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ABSTRACT

Simulation testing has beenwidely adopted by leading companies to
ensure the safety of autonomous driving systems (ADSs). A number
of scenario-based testing approaches have been developed to gen-
erate diverse driving scenarios for simulation testing, and demon-
strated to be capable of finding safety violations. However, there is no
automated way to diagnose whether these violations are caused by
the ADS under test and which category these violations belong to.
As a result, great effort is required to manually diagnose violations.

To bridge this gap, we proposeDiaVio to automatically diagnose
safety violations in simulation testing by leveraging large language
models (LLMs). It is built on top of a new domain specific language
(DSL) of crash to align real-world accident reports described in nat-
ural language and violation scenarios in simulation testing. DiaVio
fine-tunes a base LLMwith real-world accident reports to learn diag-
nosis capability, and uses the fine-tuned LLM to diagnose violation
scenarios in simulation testing. Our evaluation has demonstrated
the effectiveness and efficiency of DiaVio in violation diagnosis.
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1 INTRODUCTION

In recent decades, there has been a significant escalation in both aca-
demic and industrial commitment towards the development of au-
tonomous driving systems (ADSs), which have notable implications
for automotive transportation and societal benefits [52]. Unfortu-
nately, current ADSs from leading companies like Tesla, Waymo,
and Uber are still vulnerable to corner cases and exhibit incorrect
behaviors, due to the extremely complicated and diverse real-world
driving environments. Such erroneous behaviors in ADSs can result
in severe consequences and substantial losses, as exemplified by
numerous documented traffic incidents [8, 33, 45].

Consequently, leading companies have employed on-road testing
to ensure the reliability of ADSs. However, to demonstrate with 95%
confidence that autonomous vehicles are 20% safer than human dri-
vers, autonomous vehicles would have to be driven more than 11 bil-
lion miles [30]. It is expensive for on-road testing to achieve this
goal, and it is also impossible for on-road testing to test corner cases
or dangerous situations. To this end, simulation testing has been
widely adopted by these leading companies [29, 32]. Recently, many
scenario-based testing approaches [1, 2, 11, 14, 15, 22, 24, 27, 34–
36, 42–44, 56, 58, 59, 63, 64] have been proposed to generate diverse
driving scenarios for simulation testing.

These scenario-based testing approaches have been demonstrated
to be capable of finding safety violations. However, these violations
do not necessarily reveal a bug in the ADS under test because the
EGO vehicle (i.e., the vehicle controlled by the ADS under test) may
not bear the responsibility of these violations. For example, NPC ve-
hicles (i.e., other vehicles except the EGO one) may not obey traffic
signals and collide with the EGO vehicle, making NPC vehicles take
the responsibility of the violation. This is also evidenced by a recent
study [28], where 1,109 crash scenarios are automatically generated
in 240 hours. After manual diagnosis, all these violations are solely
the responsibility of NPC vehicles, revealing zero bug for the ADS.
Therefore, it becomes important to automatically diagnose the viola-
tions detected by existing scenario-based testing approaches. To the
best of our knowledge, none of the existing scenario-based testing
approaches are equipped with the violation diagnosis capability.
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Road{

“RoadType” : “undivided roadway”
“RoadShape” : “straight”
“RoadSlope” : “level”
“SpeedLimit” : “97kmph”
…

}
Environment{

“Weather” : “sunny”
“RoadCondition” : “dry”
…

}

Road{
“RoadType” : “undivided roadway”
“RoadShape” : “straight”
“RoadSlope” : “level”
“SpeedLimit” : “97kmph”
…

}
Environment{

“Weather” : “sunny”
“RoadCondition” : “dry”
…

}

Figure 1: Approach Overview of DiaVio

To bridge this gap, we propose DiaVio, a novel approach that
leverages large language models (LLMs) for automatically diagnos-
ing safety violations in ADS simulation testing. We design the diag-
nosis capability from two aspects. The first is liability determination
capability, which determines whether the EGO vehicle or the NPC
vehicle bears the responsibility for a violation. This can reduce the
cost of manually eliminating violations caused by NPC vehicles. The
second is crash classification capability, which classifies the crash
in a violation into a specific category (e.g., backover collision). This
can group similar violations together and ease the bug diagnosis.

DiaVio is built upon a new domain specification language (DSL)
for describing crashes. Our crash DSL aims to align real-world acci-
dent reports described in natural language and violation scenarios
in simulation testing. In the training phase of DiaVio, it parses real-
world accident reports (which not only provide crash details but also
diagnostic result) into crash descriptions in the syntax of our crash
DSL, and fine-tunes a base LLM based on these crash descriptions
to learn the diagnosis capability. In the inference phase of DiaVio,
it generates a crash description, following our crash DSL, for each
violation scenario identified in simulation testing, and utilizes our
fine-tuned LLM to diagnosis the violation.

We have conducted large-scale experiments to evaluate the effec-
tiveness and efficiency of DiaVio. First, we fine-tune three base LLMs
with the accident reports in NMVCCS [5] and CIREN [3] datasets.
The best of our fine-tuned LLMs has an accuracy of 87.06% and 85.44%
in liability determination and crash classification for accident re-
ports, respectively. Second, we use the best of our fine-tuned LLMs
to diagnose the violation scenarios generated by two scenario-based
testing approaches, i.e., AV-Fuzzer [36] and DriveFuzz [34]. AV-
Fuzzer and DriveFuzz respectively generate 192 and 19 violation
scenarios. Two of the authors take three days to manually diagnose
these violations to establish the ground truth. The best of our fine-
tuned LLMs takes two hours and achieves an accuracy of 93.84% and
96.21% in liability determination and crash classification for these
violations, which significantly reduces the manual cost. Finally, we
assess the quality of accident report parsing and the consistency of
our LLM-empowered violation diagnosis, which are satisfactory.

The main contributions of our work are summarized as follows.

• We proposed a crash DSL to align real-world traffic accident re-
ports and violation scenarios in simulation testing.

• We developed DiaVio to leverage LLM for the automated diag-
nosis of safety violations in ADS simulation testing.

• We conducted experiments with two scenario-based testing ap-
proaches to demonstrate DiaVio’s effectiveness and efficiency.

2 METHODOLOGY

Wepropose and implementDiaVio to automatically diagnose safety
violations identified by ADS simulation testing techniques. The ap-
proach overview of DiaVio is presented in Fig. 1. The overall idea of
DiaVio is to learn a diagnosis model from real-world traffic accident
reports, and use the learnedmodel to diagnose violation scenarios in
simulation testing. Here, the challenge is to bridge the semantic gap
between accident reports described in natural language and vio-
lation scenarios in simulation testing. To this end, we propose a
domain-specific language (DSL) to unifiedly describe crashes in
both accident reports and violation scenarios (see Sec. 2.1).

Given the crash DSL, DiaVio consists of two phases. In the first
training phase,DiaVio prepares the dataset (i.e., step 1○ in Fig. 1) by
transforming each accident report into a crash description that fol-
lows the DSL syntax (see Sec. 2.2). Then, DiaVio fine-tunes a base
large language model (LLM) (i.e., step 2○ in Fig. 1) for two diagnosis
tasks (see Sec. 2.3). The task of liability determination is to decide
which vehicle bears the responsibility for a crash occurrence, and
explain the determination reason. The task of crash classification is
to classify a crash into a specific category (e.g., backover collision
or frontal collision), and explain the classification reason.

