ′ whose testing result is 𝐹 , we can only
predict 𝜙 (𝑋 ′ ) must not be𝑇 but could be 𝐹 or an unresolved status. Here, since we
will test the compilability later, assuming 𝜙 (𝑋 ′ ) = 𝐹 is acceptable.

Algorithm 1: Extracting Critical Changes with C2D2
Input :𝑉 , the target revision; 𝑋 , the code change elements

between𝑉 and𝑉 − 1
Output :𝑋 ∗, the critical changes

1 𝑀 = initialize_matrix(𝑋 ,𝑉 )
2 𝑋 ′ = sample_init_test_set(𝑋 )
3 repeat
4 𝑡𝑒𝑠𝑡_𝑟𝑒𝑠𝑢𝑙𝑡 = predict(𝑋 ′ )
5 if 𝑡𝑒𝑠𝑡_𝑟𝑒𝑠𝑢𝑙𝑡 == 𝑁𝑈𝐿𝐿 then
6 𝑖𝑠_𝐶𝐸 = compile_and_update_matrix(𝑉 ,𝑋 ′, 𝑀 )
7 if 𝑖𝑠_𝐶𝐸 == 𝑇𝑟𝑢𝑒 then
8 𝑋 ′

𝑓
= resolve_CE(𝑉 ,𝑋 ′, 𝑋,𝑀 )

9 𝑡𝑒𝑠𝑡_𝑟𝑒𝑠𝑢𝑙𝑡 = 𝜏 (𝑉 ,𝑋 ′
𝑓
)

10 else
11 𝑡𝑒𝑠𝑡_𝑟𝑒𝑠𝑢𝑙𝑡 = 𝜏 (𝑉 ,𝑋 ′ )
12 𝑋 ′ = ( |𝑋 ′

𝑓
| < |𝑋 ′ | ? 𝑋 ′

𝑓
: 𝑋 ′ )

13 greedy_search(𝑋 ′, 𝑡𝑒𝑠𝑡_𝑟𝑒𝑠𝑢𝑙𝑡 )
14 if 𝑡𝑒𝑠𝑡_𝑟𝑒𝑠𝑢𝑙𝑡 is𝑇 then
15 𝑋 = 𝑋 ′

16 𝑋 ∗ = 𝑋 ′

17 reduce_matrix(𝑀,𝑋 ′ )
// select a test set for the next iteration

18 𝑋 ′ = sample(𝑋 )
19 until ProbDD.done() is True;
20 return 𝑋 ∗

compilation attempt after reverting the code change elements in
𝑋 ′ and updating the matrix accordingly (Line 6; Section 3.2.2). If
compilation fails (i.e., CE occurs), it attempts to resolve CE (Line 8;
Section 3.3) by finding a new set of elements 𝑋 ′

𝑓
, and runs the test

with 𝑋 ′
𝑓
(Line 9); otherwise, it runs the test with the original 𝑋 ′

(Line 11). If 𝑋 ′
𝑓
is generated by removing some elements from 𝑋 ′,

then 𝑋 ′ is reduced to 𝑋 ′
𝑓
(Line 12). The probability of each element

in 𝑋 ′ is updated by the greedy-search based algorithm (similar
to the probability-update strategy of ProbDD; Line 13) before the
dimension reduction of𝑀 if 𝜙 (𝑋 ′) = 𝑇 (Line 14–17; Section 3.2.3).
The next iteration begins with a hybrid mechanism for element
selection (Line 18; Sections 3.4.2 and 3.4.3).

3.2 Maintaining the Dependency Matrix
3.2.1 Initializing the Matrix. The dependency matrix𝑀 is initial-
ized based on the dependencies between code change elements re-
ported by program analysis techniques proposed in DDJ [14]. Given
the set𝑋 of code change elements between two revisions, we denote
the set of dependencies reported by DDJ as 𝐷 = {(𝑥𝑖 , 𝑥 𝑗 ) | 𝑥𝑖 , 𝑥 𝑗 ∈
𝑋 ∧ 𝑥𝑖 ↦→ 𝑥 𝑗 }.

Since program analysis may produce incorrect dependencies, we
assign a probability of 𝛿 that a reported dependency is true. If a
dependency from one element to another is not reported, we assume
that there is still a probability of 1 − 𝛿 that the dependency exists.
Thus, the dependency matrix𝑀 ∈ R |𝑋 |× |𝑋 | is initialized by Eq. 2.

𝑀 [𝑥𝑖 ] [𝑥 𝑗 ] =
{

1 − 𝛿, if (𝑥𝑖 , 𝑥 𝑗 ) ∉ 𝐷
𝛿, if (𝑥𝑖 , 𝑥 𝑗 ) ∈ 𝐷

(2)
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where 𝑥𝑖 and 𝑥 𝑗 are elements in 𝑋 . In our implementation, we set
𝛿 as a hyper-parameter smaller than 1, which provides us with the
opportunity to identify and rectify erroneous dependencies.

3.2.2 Updating the Matrix. The probabilities of dependencies are
updated in the matrix𝑀 based on the compilation results.

If compilation fails with running set𝑋 ′ (i.e., 𝜙 (𝑋 ′) = 𝐶𝐸), it indi-
cates that some element(s) in𝑋 ′ depend on element(s) in the comple-
ment 𝑋 ′. Therefore, the corresponding probabilities of dependency
should be increased. We use \𝑖 𝑗 , a Bernoulli random variable, to
denote whether or not a dependency actually exists from element 𝑥𝑖
to element 𝑥 𝑗 . Furthermore, we assume that each \𝑖 𝑗 constitutes mu-
tually independent events, implying that the pairwise dependencies
between elements in 𝑋 are not influenced by other dependencies.
Thus, for any 𝑥𝑖 ∈ 𝑋 ′, 𝑥 𝑗 ∈ 𝑋 ′, we calculate the probability of 𝑥𝑖
depending on 𝑥 𝑗 using the Bayesian formula in Eq. 3.

𝑀 [𝑥𝑖 ] [𝑥 𝑗 ] = 𝑃 (\𝑖 𝑗 = 1|𝜙 (𝑋 ′) = 𝐶𝐸) =
𝑃 (\𝑖 𝑗 = 1) ∗ 𝑃 (𝜙 (𝑋 ′) = 𝐶𝐸 |\𝑖 𝑗 = 1)

𝑃 (𝜙 (𝑋 ′) = 𝐶𝐸)
(3)

Here, we have 𝑃 (𝜙 (𝑋 ′) = 𝐶𝐸 |\𝑖 𝑗 = 1) = 1 because a CE must occur
if 𝑥𝑖 depends on 𝑥 𝑗 . 𝑃 (\𝑖 𝑗 = 1) is the current value of 𝑀 [𝑥𝑖 ] [𝑥 𝑗 ].
𝑃 (𝜙 (𝑋 ′) = 𝐶𝐸) is the probability that there exists at least one depen-
dency from 𝑋 ′ to 𝑋 ′, which is 1−∏

∀𝑥𝑎∈𝑋 ′,𝑥𝑏 ∈𝑋 ′ (1−𝑀 [𝑥𝑎] [𝑥𝑏 ]).
Therefore, we update𝑀 by Eq. 4 when compilation fails.

𝑀 [𝑥𝑖 ] [𝑥 𝑗 ] =
𝑀 [𝑥𝑖 ] [𝑥 𝑗 ]

1 −∏
∀𝑥𝑎∈𝑋 ′,𝑥𝑏 ∈𝑋 ′ (1 −𝑀 [𝑥𝑎] [𝑥𝑏 ])

(4)

If compilation succeeds, we update𝑀 by Eq. 5.

𝑀 [𝑋 ′] [𝑋 ′] = 0 (5)

It means that all dependencies from 𝑋 ′ to 𝑋 ′ are confirmed as 0
such that erroneous relationships in the matrix are removed5.

3.2.3 Reducing the Dimension of the Matrix. When the testing
result is 𝑇 (i.e., 𝜙 (𝑋 ′) = 𝑇 ), it means that 𝑋 ′ does not contain any
critical changes. This allows us to reduce the dimension of 𝑀 by
removing𝑀 [𝑋 ′] [𝑋 ′] from the matrix by Eq. 6.

𝑀 = 𝑀 [𝑋 ′] [𝑋 ′] (6)

3.3 Resolving Compilation Errors
We transform the task of resolving CE for the running set 𝑋 ′ into a
search-based program repair problem constrained within a finite
space. Specifically, we employ a matrix-based search (MBS), which
uses the dependency probability matrix to guide the process of
generating CE-resolving sets.

3.3.1 Matrix-based Search (MBS). Given a running set 𝑋 ′ satisfy-
ing 𝜙 (𝑋 ′) = 𝐶𝐸, MBS iteratively attempts to generate CE-resolving
sets by incorporating elements from 𝑋 ′ or removing elements from
𝑋 ′. Algorithm 2 presents the process of MBS, which makes a maxi-
mum number of 𝐾 attempts to generate CE-resolving sets. In each
attempt, MBS searches for an add-element CE-resolving set (Line 21)
5Here, we use 𝑀 [𝐴] [𝐵 ] to denote a submatrix of 𝑀 , whose rows are identified
by the set of elements 𝐴 and columns are identified by the set of elements 𝐵. The
form 𝑀 [𝐴] [𝐵 ] is similar to 𝑀 [𝑥𝑖 ] [𝑥 𝑗 ]. The only difference in semantics is that
𝑀 [𝑥𝑖 ] [𝑥 𝑗 ] denotes a value identified by elements 𝑥𝑖 and 𝑥 𝑗 whereas 𝑀 [𝐴] [𝐵 ]
denotes a submatrix.

Algorithm 2:Matrix-based Search
Input :𝑀 , the dependency matrix; 𝑋 ′ , the current set of elements; 𝐾 ,

the maximum number of attempts
Output :𝐶 , the list of CE-resolving sets

1 function select_add_stochastic ()
2 var 𝐸add = [ ], 𝑋consider = 𝑋

′

3 while |𝑋consider | > 0 do
4 var𝑀slice = 𝑀 [𝑋consider ] [𝑋 ′ − 𝐸add ]
5 var 𝑤1×|𝑋 ′−𝐸add | = column_max(𝑀slice )
6 var 𝑋sel = select_stochastic(𝑋 ′ − 𝐸add, 𝑤 )
7 𝐸add .append(𝑋sel )
8 𝑋consider = 𝑋sel

9 return 𝐸add
10 function select_remove_stochastic ()
11 var 𝐸remove = [ ], 𝑋consider = 𝑋

′;
12 while |𝑋consider | > 0 do
13 var𝑀slice = 𝑀 [𝑋consider ] [𝑋 ′ − 𝐸remove ]
14 var 𝑣1×|𝑋consider | = (row_max(𝑀slice ) )𝑇
15 var 𝑋sel = select_stochastic(𝑋consider, 𝑣)
16 𝐸remove .append(𝑋sel )
17 𝑋consider = 𝑋consider − 𝑋sel

18 return 𝐸remove

19 𝐶 = ∅
20 for i in range(0, K) do
21 𝐸add =select_add_stochastic ()
22 if 𝐶 does not contain 𝑋 ′ ∪ 𝐸add then
23 𝐶.𝑎𝑑𝑑 (𝑋 ′ ∪ 𝐸add )
24 𝐸remove =select_remove_stochastic ()
25 if 𝐶 does not contain 𝑋 ′ − 𝐸remove then
26 𝐶.𝑎𝑑𝑑 (𝑋 ′ − 𝐸remove )

27 return𝐶

and a remove-element CE-resolving set (Line 24). All CE-resolving
sets are stored in a list 𝐶 . If a newly-generated set already exists in
the list, it is discarded. The stochastic element searching process is
guided by the dependency probabilities between the elements in
𝑋 ′ and 𝑋 ′ maintained in the matrix.