In the second inference phase, DiaVio generates a crash descrip-
tion (i.e., step 3○ in Fig. 1), which follows the DSL syntax, for each
violation scenario identified in ADS simulation testing (see Sec. 2.4).
Then,DiaVio diagnoses the violation scenario (i.e., step 4○ in Fig. 1)
by feeding its corresponding crash description into the fine-tuned
LLM (see Sec. 2.5). The diagnostic results are reported to ADS de-
velopers to improve the ADS in a cost-efficient way.

2.1 Domain Specification Language for Crash

Wepropose a DSL to describe crashes. The DSL serves as an interme-
diate representation to align crashes in accident reports in natural
language and crashes in violation scenarios in simulation testing.
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<Crash>
 

         
<Road>

<RoadType>
<Lanes>
<Lane> 

<RoadShape>
<RoadSlope>
<SpeedLimit>

<Environment>      
<Weather>

<RoadCondition>
<TrafficSignals >     

            
<Obstacles>       
<Obstacle>

<Type>           
<Location>

<Vehicles>        
<Vehicle>

<ImpactSide>
<MovingOnWhichWay>
<LocationAfterCrash> 

<Behavior>
        

<Direction>
<VehicleAction>  
<TravelSpeed>

<WhetherToBrake>
<AttemptedLaneCrossing>

<IsAgainstRules>

<Diagnosis>          

<ResponsibleParty>
<ReasonForLiability>

<CrashCategory>
<ReasonForCategory>

::= 
 
 
::=

::=
::=
::=
::=
::=
::=
 

::= 
::= 
::=
::=

::=
::=
::=
::=

::= 
::=

::=
::=
::=
::=

::=
::=
::=
::=
::=
::=

::=

::=
::=
::=
::=

<Road>; <Environment>; <Obstacles>;
<Vehicles>; <Diagnosis>;
 
<RoadType>; <Lanes>; <RoadShape>;                    
<RoadSlope>; <SpeedLimit>;
intersection	|	cityStreet	|	ruralRoad	|	…
∅	|	<Lane>; <Lanes>;
[laneIdentifier]	|	unmentioned
straight	|	curved	|	inclined	|	…
flat	|	uphill	|	downhill	|	…
[numerical]	|	unmentioned

<Weather>; <RoadCondition>; <TrafficSignals>; 
sunny	|	rainy	|	foggy	|	…
dry	|	wet	|	icy	|	…
red	|	yellow	|	green	|	unmentioned
 
∅	|	<Obstacle>; <Obstacles>;
<Type>; <Location>;
non-motorized	vehicle	|	roadblock	|	…
[coordinate] |	unmentioned

∅	|	<Vehicle>; <Vehicles>;
<ImpactSide>; <MovingOnWhichWay>; 
<LocationAfterCrash>; <Behavior>;
front	|	rear	|	left	|	right	|	…
<Lane>
[coordinate]	|	unmentioned
<Direction>; <VehicleAction>; <TravelSpeed>; 
<WhetherToBrake>; <AttemptedLaneCrossing>; 
<IsAgainstRules>;
north	|	south	|	east	|	west |	unmentioned
accelerating	|	decelerating	|	changingLane	|	…
[numerical]	|	unmentioned
yes	|	no	|	unmentioned
left-change	|	right-change	|	no	|	unmentioned
[rule]	|	no	|	unmentioned

<ResponsibleParty>; <ReasonForLiability>; 
<CrashCategory>; <ReasonForCategory>;
<Vehicle>
[reason]
Rear-End	|	Frontal	|	Front-to-Side	|	…
[reason]

Figure 2: The Syntax of Crash DSL

Existing DSLs (e.g., [21, 53]) are designed for testing scenario gener-
ation, and thus have complex syntax. Differently, our DSL is specifi-
cally designed for describing crashes that are not supported in exist-
ing DSLs, and thus have simple syntax.We define semantic elements
derived from real-world accident reports to describe crashes.

Fig. 2 presents the syntax of our proposed DSL. A crash consists
of five components, i.e., Road, Environment, Obstacles, Vehicles
and Diagnosis. Each component is composed of subcomponents
and atomic elements, which is elaborated as follows.

• Road represents the geographical context of a crash, including
the type of road (RoadType), the lanes on the road (Lanes) whose
identifiers are numbered from the left-most lane to the right-most
lane, the shape of the road (RoadShape), the gradient of the road
(RoadSlope), and the speed limit of the road (SpeedLimit).

• Environment characterizes the weather conditions (Weather)
and the road surface conditions (RoadCondition) when a crash oc-
curs. If the crash occurs at an intersection, the status of the traffic
lights (TrafficSignals) at the time of the crash is also included.

• Obstacles describe whether there are obstacles on the road when
a crash occurs, including the type of each obstacle (Type) (e.g., a

non-motorized vehicles parked on the roadside, or a roadblock),
and its coordinate on the road (Location).

• Vehicles indicate the status of each dynamic vehicle involved in a
crash, includingwhich part of the vehicle is hit (ImpactSide), which
lane the vehicle is running (MovingOnWhichWay), the location
where the vehicle stops after the crash (LocationAfterCrash), and
the vehicle’s behavior before the crash (Behavior). Specifically,
vehicle behavior is further composed of six subcomponents. In de-
tail, Direction describes the direction in which the vehicle is run-
ning.VehicleAction describes the action the vehicle is taking, which
can be one of the ten types of actions [49, 50], including decelerat-
ing, accelerating, starting, passing, parking, turning left, turning
right, backing up, changing lanes, and merging. TravelSpeed indi-
cates the speed of the vehicle for a period of time before the crash.
WhetherToBrake indicates whether the vehicle applies the brakes.
AttemptedLaneCrossing indicates whether the vehicle attempts to
change lanes and how it changes lanes. IsAgainstRules describes
the violated traffic rules (e.g., running red lights).

• Diagnosis specifies the diagnostic result of a crash, including
which vehicle is responsible for the crash (ResponsibleParty) and
the reason for the vehicle to take the liability (ReasonForLiability),
and the category of the crash (CrashCategory) and the reason for
such a category classification (ReasonForCategory). Najm et al. [49,
50] have classified crashes into 37 categories. Based on their
categories, we consolidateminor categories, resulting in sixmajor
categories, i.e., single-vehicle crash, backover collision, rear-end
collision, frontal collision, front-to-side collision, and others.

For each subcomponent, we derive a list of atomic elements to
represent common properties about crashes. For example, the atomic
elements forWeather can be sunny, rainy, foggy, etc. If a subcom-
ponent is not involved in a crash, it is set to unmentioned. Due to
space limitation, Fig. 2 only shows part of the atomic elements, and
the full list is available at our replication site.

2.2 Dataset Preparation

We propose to use real-world accident reports, which provide not
only the crash detail but also the diagnostic result, as the dataset to
learn a diagnosis model. As accident reports are described in natural
language, we prepare the dataset by first collecting accident reports
and then converting them into crash descriptions in the syntax of
our crash DSL. We elaborate each step as follows.

Accident Report Collection. National Highway Traffic Safety
Administration (NHTSA) [4] is an organization to collect informa-
tion about vehicle crashes so as to aid in the development and eval-
uation of vehicles and highway safety. It provides real-world traffic
accident report datasets such as National Motor Vehicle Crash Cau-
sation Survey (NMVCCS) dataset [5] and Crash Injury Research En-
gineering Network (CIREN) dataset [3].We crawl these two datasets
from its website. The accident reports in these two datasets typically
describe the crashes in natural language, including road condition,
weather condition, obstacles and vehicle behaviors. Besides, each
accident report in the NMVCCS and CIREN dataset quantifies fac-
tors that contribute to the crash, while each accident report in the
NMVCCS dataset further provides an analysis of the crash category.

Data Format Conversion.We use GPT-4 [51], which has strong
capability in natural language understanding and text extraction, to
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Table 1: An Example of Interacting with GPT-4 with Prompts

Role Setting:

You are an assitant of text extraction. I’ll give you a piece of text
and a series of questions. You need to answer me with key-value
pairs based on the text. If the answer is not included in the text,
you need to reply with “unmentioned”.
Prompt:

{𝑡ℎ𝑒 𝑛𝑎𝑡𝑢𝑟𝑎𝑙 𝑙𝑎𝑛𝑔𝑢𝑎𝑔𝑒 𝑑𝑒𝑠𝑐𝑟𝑖𝑝𝑡𝑖𝑜𝑛 𝑜 𝑓 𝑎𝑛 𝑎𝑐𝑐𝑖𝑑𝑒𝑛𝑡 𝑟𝑒𝑝𝑜𝑟𝑡}
. . .
What’s the speed limit of the road?
What’s the weather like?
. . .
GPT-4 Response:

. . .
Speed limit of the road: “89 KPH (55 MPH)”
Weather Conditions: “clear”
. . .
Prompt:

Find out an answer in {𝑡ℎ𝑒 𝑐𝑜𝑛𝑡𝑒𝑛𝑡 𝑜 𝑓 𝑡ℎ𝑒 𝑐𝑟𝑎𝑠ℎ 𝐷𝑆𝐿} with the
closest meaning to your answer. If there is no matching answer,
keep your original answer.
GPT-4 Response:

. . .
“SpeedLimit”: “89kmp”
“Weather”: “sunny”
. . .

obtain structured description of crashes in accident reports. Based
on our predefined DSL in Fig. 2, we formulate a series of questions
to interact with GPT-4. As illustrated in Table 1, we first set the role
of GPT-4 primarily as a tool for extracting crash information. Then,
we feed an accident report along with a list of questions to GPT-4,
thereby extracting crucial information necessary for crash diagno-
sis. Finally, we instruct GPT-4 to align the extracted information
with the syntax of our proposed crash DSL. This last step is crucial
to ensure that each piece of information from the accident report
aligns precisely with our crash DSL, avoiding misinterpretation
due to semantically similar words. We guide GPT-4 to carefully
select values from the DSL that most closely match the intended
meaning in the accident description, thereby updating the extracted
information for a coherent and accurate structured data format.

2.3 LLM Fine-Tuning

Base LLMs pre-trained with large-scale text data may already pos-
sess strong contextual understanding and generation capabilities.We
hope to enhance the performance of base LLMs on our specific tasks
of crash diagnosis through fine-tuning. Specifically, we construct
fine-tuning dataset by the 3-tuple ⟨𝑖𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛, 𝑖𝑛𝑝𝑢𝑡, 𝑜𝑢𝑡𝑝𝑢𝑡⟩ based
on our prepared dataset in Sec. 2.2. The 𝑖𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛 part sets themodel’s
role as an assistant of two diagnosis tasks, i.e., liability determina-
tion and crash classification. The 𝑖𝑛𝑝𝑢𝑡 part includes the Road, En-
vironment, Obstacles and Vehicles components in the crash de-
scriptions for accident reports. The 𝑜𝑢𝑡𝑝𝑢𝑡 part corresponds to the
Diagnosis component. We fine-tune a base LLM so that it infers the
output based on the instruction and input, continuously improving
the fine-tuned LLM’s performance on the diagnosis tasks.
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Figure 3: The Architecture of Crash Description Generation

Full fine-tuning that retrains all the parameters is very expensive
and challenging for base LLMs with billions of parameters. There-
fore, we adopt LoRA (Low-Rank Adaptation) [25], which reduces
the number of trainable parameters by freezing the pre-trained
model weights and injecting trainable rank decomposition matri-
ces into each layer of the model, to fine-tune base LLMs using the
dataset prepared in Sec. 2.2. According to Raschka’s work [54], we
set 𝑙𝑜𝑟𝑎_𝑟 to 16 and 𝑙𝑜𝑟𝑎_𝑎𝑙𝑝ℎ𝑎 to 32 for reduced memory require-
ment, less time consumption and better performance. Besides, we
use the AdamW optimizer [40] because it is a common choice for
LLM fine-tuning. In addition, we set 𝑏𝑎𝑡𝑐ℎ 𝑠𝑖𝑧𝑒 to 128, 𝑒𝑝𝑜𝑐ℎ𝑠 to 4,
and 𝑙𝑒𝑎𝑟𝑛𝑖𝑛𝑔 𝑟𝑎𝑡𝑒 to 3𝑒−4. Notice that we use different base LLMs,
which will be introduced in Sec. 3.1.

2.4 Crash Description Generation

We develop a crash description generator to parse each violation sce-
nario detected in simulation testing to a crash description in the syn-
tax of our crash DSL. Fig. 3 presents the architecture of our crash de-
scription generator. The modules in the red box are developed by us,
while the modules in the blue box are essentially from the existing
simulation testing approaches. These existing approaches typically
consist of three parts, i.e., a graphical simulator, an ADS under test-
ing, and a test case generation method. Testers usually bridge the
ADS with the simulator, and adopt a test case generation method,
which changes scenario elements such as weather and behavior of
NPC actors, to generate violation scenarios. Once a violation sce-
nario occurs in simulation testing, our crash description generator,
consisting of the following six key modules, starts to work.

• Violation Detector.Wemonitor each run of the simulation, and
call subsequent modules to generate a description of the violation
scenario when a crash between the EGO vehicle and the NPC ve-
hicles is detected. This crash detection is implemented by directly
calling the simulator’s built-in Python API.

• Road Parser. We parse the HD map file in the base_map.bin or
OpenDRIVE format from the simulator to extract the information
about the road where the crash occurs. Specifically, the HD map
file contains the information about the full road. It directly speci-
fies the speed limit, road type, and road shape of each lane, and
also includes coordinate information and unique identifiers for
lanes, roads, junctions, and traffic signals. Using this informa-
tion, we construct a dictionary to store the binding relationships
between lanes and roads, between lanes and junctions, and be-
tween traffic lights and lanes. As we only need the information
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about a specific part of the road where the crash occurs, we first
obtain the EGO vehicle’s position when the crash occurs through
the simulator’s Python API, and then locate the specific part of
the road according to the EGO vehicle’s position, and finally ex-
tract information of RoadType, Lane, RoadShape, RoadSlope and
SpeedLimit for the specific part of the road.

• Environment and Obstacle Parser.We parse the environment
condition of the crash and get the information of the obstacles
from the simulator. Specifically, we first extract information of
Weather and RoadCondition through the Python API provided by
the simulator. Second, from the dictionary constructed by Road

Parser, we query the status of the traffic light that is bound to
the lane where the EGO vehicle’s position locates, and obtain in-
formation of TrafficSignals. Finally, we obtain information of ob-
stacles on the lane where the EGO vehicle travels, including their
types and their coordinates, through the simulator’s Python API.
In this way, we extract information of Type and Location.

• Vehicle Analyzer. We get detailed information of vehicles in-
volved in the crash and analyze their behaviors. First, we get the
status of involved EGO and NPC vehicles from the simulator us-
ing Python API, including their speed, position, direction, angular
velocity, and rotation (the angular difference between the vehi-
cle’s heading direction and the y-axis of the simulator’s world
map). In this way, we obtain information of TravelSpeed,Direction
and LocationAfterCrash. Second, using the dictionary constructed
by Road Parser, we query the lane where the vehicles run from
the vehicles’ position trajectory before the crash. Thus, we obtain
information of MovingOnWhichWay. Third, based on the posi-
tions of the two colliding vehicles and their rotations, we deter-
mine the relative spatial relationship between the two vehicles,
and then determine the impact side of each vehicle (i.e., Impact-
Side). Finally, by measuring the changes of a vehicle’s speed and
its steering angle before the crash, we determine the vehicle’s
action, braking behavior, and tendency to cross lanes. In this way,
we obtain information of VehicleAction, WhetherToBrake and At-
temptedLaneCrossing. Besides, to determine whether a vehicle
violates traffic rules (i.e., IsAgainstRules), we use Rule Checker,
which will be introduced next.