3.3.2 Adding Elements to 𝑋 ′. MBS searches for elements from 𝑋 ′

with a stochastic strategy based on the values in the dependency
matrix. First, the submatrix𝑀𝑠𝑙𝑖𝑐𝑒 = 𝑀 [𝑋 ′] [𝑋 ′] which contains the
probabilities of dependencies from the elements in𝑋 ′ to those in𝑋 ′

is considered. MBS constructs a vector𝑤 ∈ R |𝑋 ′ | by concatenating
the maximum values for each column in𝑀𝑠𝑙𝑖𝑐𝑒 (Line 5). Therefore,
each value in the vector𝑤 corresponds to the maximum probability
of an element in 𝑋 ′ depended on by some elements in 𝑋 ′.

Then, MBS uses a stochastic strategy to select elements from
𝑋 ′ (Line 6). Whether or not an element in 𝑋 ′ is selected is based
on the corresponding probability value represented in 𝑤 and is
independent of other elements. The higher probability an element
is depended on by elements in𝑋 ′, the more likely it is selected to be
added to 𝑋 ′. Since it is a stochastic selection strategy, it is possible
that no elements are selected. If this occurs, the current iteration is
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terminated. The selected elements in each iteration are denoted as
𝑋𝑠𝑒𝑙 and are added to a temporary set 𝐸𝑎𝑑𝑑 (Line 7).

Note that a selected element in 𝑋𝑠𝑒𝑙 to be added to 𝑋 ′ may also
depend on other elements in 𝑋 ′. Therefore, MBS cascadely con-
siders which elements in 𝑋 ′ are depended on by elements in 𝑋𝑠𝑒𝑙
(Line 8). A new submatrix 𝑀 [𝑋𝑠𝑒𝑙 ] [𝑋 ′ − 𝑋𝑠𝑒𝑙 ] is considered to
select more elements from 𝑋 ′ − 𝑋𝑠𝑒𝑙 into 𝐸𝑎𝑑𝑑 . This process con-
tinues until no more element is selected. A new CE-resolving set is
generated with the union of 𝑋 ′ and all elements in 𝐸𝑎𝑑𝑑 (Line 23).

3.3.3 Removing Elements from 𝑋 ′. Similar to the process in Sec-
tion 3.3.2, MBS start removing elements from 𝑋 ′ by considering
𝑀𝑠𝑙𝑖𝑐𝑒 . The difference is that a vector 𝑣 ∈ R |𝑋 ′ | is constructed by
concatenating the maximum values for each row in𝑀𝑠𝑙𝑖𝑐𝑒 (Line 14).
Hence, each value in the vector 𝑣 corresponds to the maximum
probability of an element in 𝑋 ′ depending on some elements in 𝑋 ′.

Then, MBS applies the same strategy (Line 15) as in the process
in Section 3.3.2 to select elements from 𝑋 ′ into the temporary set
𝐸𝑟𝑒𝑚𝑜𝑣𝑒 (Line 16). Subsequently, the rest of the elements in 𝑋 ′

(Line 17) are considered to be removed based on the probability
in which they depend on the previously selected elements. This
process iterates until no element is selected. A new CE-resolving set
is generated by removing all elements in 𝐸𝑟𝑒𝑚𝑜𝑣𝑒 from 𝑋 ′ (Line 26).

3.3.4 Discussions on the Maximum Number of Attempts 𝐾 . MBS
returns a list 𝐶 of all sets of elements that are potentially able
to resolve CE. The size of 𝐶 is not greater than 2 × 𝐾 . We use
a dynamic value of 𝐾 that increases with the count of CEs that
are encountered during the original ProbDD process. Empirically,
we set 𝐾 = 𝑖 × ln( |𝑋 |), where 𝑖 denotes the number of ProbDD
iterations and |𝑋 | denotes the number of elements currently under
consideration (𝑋 = 𝑋 ′ ∪𝑋 ′). We opt to apply this strategy because
in the early stage of ProbDD, if the number of elements is huge,
resolving a CE could be extremely expensive. Therefore, we spend
less effort in resolving the CE in the early stage and increase the
effort when more CEs are encountered. Since the complexity of
ProbDD is theoretically 𝑂 (𝑁 ) where 𝑁 is the number of elements,
the order of magnitude of 𝑖 is also 𝑂 (𝑁 ). Therefore, the maximum
attempt number 𝐾 is on the 𝑂 (𝑁 ln(𝑁 )) order of magnitude.

3.4 Selecting Elements for the Running Set
During DD iterations, we apply three strategies to choose appro-
priate code change elements as candidates for the critical change.

3.4.1 “Cold-Start”: Selecting Elements for the First Iteration. When
the DD process starts, we try to select the code change elements
which, if reverted, are more likely to (1) affect program behavior
and (2) pass compilation. To achieve this, we opt not to select the
elements that are inserted declarations of classes or class members
(including fields and methods). The underlying rationale is that
the new declarations are typically used by other code changes. If
they are reverted independently, the program is very likely to fail
compilation. Hence, excluding them from the first iteration is a
cheap decision.

3.4.2 “Equal-Chances”: Hybrid Element Selection Mechanism dur-
ing Iteration. The DD process of C2D2 basically follows a greedy
search strategy [44], similar to ProbDD, to select elements for a

new iteration based on the probability of being part of the criti-
cal change. However, the greedy strategy overlooks potential er-
rors in the probability calculation. Therefore, we introduce a new
random selection strategy, which is used with probability b as
a substitute for the original ProbDD mechanism. With the new
strategy, elements are selected based on the selection frequency.
Specifically, we use 𝑇 = {𝑡1, 𝑡2, ...𝑡𝑛} to record the number of times
each 𝑥𝑖 in 𝑋 is selected. Next, we calculate the selection frequency
𝑓𝑖 = 𝑡𝑖/(𝑚𝑎𝑥 (𝑇 ) +𝑚𝑖𝑛(𝑇 )) for 𝑥𝑖 . Then, we use 1− 𝑓𝑖 to denote the
weight for each element to be selected. Therefore, elements with a
lower selection frequency will have more chances of being selected.
This strategy enables C2D2 to find new solutions by breaking the
constraints set by ProbDD.

3.4.3 “Start-Afresh”: Searching for a New Set. When a CE-resolving
attempt fails, we need a new subset of the search space𝑋 to continue
the DD process. To search for it, we dynamically select elements
with lower probabilities of depending on other elements in 𝑋 .

Given a current search space𝑋 , we retrieve themaximumvalue of
each row in𝑀 to construct a maximum dependency vector 𝑣 ∈ R |𝑋 | .
This vector 𝑣 represents the maximum probability of dependency
of 𝑥𝑖 ∈ 𝑋 on the other elements in 𝑋 . Next, we employ a dynamic
threshold [, ranging from [0,max(𝑣)), to incrementally select ele-
ments whose value in 𝑣 is smaller than [. When the selected set of
elements fails to compile, we increase the value of[ by max(𝑣)

𝐾
. Here,

𝐾 continues to represent the maximum number of search attempts.
Sets of elements that have been previously tried for compilation or
testing are discarded. Thus, the method starts with elements that
have no dependencies, dynamically selects new combinations of
elements based on matrix variations, and searches for a compilable
set within the constraint of 𝐾 attempts to continue the DD process.

3.5 Revisiting the Motivating Example
In this section, we demonstrate how C2D2 accurately locates the
critical bug-inducing changes of the motivating example. Key iter-
ations of the DD process are illustrated in Figure 3. Starting from
the 23 code change elements produced by DDJ, C2D2 first starts
the cold-start component and excludes five elements in the first
step. The excluded elements are mainly import declarations and im-
plementation of new features. Next, C2D2 uses the greedy-search
strategy to select 𝑋 ′ in Iteration 2. The test result is CE. Then,
C2D2 applies MBS to resolve CE and succeeded by adding six ele-
ments from 𝑋 ′. The test result is 𝑇 , so the rest of the elements are
permanently excluded from the DD process.

Iterations continue until the 12th one, when the equal-chances
component is triggered, leading to the selection of {𝑥2, 𝑥13} based
on the frequency of element selection. The compilation succeed
and the test result is 𝐹 . Prior to this iteration, DDJ provided the de-
pendency 𝑥2 ↦→ 𝑥3. As the compilation with {𝑥2, 𝑥13} does not fail,
we confirm that the dependency 𝑥2 ↦→ 𝑥3 is invalid and the depen-
dency matrix is updated by setting𝑀 [𝑥2] [𝑥3] to 0. In this iteration,
C2D2 exhibits the ability to rectify erroneous dependencies.

In Iteration 19, C2D2 selects elements {𝑥1, 𝑥2, 𝑥3}, which is iden-
tical to 𝑋 ∗. The test result is true. C2D2 continues to select a subset
{𝑥1, 𝑥2} in Iteration 20, where a CE occurs. Then, our approach
tries to add 𝑥3 or remove 𝑥1 but all attempts have been previously
tested. So C2D2 triggers another start-afresh and selects a new
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Components Operations Results
DDJ provide X = {x1, x2, …, x23}

1 Cold-Start exclude {x8, x9, x11, x12, x17}  T   
Greedy-Strategy select{x1,x2,x10,x13,x14,x18,x19,x20,x21}  CE
MBS add {x3, x4, x5, x6, x16, x22}  T  

······
12 Equal-Chances select {x2, x13}  F  

Greedy-Strategy select {x1, x3, x5, x13, x15, x16, x18}  CE
MBS add {x14, x20}  F  
Greedy-Strategy select {x1, x2, x3, x6, x14, x18, x20, x22}  CE
MBS remove {x6, x14, x18, x20}  T  

······
19 Greedy Strategy select {x1, x2, x3}  T  

Greedy Strategy select {x1, x2}  CE
MBS add {x3}, remove {x1}  
Start-Afresh select {x2, x3}, retain {x1, x2}  F#
C2D2 Done & output {x1, x2, x3}

2

13

14

20

Figure 3: C2D2 bug-inducing reduction process

combination of elements {𝑥2, 𝑥3}. However, this change set has
also been tested and removing or adding elements does not create
new change sets. Therefore, C2D2 retains the selection {𝑥1, 𝑥2} and
updates the test result to 𝐹#. Finally, the termination criteria for
the process are met and the DD process is completed.

In this case, C2D2 required only 20 iterations and 12 additional
compilation attempts to accurately identify the critical changes as
{𝑥1, 𝑥2, 𝑥3}, which is better than the result produced by ProbDD.

4 EVALUATION
We evaluate C2D2 by answering three research questions.
RQ1 Effectiveness and Efficiency: What is the effectiveness and
efficiency of C2D2 compared to existing DD algorithms in the task
of extracting critical changes for bugs?
RQ2 Ablation Study: What are the contributions of each technical
decision, including cold-start, equal-chances, and start-afresh, to
the effectiveness and efficiency of C2D2?
RQ3 Data Quality and Usefulness: What is the quality of the
critical changes extracted by C2D2 compared to those isolated by
humans? Is C2D2 useful for constructing large-scale bug datasets?

4.1 Evaluation Setup
4.1.1 Dataset. DD algorithms are capable of extracting critical
changes for both bug fixes and bug induces.

To evaluate the performance of C2D2 on bug-fixing change reduc-
tion tasks, we use Defects4J [20], a manually-verified bug dataset
widely used in the literature. It consists of 835 bugs and their fixes
collected from real-world Java applications. For each bug, it pro-
vides the original buggy revision (𝑉𝑜𝑏𝑢𝑔) and bug-fixing revision
(𝑉𝑜 𝑓 𝑖𝑥 ), between which the code differences contain significant
bug-irrelevant changes [19]. We use the code differences between
𝑉𝑜𝑏𝑢𝑔 and𝑉𝑜 𝑓 𝑖𝑥 as input for the DD algorithms. Defects4J also pro-
vides critical changes of bug fixes, which are manually minimized
and verified by humans. These human-isolated critical changes are
used as the ground-truth. During our evaluation, we found 26 bugs
whose revisions𝑉𝑜𝑏𝑢𝑔 and𝑉𝑜 𝑓 𝑖𝑥 were not accessible; therefore, 809
bugs are finally used in our evaluation.