• Rule Checker. We monitor the vehicle’s driving behavior to de-
terminewhether the vehicle is against certain rules. Currently, we
support the checking of two type of rules. One is to checkwhether
vehicle’s behavior complies with traffic regulations, including
whether a vehicle has run a red light, crossed solid lane markings,
or exceeded the speed limit. The other is to check whether vehi-
cle’s behavior is reasonable, such as engaged in hard acceleration
or braking. The checker can be extended to support other rules.
– Running Red Light Detection. We check all timestamps
when the traffic lights are red during each simulation run. If a
vehicle is found to be beyond the stop line at a junction with a
non-zero speed, we consider it as a violation.

– Solid Lane Crossing Detection. We retain a vehicle’s trajec-
tory information to match it with the HD map information. If
the vehicle’s trajectory crosses solid lane markings on the HD
map, we consider it as a violation.

– Over Speed Detection. We check a vehicle’s speed during
simulation. If there is a continuous period of time (e.g., 10

frames) where the vehicle’s speed exceeds the lane’s speed
limit, we consider it as a violation.

– Hard Acceleration/Braking Detection. We calculate the
hard acceleration/braking indicator 𝐾𝑎𝑏 = 𝑎/𝑔 [12] where 𝑎
represents the acceleration of a vehicle and 𝑔 represents the
gravitational constant. We use ±0.6 as a decision boundary for
𝐾𝑎𝑏 , following the prior work [34]. Specifically, we consider a
vehicle to conduct a hard acceleration if 𝐾𝑎𝑏 ≥ 0.6 or conduct
a hard braking if 𝐾𝑎𝑏 ≤ −0.6.

• Description Generator. This module is to generate a crash de-
scription aligning with our crash DSL. To this end, based on the
syntax of our crash DSL, we create a description template that
serves as a framework for describing the crash. This template
is populated with data extracted from the preceding modules,
ensuring a comprehensive characterization of the crash.

2.5 LLM-Empowered Diagnosis

After generating the crash description for a detected violation sce-
nario (where the Diagnosis component is missing), we use the fine-
tuned LLM in Sec 2.3 to diagnose the violation (i.e., to infer the Di-
agnosis component). Specifically, similar to fine-tuning, we set the
fine-tuned LLM’s role as an assistant of the two diagnosis tasks (i.e.,
we set the instruction), feed the generated crash description as the
input to the fine-tuned LLM, and obtain its inferred output.

We observe that the instruction and input for each training data
in Sec. 2.3 is approximately 520 tokens, and the output is around 120
tokens. Hence, we configure the maximum context tokens to 1,024.
This extended token limit accommodates the processing of longer
and more complex crashes, ensuring that input and output will not
be truncated. Additionally, we set the𝑚𝑎𝑥_𝑛𝑒𝑤_𝑡𝑜𝑘𝑒𝑛𝑠 parameter
to 200, which affects the length of the model’s output. This allows
the model to generate focused and relevant output, particularly in
identifying key factors of a crash. Besides, 𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 and 𝑡𝑜𝑝_𝑝
affect the consistency of outputs of the fine-tuned LLM. We choose
to change 𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 instead of changing both of them, following
the practice in prior work [60]. Higher 𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 encourages the
model to take more risk, making the output creative, but sometimes
it can also be hurtful, making the output too diverge. Here, we set
𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 to 0.5, ensuring that the model maintains consistency
in diagnosis while giving creative inferences.

3 EVALUATION

To evaluate the effectiveness and efficiency of DiaVio, we design
the following five research questions.

• RQ1: How effective is DiaVio in liability determination on real-
world accident reports?

• RQ2: How effective is DiaVio in crash classification on real-
world accident reports?

• RQ3: How effective and efficient is DiaVio in diagnosing viola-
tion scenarios, compared with manual diagnosis?

• RQ4: What are the types of violations DiaVio helps to find?
• RQ5: What is the quality of accident report parsing and the con-
sistency of our LLM-empowered violation diagnosis?
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3.1 Evaluation Setup

Datasets. As introduced in Sec. 2.2, we use two datasets of accident
reports. The NMVCCS dataset [5] includes 6,949 cases of vehicle
accidents, composed of crash summary, causation and category anal-
ysis. The CIREN dataset [3] includes 2,499 cases of vehicle accidents
composed of crash summary and causation. Due to web page fail-
ures, we successfully obtain 6,947 NMVCCS cases and 2,490 CIREN
cases. Excluding the cases that do not reveal which vehicle is re-
sponsible, we obtain 6,910 NMVCCS cases and 2,455 CIREN cases.

Base LLMs.We use seven open-source LLMs that belong to four
different series. Baichuan2-7B-Chat [57] is a part of Baichuan 2,
a series of large-scale multilingual language models developed by
Baichuan Intelligent Technology. It contains 7 billion parameters
and is trained from scratch on a massive corpus of 2.6 trillion tokens.
ChatGLM3-6B [7], released by Zhipu.AI and Tsinghua University’s
KEG lab, is a part of the ChatGLM3 series, which is the latest gener-
ation of open-source, bilingual chat-oriented LLMs.Qwen-7B/14B-

Chat [16, 17], designed by Alibaba Cloud, are parts of the Qwen
series. These models are trained on an extensive dataset comprising
web texts, literary works and code. Llama-2-7b/13b/70b-chat-hf

[46–48] are released by Meta AI. The Llama2 series is a collection
of pre-trained and fine-tuned generative text models ranging in
scale from 7 billion to 70 billion parameters.

EvaluationMetrics.We use three metrics, i.e., accuracy, preci-
sion and recall, to assess the diagnosis effectiveness (with respect
to the ResponsibleParty and CrashCategory in our DSL). In addition,
we use several lexical and semantic metrics to assess the diagnosis
explanation effectiveness (with respect to the ReasonForLiability
and ReasonForCategory in our DSL). In other words, we compare
the generated explanation text with the ground truth explanation
text from both lexical and semantic perspectives.

For lexical metrics, we employ BLEU-4 (Bilingual Evaluation
Understudy) [39] to calculate n-grams overlap from 1 to 4 between
the ground truth and generated explanation texts. We also use ME-

TEOR (Metric for Evaluation of Translation with Explicit Ordering)
[38], which is based on the harmonicmean of unigram precision and
recall as well as stemming and synonymymatching, andROUGE-L
(Recall Oriented Understudy for Gisting Evaluation) [10], which
considers sentence-level structural similarity.

For semantic metrics, we useBERTScore [61], which utilizes the
pre-trained contextual embeddings from BERT [18] and matches
ground truth and generated explanation texts based on cosine simi-
larity. We also employ BLEURT [55] to measure the degree to what
extent the generated explanation text is fluent and conveys the
meaning of the ground truth explanation. We further use NUBIA

(NeUral Based Interchangeability Assessor) [31], which incorpo-
rates the semantic similarity, logical inference and sentence legibil-
ity from exposing layers of pre-trained language models.