Table 1: Statistics of Code Change Elements of the Bugs in
the Regression Dataset and Defects4J

Number of Elements Regression Dataset Defects4J

Minimum 1 1
25th Percentile 7 2
Median 17 3
75th Percentile 77 7
Maximum 2,136 108

For bug-inducing change reduction tasks, we use the regres-
sion bug dataset constructed by RegMiner [39]. It contains 1,035
regression bugs and, to the best of our knowledge, is the only large-
scale dataset that contains bug-inducing changes, even though the
changes have not been minimized by human inspection. To ensure
the quality of the dataset, we manually examined the data and iden-
tified 10 entries that were either duplicates or related to flaky tests.
Therefore, 1,025 regression bugs are used in our evaluation. We also
observe that the number of code change hunks in the regression
dataset is significantly higher than that of Defects4J, as shown in
Table 1. Therefore, we can compare the performance of the consid-
ered DD algorithms when they are used to extract critical changes
on datasets with different complexity.

4.1.2 RQ1 Setup. To address RQ1, we compared C2D2 with rep-
resentative DD algorithms ddmin [47] and ProbDD, on both tasks
of extracting bug-fixing and bug-inducing critical changes on the
corresponding datasets. The DDJ [14] dependency detection mech-
anism was integrated in all DD algorithms for a fair comparison.
DDJ employs Diff/TS [13], a widely-used code differencing tool, to
extract code changes at the granularity of AST nodes. It uses syntax-
and semantics-aware code change dependency construction tech-
niques to group related code change elements, as this technique has
been shown to be an effective optimization for DD algorithms. For
simplicity of presentation, we directly use ddmin and ProbDD as the
names of baselines. The metrics of the efficiency and effectiveness
of each algorithm are described in Section 4.1.5.

4.1.3 RQ2 Setup. To address RQ2, we conducted an ablation study
with both Defects4J and the regression dataset. We independently
disabled Cold-Start, Equal-Chances, and Start-Afresh, one at a time,
to investigate the contributions of each individual component.
These versions are denoted as C2D2¬CS, C2D2¬EC, and C2D2¬SA,
respectively. The disabled components were replaced by the origi-
nal element selection strategies of ProbDD. Then we observed how
effectiveness and efficiency changed in these ablated versions. We
also turn off all three components to see how C2D2 performs with
the dependency-matrix only.

4.1.4 RQ3 Setup. To address RQ3, critical changes isolated by
humans need to be identified. For Defects4J, we directly used the
critical bug-fixing changes that had already beenminimized and ver-
ified by humans. For the regression dataset, 65 bugs were randomly
selected by two authors, who are graduate students majored in
software engineering with at least three years of Java development
experience, independently annotated critical changes by manually
analyzing the changes in the source code. The inter-rate agreement
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measured by Cohen’s Kappa was 0.78, which exhibited validity
of the annotations. For those inconsistently annotated cases, the
two graduate students and an additional doctoral candidate stu-
dent (also an author majored in software engineering and with
rich experience in Java development) discussed the results until an
agreement was reached. For each bug, the critical changes produced
by C2D2 are compared to the human-isolated critical changes.

Additionally, BugBuilder[19], the state-of-the-art bug dataset
construction tool that is not based on DD algorithms, is capable
of identifying critical changes for bug fixing. Therefore, we also
performed comparisons with the critical changes extracted by Bug-
Builder.

4.1.5 Metrics. The following metrics are typically used in previous
work on DD [14, 15, 44, 47].

The effectiveness is measured primarily by the following metrics.
• Number of Successful Reductions (#Success): the number of bugs
for which DD successfully terminates (i.e., not exceeding a 2-hour
limit) and produces an outcome.

• Average Reduction Rate (Reduction%): |𝑋 |− |𝑋 ∗ |
|𝑋 | , where 𝑋 ∗ is the

set of critical changes produced by the algorithm being evaluated,
while 𝑋 is the original set of code change elements.

• Number of Optimal Results (#Optimal): the number of critical
change sets that are the smallest among the outcomes of all
algorithms. If the critical change sets for the same bug are of the
same size, they are all considered optimal.
The efficiency is measured primarily by the following metrics.

• Average Time Consumed per Bug (Time): time in seconds that
the algorithm takes on average for a successful reduction on a
bug. Timeout cases are excluded.

• Average Count of Test Runs per Bug (#Test): the number of tests
that have been run on each successful reduction, on average.

• Average Count of Additional Compilations per Bug (#Ad.Compile):
Only for C2D2 since C2D2 attempts to resolve the CE status. This
measure does not apply to other algorithms.
Themeasures that we adopt for comparing the outcomes of C2D2

with the human-isolated changes include the following metrics.
• Number of the Same Outcomes (#Same): The critical change sets
that are the same as human-isolated ones are counted.

• Number of Better Outcomes (#Better): The critical change sets
that are proper subsets of human-isolated ones are counted.

• Number of Worse Outcomes (#Worse): The critical change sets
that are super sets of human-isolated ones are counted. If a tool
terminates with an error or timeout when reducing the changes
of a specific bug, it is also counted as Worse.

• Number of Different Outcomes (#Diff): The critical change sets
that are neither the same as nor better/worse than human-isolated
ones are counted, even if the sets of critical changes are smaller
than the human-isolated change.
The critical changes produced by BugBuilder on Defects4J are

also compared to human-isolated changes against the above metrics.

4.1.6 Implementation. We implemented C2D2 on the architecture
of DDJ [14] by incorporating the dependency matrix-based algo-
rithm into the DD.py [45], which was initially created by Zeller.
DDJ extracts critical bug-fixing changes in Java. It incorporates

the Diff/TS framework and integrates 500 rules specifying depen-
dencies between code change elements. DDJ employs hierarchical
delta debugging (HDD). For a fair comparison, we reimplemented
ProbDD by updating DD.py in DDJ with the ProbDD implemen-
tation provided by the authors of ProbDD so that implementation
differences other than the core algorithms were eliminated. We
also decoupled _compile from the _test function such that we are
able to carry out compilation and tests seperately. Our evaluation
was conducted on an Ubuntu 20.04 server with a 16-core 32-thread
Silver 4208 (2.10GHz) CPU and 64 gibibyte/GiB of RAM.