Research Question Setup. For RQ1, we use both NMVCCS
and CIREN datasets, a total of 9,365 cases of accidents. We use 6,275,
1,545 and 1,545 cases for training, validation and testing. For RQ2,
we only use theNMVCCS dataset because the CIREN dataset does not
provide the crash category analysis. We divide each category of ac-
cidents by a ratio of 4:1:1, and obtain 4,633, 1,137 and 1,140 cases for
training, validation and testing. For RQ1 and RQ2, we initially as-
sess the effectiveness of the seven base LLMs on our diagnosis tasks.

ResponsibleParty：V1.
ReasonForLiability：The causation is that
V1 failed to yield the right of way to V2, which
had the green light, and instead turned left
into the path of V2. This action caused the
front of V2 to collide with the left side of V1
even though V1 had decelerated to avoid
collision. It's also worth mentioning that the
road conditions were wet due to rain, which
may have contributed to the severity of the
impact.

(a) Liability Determination

CrashCategory: Front-to-Side.
ReasonForCategory: The description of the
crash states that V2 was traveling north on the
2-lane road and struck V1 in the left side as it
was trying to change lane to the left. This
indicates that the front of V2 collided with the
side of V1, which fits the definition of a Front-
to-Side Collision.

(b) Crash Classification

Figure 4: Diagnosis of Fine-Tuned Llama2-70b-chat-hf

Subsequently, we select three top-performing base LLMs for fine-
tuning with our dataset, ultimately obtaining the best-performing
model on the testing data. We test each model on testing data for
two times and report the average results.

For RQ3 and RQ4, we bridge DiaVio with two state-of-the-art
open source scenario-based testing approaches, i.e., AV-Fuzzer [36]
and DriveFuzz [34]. Specifically, we set up AV-Fuzzer with the
Apollo 8.0 ADS [9] and the SORA-SVL simulator [26], and set up
DriveFuzzwith the Behavior Agent ADS [13] and the Carla simula-
tor [20] according to their documents respectively. Our experiments
are not designed to find more violations, but to evaluate whetherDi-
aVio can effectively and efficiently diagnose violations and whether
the violations are caused by ADSs. Therefore, we run AV-Fuzzer
and DriveFuzz for 24 hours. Then, two of the authors separately
diagnose each violation to establish the ground truth. A third author
is involved for a group discussion to resolve conflicts and reach
agreements. Finally, the Cohen Kappa coefficient reaches 0.897.

For RQ5, to measure the quality of accident report parsing, two
of the authors independently assess the accuracy of each key-value
pair responded by GPT-4 given the original accident reports. When
there is a conflict between the two authors’ assessment, a third au-
thor is involved to have a group discussion for reaching agreements.
Finally, the Cohen Kappa coefficient reaches 0.845. Besides, to mea-
sure the consistency of our LLM-empowered violation diagnosis,
we compare the diagnostic results of two inferences on each testing
data in RQ1 and RQ2 and on each detected violation in RQ3.

Environment. We conduct model fine-tuning and inference
on a Ubuntu 20.04.6 LTS server with 8 NVIDIA A800 GPUs, Intel
Core 8358P CPU with 2.60GHz processor and 1TB memory. We run
AV-Fuzzer and DriveFuzz on a Ubuntu 18.04.6 LTS server with a
NVIDIA GeForce RTX 3090 GPU, Intel Core i9-12900K CPU with
5.20GHz processor and 64GB memory.

3.2 Results of RQ1

We measure the effectiveness of both base and fine-tuned LLMs on
the task of liability determination, i.e., determining which vehicle is
responsible for the accident as well as explaining the reason, using
the 1,545 accidents in the testing data. Fig. 4(a) illustrates an example
of the diagnostic result inferred by a fine-tuned LLM.

Effectiveness of Base LLMs.Table 2(a) reports the effectiveness
of our seven base LLMs. In terms of accuracy, it measures the propor-
tion of accidents whose inferred ResponsibleParty is the same to the
ground truth from the total number of accidents in the testing data.
The Qwen series performs poorly, having an accuracy of only about
50%, and the Llama2 series performs well, achieving an accuracy of
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Table 2: Effectiveness on the Liability Determination Task

(a) Results of Base LLMs

Models Accuracy Lexical Metrics Semantic Metrics

BLUE-4 METEOR ROUGE-L BERTScore BLEURT NUBIA

Baichuan2-7B-Chat 61.68 0.09 8.35 9.16 54.47 39.56 32.99
ChatGLM3-6B 67.44 0.81 11.02 16.29 61.86 38.92 32.36
Qwen-7B-Chat 52.56 2.08 14.53 16.02 63.52 43.69 36.01
Qwen-14B-Chat 47.38 1.20 12.43 15.43 62.95 43.43 38.39
Llama2-7b-chat-hf 78.25 2.69 13.04 18.96 63.73 41.76 37.59
Llama2-13b-chat-hf 70.74 1.82 13.16 17.38 63.93 42.42 38.16
Llama2-70b-chat-hf 81.29 1.71 15.20 19.45 64.24 45.46 44.17

(b) Results of Fine-Tuned LLMs

Models Accuracy Lexical Metrics Semantic Metrics

BLUE-4 METEOR ROUGE-L BERTScore BLEURT NUBIA

Llama-2-7b-chat-hf 82.91 4.66 17.61 20.58 72.79 44.71 55.05
Llama-2-13b-chat-hf 82.52 5.57 18.68 22.00 72.88 45.15 57.47
Llama-2-70b-chat-hf 87.06 6.96 19.28 23.26 74.34 45.53 58.54

over 70%, with Llama2-70B-chat-hf achieving the highest accuracy
of 81.29%. In terms of lexical and semantic metrics on the inferred
ReasonForLiability, they are measured on the accidents whose in-
ferred ResponsibleParty is the same to the ground truth. Baichuan2-
7B-Chat performs the worst, with its metrics significantly lower
than other models. Llama2-7b-chat-hf performs the best on BLUE-4,
achieving 2.69, while Llama2-70b-chat-hf performs the best on ME-
TEOR, ROUGE-L, BERTScore, BLEURT and NUBIA, scoring 15.20,
19.45, 64.24, 45.46 and 44.17, respectively. Overall, the base LLMs in
the Llama2 series performs well on the liability determination task.

We observe that the performance of Qwen-14B-Chat and Llama2-
13b-chat-hf do not significantly improve with an increase in their
model parameters. A contributing factor to this phenomenon ap-
pears to be the models’ tendency to provide more conservative re-
sponses in certain cases, such as stating “hard to judge due to legal,
ethical, or moral aspects”. Additionally, these models sometimes
offer lengthy explanations. Such styles of responses could be attrib-
uted to the models’ pre-training process, where they are trained to
consider legal and ethical factors. As a result, it leads to a decrease
in their performance when processing certain cases.

Besides, upon analyzing the performance differences across mod-
els in the task of liability determination, we identified several critical
factors that impacted model’s effectiveness. Specifically, models
such as Baichuan2-7B-Chat and the Qwen series exhibited a lower
accuracy, which can be attributed to their insufficient comprehen-
sion of traffic scenarios and task demands. For example, Baichuan2-
7B-Chat’s outputs were often ambiguous and lacked the clarity and
precision needed for assigning responsibility in complex traffic
situations. The Qwen series demonstrated a tendency to provide
indecisive or overly cautious responses, often suggesting a lack of
sufficient information to make a direct judgment or attributing
responsibility to all parties involved without pinpointing the pri-
mary responsible party. This behavior could be traced back to the
models’ training process, where they might have been exposed to a
balanced approach towards legal, ethical, or moral considerations,
leading them to shy away from definitive statements in complex or

ambiguous situations. It is also worth mentioning that accuracy and
linguistic metrics (such as BLEU-4, METEOR, and ROUGE-L) can
be not direct. Models demonstrating a lower accuracy in liability
determination may still produce outputs that are structurally and
linguistically similar to the ground truth answers.

Effectiveness of Fine-Tuned LLMs. We fine-tune the three
top-performing base LLMs. After fine-tuning, these models achieve
a significant improvement in all the metrics as shown in Table 2(b).
In terms of accuracy, these models achieve an average increase of
7.40%, obtaining an accuracy of up to 87.06%. In terms of lexical met-
rics, these models achieve an average increase of 3.66%, 4.72% and
3.35% on BLUE-4, METEOR and ROUGE-L, respectively. In terms of
semantic metrics, these models achieve an average increase of 9.37%,
1.92% and 17.05% on BERTScore, BLEURT and NUBIA, respectively.

Summary. Fine-tuning enables base LLMs to gain a better ca-
pability of liability determination by not only accurately de-
termining the responsible party but also explaining the reason.
The fine-tuned Llama2-70b-chat-hf performs the best in all
the metrics, and is effective in the liability determination task.

3.3 Results of RQ2

We measure the effectiveness of both base and fine-tuned LLMs on
the task of crash classification, i.e., classifying each accident into a
specific category as well as explaining the reason, using the 1,140 ac-
cidents in the NMVCCS testing data. Fig. 4(b) illustrates an example
of the diagnostic result inferred by a fine-tuned LLM.

Effectiveness of Base LLMs. Table 3(a) shows the effectiveness
of our seven base LLMs. In terms of accuracy, it measures the pro-
portion of accidents whose inferred CrashCategory is the same to
the ground truth from the total number of accidents in the testing
data. Baichuan2-7B-Chat performs the worst, hardly classifying
accidents correctly, with an accuracy of only 17.41%. Llama-2-70b-
chat-hf performs the best with an accuracy of 76.17%. The accu-
racy of other models falls between 30% and 60%. It is potentially
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Table 3: Effectiveness on the Crash Classification Task

(a) Results of Base LLMs

Models Accuracy Lexical Metrics Semantic Metrics

BLUE-4 METEOR ROUGE-L BERTScore BLEURT NUBIA

Baichuan2-7B-Chat 17.41 2.55 13.30 15.05 48.22 21.92 14.24
ChatGLM3-6B 30.43 1.09 11.87 13.34 47.93 26.46 12.43
Qwen-7B-Chat 29.20 3.97 17.78 21.38 48.56 44.40 31.20
Qwen-14B-Chat 37.90 2.56 15.55 18.32 48.06 41.60 30.96
Llama-2-7b-chat-hf 39.14 7.22 22.34 23.93 50.82 47.45 40.43
Llama-2-13b-chat-hf 53.56 7.13 24.10 24.43 50.97 48.08 40.80
Llama-2-70b-chat-hf 76.17 7.68 25.51 25.25 52.02 49.29 41.62

(b) Results of Fine-Tuned LLMs

Models Accuracy Lexical Metrics Semantic Metrics

BLUE-4 METEOR ROUGE-L BERTScore BLEURT NUBIA

Llama-2-7b-chat-hf 67.19 17.76 30.09 38.87 65.70 55.49 42.56
Llama-2-13b-chat-hf 77.04 15.13 30.42 35.02 65.22 55.83 43.89
Llama-2-70b-chat-hf 85.44 18.22 29.93 38.71 65.33 56.45 45.22

because base LLMs fail to understand the six crash categories in
the testing data, resulting in a lower accuracy. In terms of lexical
and semantic metrics on the inferred ReasonForCategory, they are
measured on the accidents whose inferred CrashCategory is the
same to the ground truth. ChatGLM3-6B performs the worst. The
Llama2 series outperforms other models on these metrics. The rea-
sons provided by Llama2 models are closer to the ground truth.
Among them, Llama-2-70b-chat-hf is the best base model, achiev-
ing 7.68, 25.51, 25.25, 52.02, 49.29 and 41.72 on BLUE-4, METEOR,
ROUGE-L, BERTScore, BLEURT and NUBIA, respectively.

We observed a common misclassification between Front-to-Side
Collisions and Rear-End Collisions by most base LLMs except for
Llama-2-13b/70b-chat-hf. Despite the clear definitions being pro-
vided for each crash category, base LLMs still misinterpreted these
two types of scenarios occurring at intersections. Moreover, base
LLMs may classify violations whose types they could not determine
as "Other". These inaccuracies suggest that, without fine-tuning,
base LLMs may struggle to differentiate between violation types
that share similar elements but occur under different circumstances.

Effectiveness of Fine-Tuned LLMs. Table 3(b) shows the re-
sults of fine-tuned Llama2 models on crash classification. After fine-
tuning, these three models show a significant improvement in all
metrics. In terms of accuracy, these models achieve an average im-
provement of 20.27%, with the highest reaching 85.44%. In terms
of lexical metrics, these models achieve average an improvement
of 9.69%, 6.16% and 13.00% on BLUE-4, METEOR and ROUGE-L,
respectively. In terms of semantic metrics, these models show an
average improvement of 14.15%, 7.65% and 2.94% on BERTScore,
BLEURT and NUBIA, respectively.

Summary. Fine-tuning enables base LLMs to have a deeper
understanding of crash classification by not only accurately
classifying the crash category but also explaining the reason.
Llama2-70b-chat-hf performs the best in all the metrics, and
is effective in the crash classification task.

Table 4: Results of DiaVio Compared with Manual Diagnosis

on the Liability Determination Task

Responsible Party AV-Fuzzer DriveFuzz

DiaVio Manual DiaVio Manual

EGO Vehicle 54 41 9 9
NPC Vehicle 138 151 10 10

3.4 Results of RQ3

In 24 hours of simulation testing,AV-Fuzzer generates 192 violation
scenarios, whileDriveFuzz generates 19 violation scenarios. Two of
the authors take three days to manually diagnose these violations to
establish the ground truth, while DiaVio, with the best-performing
fine-tuned Llama2-70b-chat-hf takes two hours to automatically di-
agnose these violations. Therefore, DiaVio can significantly reduce
the manual effort of diagnosing violation scenarios.

Table 4 reports comparison results of DiaVio and manual diag-
nosis on the liability determination task. For AV-Fuzzer, DiaVio
determines that 54 violations are caused by the EGO vehicle (i.e., the
ADS), and 138 violations are caused by NPC vehicles. Instead, our
manual diagnosis suggests that 41 violations are caused by the
EGO vehicle, and 151 are caused by NPC vehicles. In summary, Di-
aVio wrongly attributes 13 violations caused by NPC vehicles to
the responsibility of the EGO vehicle. In these 13 scenarios, NPC
vehicles overtake and change lanes in front of the EGO vehicle,
nearly completing the maneuver (with a close distance between
the vehicles). The EGO vehicle fails to brake in time, leading to a
collision. Our manual diagnosis thinks it is due to NPC vehicle’s
unreasonable lane changing and overtaking. However, DiaVio con-
siders them to be a rear-end collision caused by the EGO vehicle.
For DriveFuzz, DiaVio determines that 9 violations are caused by
the EGO vehicle and 10 violations are caused by the NPC vehicles,
which is totally consistent with manual diagnosis. Overall, DiaVio
achieves an accuracy of 93.84%, a precision of 79.36% and a recall
of 100% on liability determination task.
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Table 5: Results of DiaVio Compared with Manual Diagnosis

on the Crash Classification Task

Crash Category AV-Fuzzer DriveFuzz

DiaVio Manual DiaVio Manual

Rear-End Collision 47 42 3 5
Frontal Collision 0 0 3 3
Front-to Side Collision 144 150 13 11
Others 1 0 0 0

Table 6: Effectiveness of DiaVio w.r.t. Crash Categories

Crash Category AV-Fuzzer DriveFuzz

Pre. Rec. Acc. Pre. Rec. Acc.