4.2 RQ1: Effectiveness and Efficiency Evaluation
We present the performance of C2D2 on bug-fixing reduction tasks
with Defects4J and on bug-inducing reduction tasks with the re-
gression dataset.

Bug-fixing Reduction on Defects4J. As shown in the upper
three rows of Table 2, C2D2 outperforms both ddmin and ProbDD.
For effectiveness, C2D2 successfully produced critical bug-fixing
changes on 702 bugs (out of 809), 6.69% more than both ddmin and
ProbDD, both of which only suceeded in 658 bugs. Among suc-
cessful reductions, C2D2 produced 696 optimal results, surpassing
ddmin and ProbDD by 6.75% and 23.62%. C2D2 achieved the highest
average reduction rate of 38.23%, 0.23 percentage points (pts) higher
than ddmin and 5.32 pts higher than ProbDD.

For efficiency, we consider the 580 bugs that all three DD algo-
rithms successfully produce an outcome, for fair comparison. C2D2
is the fastest in terms of the average time consumed per bug, 28.74%
and 26.38% faster than ddmin and ProbDD, respectively, even if it
required 6.56 additional compilations.

Bug-inducing Reduction on Regression Bugs. As shown in
the upper three rows of Table 3, C2D2 also outperforms ddmin and
ProbDD on multiple metrics. For effectiveness, C2D2 produced 571
optimal results, outperforming ddmin and ProbDD by 1.60% and
37.59%, respectively. C2D2 reached the highest average reduction
rate of 45.06%, which is 5.03 pts higher than ddmin and 14.44 pts
higher than ProbDD. However, C2D2 succeeded in 605 bugs out of
1,025, slightly less than ddmin and ProbDD by 15 (2.42% lower) and
59 (8.89% lower), respectively.

Among all successful results produced by ddmin and ProbDD,
we found 66 and 77 cases, respectively, in which C2D2 failed to
produce critical changes. In 41 out of the 66 cases completed by
ddmin and all 77 cases by ProbDD, the critical change sets are
exactly the same as the input set of code change elements, meaning
that the reduction rate is 0% (𝑋 ∗ = 𝑋 ). Moreover, in all of these
cases, the code change elements in the input set have complicated
interrelationships, which may cause C2D2 to continuously explore
the dependencies before the time limit is reached.

For efficiency, we consider the 488 bugs that all three DD algo-
rithms successfully produce an outcome, for fair comparison. C2D2
takes 987.91 seconds to extract critical changes for a bug on average,
which is 17.13% faster than ddmin and 4.38% faster than ProbDD.
For each critical change extraction task, C2D2 only need to run
16.11 tests on average, which is only 37.08% of ddmin and 47.00%
of ProbDD, which means less test resource consumption. Even if
C2D2 had to attempt averagely 21.87 additional compilations for
each task, the sum of the number of compilations and the number
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Table 2: Effectiveness and Efficiency on Defects4J (809 bugs in total)

Effectiveness Efficiency (580 bugs succeeded in common)
#Success #Optimal Reduction% Time (sec.) #Test #Ad.Compile

ddmin 658 652 38.00% 958.02 6.94 \
ProbDD 658 563 32.91% 927.23 7.35 \
C2D2 702 696 38.23% 682.66 4.58 6.56

C2D2¬CS 606 (-13.68%) 594 (-14.66%) 37.75% 821.44 6.34 9.90
C2D2¬EC 671 (-4.42%) 659 (-5.32%) 37.92% 770.70 4.35 7.85
C2D2¬SA 641 (-8.69%) 621 (-10.78%) 37.16% 790.85 5.23 11.45

Table 3: Effectiveness and Efficiency on Regression Bugs (1025 bugs in total)

Effectiveness Efficiency (488 bugs succeeded in common)
#Success #Optimal Reduction% Time (sec.) #Test #Ad.Compile

ddmin 620 562 40.03% 1,192.07 43.45 \
ProbDD 664 415 30.62% 1,033.12 34.28 \
C2D2 605 571 45.06% 987.91 16.11 21.87

C2D2¬CS 525 (-13.22%) 452 (-20.84%) 38.38% 1,135.62 20.68 41.86
C2D2¬EC 529 (-12.56%) 450 (-21.19%) 41.70% 1,044.57 15.75 34.44
C2D2¬SA 533 (-11.90%) 460 (-19.44%) 42.43% 1,077.18 17.95 38.07

of tests is still slightly less than the number of tests of ddmin and
similar to that of ProbDD.

In summary, C2D2 is significantly more effective than ProbDD by
increasing the number of optimal reductions by 23.62% in Defects4J
and 37.59% in the regression dataset. The reduction rates in the
two datasets are improved by 5.32 and 14.44 pts, respectively. It
is also 26.38% and 4.38% faster than ProbDD in the two datasets,
respectively. Compared to ddmin, C2D2 achieved 28.74% and 17.13%
efficiency improvement in Defects4J and the regression dataset,
respectively, with a comparable number of successful reductions,
a slightly-increased number of optimal reductions, and a slightly-
improved reduction rate.

Answer to RQ1: C2D2 outperforms ProbDD in both Defects4J
and the regression dataset. It achieves significantly higher effi-
ciency than ddmin, with competitive effectiveness in Defects4J
and higher effectiveness in the regression dataset.

4.3 RQ2: Ablation Study
The results of our ablation study on Defects4J and the regression
dataset are reported in the lower three rows of Table 2 and Table 3,
respectively.

Cold-Start. When Cold-Start is disabled, there is a significant
decrease in both the effectiveness and efficiency of C2D2 on all
measures in both datasets. We observe large decrease of optimal
results and the reduction rate. This indicates that the Cold-Start
component imposes a great contribution to minimize running set.
To further validate this, we conducted an in-depth analysis of the
reduction process of C2D2. Specifically, we found that, in the first
iteration, C2D2 yielded a 𝑇 result for 360 regression bugs, with an
average reduction rate of 26.54%, and for 301 bugs in Defects4J, with
an average reduction rate of 42.78%, which produced a significantly
better start of the DD process.We also observe a significant decrease
in efficiency when cold-start is disabled, confirming the usefulness
of cold-start in shortening the DD process.

Equal-Chances and Start-Afresh. When Equal-Chances or Start-
Afresh is disabled, both #Success and #Optimal decrease severely in
both datasets, showing positive contributions of these two compo-
nents. Meanwhile, we observe slight drop of Reduction%. Specif-
ically, the drop of Reduction% in Defects4J is much smaller than
in the regression dataset. Since the code change set of regression
bugs are on average larger than those in Defects4J, we conclude
that these components make more contributions to complicated
reduction tasks than to simpler ones.

We also observe a remarkable decrease in efficiency in both
datasets when either of components is disabled, which shows that
the introduction of these additional mechanisms for selecting code
change elements has a positive contribution to the DD process.
Specifically, disabling these components results in less flexibility in
element selection, and thus causes more additional compilations.
Therefore, we conclude that they are useful mechanisms in the DD
process when selecting code change elements during the iterations.
Additionally, we also turned off all three components in order to
understand the improvements brought by combination of these
components. We find that, with all three components turned off, the
reduction rates of C2D2 on regression bugs and defects4j decrease
to 37.80% (-7.26 pts) and 37.05% (-1.18 pts), respectively, but are
still 7.18 pts and 4.14 pts higher than those of ProbDD, respectively.
This demonstrates the superiority of the hybrid strategy and also
indicates that the MBS component effectively mitigated the impact
of CEs on ProbDD.

Answer to RQ2: Cold-Start, Equal-Chances, and Start-Afresh
make positive contributions for better effectiveness and higher
efficiency.

4.4 RQ3: Data Quality and Usefulness
Table 4 presents the number of reduction results produced by C2D2
that are the same as, better/worse than, and different from the
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critical changes isolated by humans. We also include the statistic
data of BugBuilder [19] in this table as a reference.

Table 4: Comparing the Critical Changes Extracted by C2D2
with Human-Isolated Changes

Dataset Tool #Same #Better #Diff #Worse

Defects4J (809 bugs) C2D2 210 (25.96%) 249 (30.78%) 33 (4.08%) 317 (39.18%)
BugBuilder 308 (38.07%) 12 (1.48%) 0 (0%) 489 (60.45%)

Regression (65 bugs) C2D2 44 (67.69%) 12 (18.46%) 2 (3.08%) 7 (10.77%)

First, we find that, compared to BugBuilder which reports reduc-
tion results only on Defects4J dataset, C2D2 produces significantly
more Better cases (249 of C2D2 vs. 12 of BugBuilder) and lessWorse
cases (317 vs. 489).

Second, we examine the 35 Different cases (33 in Defects4J and
2 in the regression dataset) and find that the reduction results in
34 cases are also correct critical changes because there are multi-
ple ways to fix the bugs. Only one erroneous reduction result is
identified in the regression dataset. The incorrect case comes from
the project fastjson at commit 6e53cca, where a flaky test exists.
As shown in Listing 1, the test code is designed to validate the
function of the JSON.toJSONString method, ensuring its ability
to seamlessly serialize Java timestamps into JSON strings. How-
ever, the code changes in the bug-inducing commit, as shown in
Listing 2, extend the functionality of the write method to support
nanosecond timestamps.

1 @Test
2 public void test_for_issue() throws Exception {
3 Timestamp ts = new Timestamp(Calendar.getInstance().

getTimeInMillis());
4 String json = JSON.toJSONString(ts, SerializerFeature.

UseISO8601DateFormat);
5 System.out.println(json);
6 }

Listing 1: Code snippet for testing the serialization of a Java
Timestamp object to a JSON string

1 public void write(...
2 - if (millis != 0) {
3 + if (nanos > 0) {
4 + buf = "0000-00-00␣00:00:00.000000000".toCharArray();
5 + int nanoSize = IOUtils.stringSize(nanos);
6 + IOUtils.getChars(nanos, 30 - (9 - nanoSize), buf);
7 + IOUtils.getChars(second, 19, buf);
8 ...
9 + } else if (millis != 0) {
10 buf = "0000-00-00T00:00:00.000".toCharArray();
11 IOUtils.getChars(second, 19, buf);

Listing 2: Code changes to support nanosecond timestamps

However, an erroneous numeric boundary value “30” at Line
6 can trigger a ArrayIndexOutOfBoundsException whenever the
subsecond part of the timestamp exceeds 100 nanoseconds. Due to
the unstable nature of this test, reverting the code change elements
other than those in Listing 2 has the opportunity to pass the test,
causing DD to exclude the actual critical changes from its search
space.

Even if we have tried to exclude bug entries that are related to
obvious flaky tests, not all flaky tests can be easily identified and
excluded. Flaky tests are a challenge to DD algorithms, which is
out of the scope of this paper.

Finally, we identify three primary reasons from the Worse cases.

• Missing dependencies (77.47%): Due to the limited capabilities of
DDJ, a considerable amount of dependencies are missing. There-
fore, C2D2 has to struggle in detecting these intricate connections,
which usually causes a time out.

• Differences between the code change elements generated by
AST-based differencing techniques and those comprehended by
humans (20.37%): C2D2 depends on the code change elements
detected by Diff/TS, an AST-based differencing tool. However,
Diff/TS tends to aggregate a set of edit operations as much as
possible and may produce larger code change elements than
those comprehended by humans. For example, a series of node
deletions would be regarded as a single deletion of the subtree,
which could be larger than the change elements observed by
humans. In this case, the reduction results are still technically
optimal and can be further improved by applying advanced code
differencing techniques to generate the input of the DD process.

• Imprecise dependencies disclosed by the dependency matrix
(2.16%): There are cases where the probability values in the depen-
dencymatrix do not reflect the actual dependencies. In such cases,
imprecise dependency probabilities may lead to suboptimal re-
sults or timeouts due to lengthy attempts to recover complicated
dependencies.