Rear-End Collision 89.36% 100%

96.88%

100% 60.00%

89.47%Frontal Collision N/A N/A 100% 100%
Front-to-Side Collision 100% 96.00% 84.62% 100%
Others 0.00% N/A N/A N/A

Table 5 reports comparison results of DiaVio and manual diag-
nosis on the crash classification task. For AV-Fuzzer, DiaVio incor-
rectly classifies 5 front-to-side collisions to rear-end collisions. In
these 5 scenarios, the rear vehicle hits the front vehicle that almost
finishes lane changing, causing DiaVio to mistakenly classify them
as rear-end collisions. DiaVio also fails to recognize one front-to-
side collision, and thus incorrectly classifies it as others. For Drive-
Fuzz, DiaVio incorrectly classifies 2 rear-end collisions as front-to-
side collisions. In these 2 scenarios, the rear vehicle collides with the
side-rear of the front vehicle that is trying to turn, causing DiaVio
to mistakenly classify them as front-to-side collisions. Table 6 shows
the accuracy, precision and recall of DiaVio with respect to crash
categories. Overall, it has an accuracy of 96.21%, a macro-precision
of 72.18% and a macro-recall of 97.34% on crash classification task.

We also ask two of the authors who carry out the manual diagno-
sis to review the reasons provided byDiaVio. AlthoughDiaViomay
not provide perfect reasons and even sometimes lead to a wrong
direction, they still think these reasons can help them quickly diag-
nose violations, serving a guiding role.

Summary. DiaVio achieves an accuracy of 93.84% and 96.21%
on the liability determination and crash classification tasks
efficiently. Therefore, DiaVio can eliminate a large number
of violation scenarios caused by NPC vehicles, significantly
improving the efficiency of violation diagnosis.

3.5 Results of RQ4

Based on the diagnostic results of liability determination and crash
classification, we summarize common types of violations caused
by NPC vehicles and the EGO vehicle for each crash category. To
illustrate each case, we use a yellow car to represent an EGO vehicle
and a white car to represent a NPC vehicle.

In rear-end collisions, we summarize threemain types of collision
scenarios, two of which are caused by NPC vehicles, and one of
which are caused by the EGO vehicle due to flaws in the ADS.

Case Study 1: Fig. 5(a) shows one type of collisions caused by
NPC vehicles in rear-end collisions. NPC vehicle performs a risky
overtaking and lane-changing maneuver. EGO vehicle maintains

(a) Case 1 (b) Case 2 (c) Case 3

Figure 5: Rear-End Crashes

its lane and decelerates in response to the erratic behavior of NPC
vehicle. Despite EGO vehicle’s attempt to brake, NPC vehicle cuts in
too closely, leading to a collision where EGO vehicle rear-ends NPC
vehicle. In this situation, EGO vehicle recognizes the lane-changing
and overtaking behavior of NPC vehicle, and brakes to avoid it.
However, NPC vehicle fails to maintain sufficient distance from
EGO vehicle after overtaking, leading to a rear-end collision.

Case Study 2: As depicted in Fig. 5(b), EGO vehicle arrives at
an intersection, recognizes the traffic signal as red, decelerates, and
stops in front of the stop line to wait. NPC vehicle, maintaining its
original speed, rear-ends EGO vehicle from behind. In this situation,
it is evident that the collision is caused by NPC vehicle.

Case Study 3: As shown in Fig. 5(c), EGO vehicle fails to take
actions to decelerate and brake, instead colliding with NPC vehicle
at a constant speed, when the leading NPC vehicle slows down to a
stop. In this situation, EGO vehicle fails to maintain a safe distance
from NPC vehicle ahead, and the ADS does not recognize NPC
vehicle’s deceleration, leading to a rear-end collision.

In front-to-side collisions, we summarize six main types of colli-
sion scenarios, four of which are caused by NPC vehicles, and two
of which are caused by the EGO vehicle due to flaws in the ADS.

Case Study 4: As depicted in Fig. 6(a), NPC vehicle performs an
abrupt lane changing, which leads to a sideswipe collision with EGO
vehicle. In this situation, although EGO vehicle takes actions to de-
celerate and evade, the collision cannot be avoided due to NPC ve-
hicle’s sudden lane-changing behavior. Such accidents are entirely
the responsibility of NPC vehicle.

Case Study 5: Fig. 6(b) shows a scenario where NPC vehicle vio-
lates traffic regulations by crossing a solid line to change lanes, col-
lidingwith EGO vehicle running in an adjacent lane. In this scenario,
it is clearly caused by the irrational behavior of NPC vehicle.

Case Study 6: Fig. 6(c) illustrates an accident where EGO vehicle
stops and is waiting for a red light at the intersection. However,
NPC vehicle takes a lane changing and consequently impacts the
side of EGO vehicle. In this scenario, it is clearly caused by the
irrational behavior of NPC vehicle.

Case Study 7: As shown in Fig. 6(d), EGO vehicle initially stops
at a red light at an intersection. When the light turns green, EGO
vehicle assumes that NPC vehicle would obey the red light and stop
for waiting, hence it accelerates through the intersection. However,
NPC vehicle does not obey the red light, resulting in a side collision.

Case Study 8: As shown in Fig. 6(e), EGO vehicle attempts to
change lanes to the left, but fails to detect an approaching NPC
vehicle from behind, leading to a side collision with NPC vehicle. In
this situation, the ADS fails to successfully predict the behavior of
vehicles in the adjacent lane and makes a lane change at a too short
distance, attributing the collision to EGO vehicle.
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(a) Case 4 (b) Case 5 (c) Case 6 (d) Case 7 (e) Case 8 (f) Case 9

Figure 6: Front-to-Side Crashes

Figure 7: Frontal Crashes (Case 10)

Case Study 9: As depicted in Fig. 6(f), EGO vehicle makes a
left turn at an intersection, but collides with NPC vehicle, which
stops slightly beyond the stop line. In this situation, the ADS fails to
detect the vehicle stopped at the intersection, leading to a collision.

In frontal collisions, they are all caused by NPC vehicles, and we
summarize one type of collision scenario.

Case Study 10: As shown in Fig. 7, EGO vehicle slows down and
stops at the entrance of a roundabout, waiting to enter. NPC vehicle
exits the roundabout and collides head-on with EGO vehicle.

Summary. We summarize common types of scenarios that
are caused by EGO and NPC vehicles with the help of our di-
agnostic results. In practice, liability determination helps to
eliminate violations caused by NPC vehicles, and crash classifi-
cation helps to quickly summarize common types without the
need to look into each violation of the same crash category.

3.6 Results of RQ5

Quality of Accident Report Parsing. Due to the large number
of accident reports, we evaluate the quality of GPT-4’s parsing (see
Sec. 2.2) through a sampling approach. We randomly select 369 ac-
cident reports from a total of 9,365 accident reports, achieving a
confidence level of 95% and a margin error of 5%. Here, we use ac-
curacy, which is defined as the proportion of the accident reports
where GPT-4’s parsing output matches the actual information from
accident reports, to measure the quality. We compute the accuracy
for each of the five components, as reported in Table 7.