Note that most of theWorse results are caused by timeout, which
means that no result is produced and thus no erroneous critical
changes will affect the data quality when constructing a bug dataset.
Only a very small part of the cases, mostly falling under the third
reason, are actual data quality threats to the bug dataset.

We would also like to mention that, as the purpose of C2D2 is to
construct a large-scale and high-quality bug dataset, the accuracy of
the critical changes of bugs and the inclusion of bugs with complex
changes is essential for the quality and diversity of the datasets.
Full automation is equally critical for expanding the scale of dataset.
Although the current version of C2D2 can also be used to extract
critical changes during software development, the high cost of
time and limited successful rate still remain an obstacle for daily
debugging tasks.

Answer to RQ3: C2D2 is useful for extracting high-quality
critical changes when used to construct large-scale bug datasets.
It also outperforms the state-of-the-art tool for constructing bug
datasets.

4.5 Threats To Validity
We briefly discuss the following three main threats to the validity
of our evaluation.

• Threats from Randomness: Both ProbDD and C2D2 algo-
rithms involve a degree of randomness, which can potentially
impact various metrics in the experiments. To mitigate this threat,
we ran the above methods and their variants three times and
reported their averages as the final results of the experiments.
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• Threats from Data Quality: The regression bugs used in the
experiments were automatically generated by RegMiner andwere
not manually verified for accuracy. Incorrect data could pose a
threat to the validity of the experiments. Therefore, we carefully
filtered out duplicate or data with unstable tests to reduce its
threat to the experiments.

• Threats from Hyperparameters: The settings of hyperparam-
eters in both ProbDD and C2D2 could pose a threat to validity
of the evaluations. To mitigate this threat, we conducted hyper-
parameter sensitivity experiments for both ProbDD and C2D2
and selected the optimal parameter values as the settings for
evaluations. Details on the hyperparameter experiments can be
found on our website.

5 RELATEDWORK
Delta Debugging. The foundational Delta Debugging (DD) algo-
rithm [46], denoted as 𝑑𝑑 , was introduced by Zeller to locate the
minimal failure-inducing changes between two program versions.
Later, Zeller proposed an extended version of 𝑑𝑑 , called ddmin [47],
which isolates the minimal failure-inducing test inputs, and sug-
gested its use over 𝑑𝑑 .

Since then, ddmin has been applied to various specific domains.
Misherghi and Su [36] introducedHDD to enhanceDD efficiency for
tree structures. Subsequent works, such as modernized HDD [16],
coarse HDD [17] and HDDr [21], were proposed to further improve
HDD’s performance. Heo et al. [15] presented CHISEL for code
reduction in the C programming domain. CHISEL uses reinforce-
ment learning to select steps in ddmin that are more likely to satisfy
target properties, thereby enhancing ddmin’s effectiveness.

Different from ddmin, ProbDD [44] is a novel DD algorithm that
learns from testing history the probabilities of the elements to be
selected and employs a greedy algorithm to select elements based
on the probabilities for each step, achieving significantly improved
performance. Thus, ProbDD can be used to replace ddmin in both
HDD and CHISEL. Similarly, C2D2 is also a novel dependency-
sensitive DD algorithm. CHISEL is the closest to our work, which
uses statistical models to enhance ddmin and ProbDD. CHISEL
does not provide new selections of elements, but solely depends on
ddmin and ProbDD for step generation. In contrast, C2D2 is capa-
ble of generating new choices in element selection and handling
compilation errors.

Bug Dataset Construction. Bug datasets serve as foundational
artifacts for various SE/PL tasks, such as software testing [3, 11,
12, 28, 29, 33, 35, 38], bug localization [4, 9, 22, 30, 31, 48], and bug
repair [2, 7, 24, 37, 41]. Do et al. [6] are among the pioneers in con-
structing bug datasets, contributing the SIR dataset. Subsequently,
a multitude of research efforts construct bug datasets from pro-
gramming assignments and competitions (such as Marmoset [40],
QuixBugs [27], IntroClass [8], and Codeflaws [42]), and open-source
projects (such as BugBench [32], Corebench [1], BugJS [10], and
DbgBench [2]).

These datasets are constructed manually, significantly impact-
ing their scalability and representativeness. Dallmeier et al. [5]
made the first attempt at semi-automated bug extraction by an-
alyzing issues and associated commits. Afterwards, BEARS [34]
and BugSwarm [43] automatically extract reproducible bugs from

continuous integration systems. RegMiner [39] extracts bug-fixing
commits and bug-inducing commits for regression bugs from code
evolution history. However, these automated approaches do not
exclude bug-irrelevant changes in commits. Defects4J [20] auto-
mates the extraction of bugs and test cases from bug reports and
associated commits, but the critical changes of bugs were manually
isolated.

BugBuilder [19] uses existing refactoring detection tools to detect
and exclude refactoring changes from bug-fixing commits before
enumerating all possible modification combinations to search for
the minimized critical changes. It employs an exhaustive approach
and does not work effectively on complex tasks.

DDJ [14] employs syntax- and semantics-aware techniques to
group code changes and relies on ddmin to identify critical changes
in Defects4J, with its performance affected by efficiency of ddmin.

6 CONCLUSIONS AND FUTUREWORK
In this paper, we propose C2D2, a dependency-sensitive DD ap-
proach to extract critical changes for real-world bugs. We introduce
a dependency matrix that tracks and estimates the probabilities
of dependencies between code change elements. A matrix-based
searching mechanism is proposed to attempt resolutions for com-
pilation errors during the DD process. C2D2 also integrates so-
phisticated hybrid mechanisms for code change element selection
during the DD process to search for optimal reduction results. Our
evaluations on the Defects4J dataset and the regression bug dataset
have confirmed the effectiveness and efficiency of C2D2.

In future, we plan to mitigate the risk of timeouts introduced
by extra compilation attempts. We also plan to use C2D2 to en-
large existing bug datasets and try to categorize bugs based on
critical bug-inducing and bug-fixing changes to allow new research
opportunities for data-driven bug-fixing.

7 DATA AVAILABILITY
We have publicly released the source code and experimental results
of C2D2, along with the benchmarks used in the experiments, on
https://github.com/SongXueZhi/c2d2.
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