We can see that GPT-4 achieves an accuracy of over 85% for all
the five components, and achieves an accuracy of over 95% forRoad,
Environment andDiagnosis. Overall, the average accuracy is 93.41%.
Specifically, Diagnosis exhibits the highest accuracy of 98.17%, at-
tributed to the fact that traffic accident reports typically state the re-
sponsible party and crash analysis clearly.Vehicles exhibits the low-
est accuracy of 85.36%. This is partially because some reports pro-
vide implicit details on vehicle positions and behaviors. In such in-
stances, GPT-4 often outputs “unmentioned” as it fails to understand
the implicit details, leading to a lower accuracy in Vehicles.

Table 7: Quality of GPT-4’s Accident Report Parsing

Road Environment Obstacles Vehicles Diagnosis

Accuracy 96.34% 97.56% 89.63% 85.36% 98.17%

Table 8: Lexical and Semantic Comparison of the Reasons

Generated by Fine-Tuned Llama2-70b-chat-hf

BLUE-4 METEOR ROUGE-L BERTScore BLEURT NUBIA

28.65 31.68 45.35 97.69 59.62 59.97

Consistency of Diagnosis.We compare the results of two in-
ferences by fine-tuned Llama2-70b-chat-hf on the same data. Here
we report the consistency results on the testing data in RQ1 and
RQ2, and the results on the detected violations in RQ3 are similar
and thus are omitted. With respect to ResponsibleParty and Crash-
Category, the model’s consistency reaches 96.88% and 89.47%, re-
spectively. With respect to ReasonForLiability and ReasonForCate-
gory, we measure the lexical and semantic similarity between the
outputs of two inferences, as reported in Table 8. We can observe
that the two inferences have a high similarity in both lexical and
semantic metrics.

Summary.GPT-4 accurately parse the crash information from
traffic accident reports, which helps to enhance the perfor-
mance of base LLMs on our diagnosis task through fine-tuning.
Besides, DiaVio, empowered by LLM, can produce consistent
diagnostic results.

3.7 Threats to Validity

First, the quality of real-world accident reports and the converted
dataset using GPT-4 pose a threat to validity. To that end, we select
the NMVCCS and CIREN datasets, and evaluate the quality of the
converted data through manual analysis. We believe our approach
can be applied to other traffic accident datasets that include detailed
descriptions of accident scenes and police analysis results.

Second, the performance discrepancies of different LLMs on our
task affect the validity. Thus, we evaluate seven different LLMs with
varying parameter sizes, and fine-tune the three best-performing
LLMs. Ultimately, we use the best-performing Llama2-70b-chat-
hf model. Users can choose models with smaller parameter sizes
based on their environmental conditions, without sacrificing too
much performance. All the fine-tuned LLMs are open-sourced and
available at our replication site.

Third, the general applicability of DiaVio poses another threat.
To alleviate this threat, we bridge DiaVio with AV-Fuzzer and
DriveFuzz, demonstrating the effectiveness of DiaVio across two

385



DiaVio: LLM-Empowered Diagnosis of Safety Violations in ADS Simulation Testing ISSTA ’24, September 16–20, 2024, Vienna, Austria

simulation testing approaches, two simulators, and two ADSs. We
believe that DiaVio can be easily adapted to support other simula-
tion testing approaches.

Last, we summarize our DSL from real-world accident reports.
Our DSL is designed to encompass a broad range of components and
subcomponents based on accident reports in NMVCCS and CIREN
dataset. When preparing the ground truth for RQ5, we manually
analyze the 369 accident reports, and our DSL can fully describe
these accidents. Therefore, we believe our DSL is reasonable. The
content of the subcomponents can be easily extended when more
information is present in other dataset.

4 RELATEDWORK

ScenarioDescription Language.DSLs have been proposed to gen-
erate driving scenarios for testing ADSs. For example, Fremont et
al. [21] introduce Scenic as a DSL to characterize driving scenarios
based on a probabilistic programming method. Queiroz et al. [53]
design GeoScenario as a DSL for scenario representation to substan-
tiate testing scenarios in simulation. OpenScenario [6] is the current
XML-based standard for scenario description. These existing DSLs
mostly aim at generating testing scenarios and thus contain compli-
cated and hard-to-master syntax. In contrast to existing DSLs, we
propose the crash DSL with simple syntax, specifically designed for
describing crashes in accident reports and violation scenarios.

Scenario-Based Testing. Scenario-based testing [19, 23, 37, 41,
62, 65] has been widely studied to generate diverse driving scenar-
ios for ADS testing. Several attempts have been made to find safety
violations that cause crashes. For example, Abdessalem et al. [1, 11],
Li et al. [36], and Tian et al. [58] define a driving scenario as a vector
of multiple variables (e.g., vehicle speed) and apply generic algo-
rithms to search the variable space for driving scenarios where the
EGO vehicle can collide with NPC vehicles. Chen et al. [14] design
an adaptive evaluation framework to find crashes in adversarial
environments generated by deep reinforcement learning, and they
specifically focus on lane-changing scenarios. Zhong et al. [64] pro-
pose AutoFuzz to use neural networks in the process of evolutionary
search to generate more complex and valid collision scenarios. Tian
et al. [59] propose to generate safety-critical driving scenarios by
mining influential behavior patterns from real traffic trajectories.
Lu et al. [42, 43] use reinforcement learning to learn environment
configurations that lead to a crash. Hildebrandt et al. [24] introduce
a physical environment-state coverage metric to find crashes.

In addition to focusing on crashes, some studies further aim to
identify driving scenarios where ADSs violate established rules. For
example, Abdessalem et al. [2] use a search-based method to gener-
ate scenarios where vehicles exhibit behaviors like speeding, unsafe
lane changes, fast acceleration, and hard braking. Gladisch et al. [22]
apply search-based testing to three ADS settings, adaptive cruise
control, lane keeping and steering control. Luo et al. [44] use an
evolutionary many-objective optimization algorithm to generate
driving scenarios that expose as many requirement violation pat-
terns as possible. Kim et al. [34] propose DriveFuzz to mutate
actors’ actions, road condition and weather condition, aiming to
find collisions and safety-critical traffic violations (e.g., running red
lights). Sun et al. [56], Zhang et al. [63] and Li et al. [35] propose to
generate driving scenarios that break specific traffic rules. Huai et

al. [27] aim to generate valid and effective driving scenarios that
cause comfort and safety violations. Cheng et al. [15] propose to
explore the diversity of vehicle behavior to detect diverse violations.
Although these studies focus on different violations, the exploration
of crash scenarios has always been an indispensable part.

To the best of our knowledge, all these previous approaches do
not distinguish whether crashes are caused by ADSs or not, making
the generated violation scenarios less useful for ADS developers.
Our work aims to equip these previous approaches with the diagno-
sis capability so that ADS developers can efficiently focus on more
useful violation scenarios. Huai et al.’s work [28] is the closest work
to ours. They first manually diagnose generated violation scenarios,
and surprisingly find that none of them is caused by ADSs. To only
find violation scenarios that are caused by ADSs, they opt to bridge
multiple ADSs for interaction rather than using NPC vehicles. How-
ever, this is achieved at the cost of feeding ground truth directly into
the ADSs’ localization and perception modules and only testing the
planning module. Differently, our work is a general approach.

5 CONCLUSIONS

We have proposed and implemented DiaVio to automatically diag-
nose safety violations in simulation testing by leveraging large lan-
guage models (LLMs) and a new domain specific language (DSL)
of crash. Large-scale experiments have been conducted to demon-
strate the effectiveness and efficiency of DiaVio. In future, we plan
to extend DiaVio to support more simulation testing approaches
and establish a framework to assess them. Moreover, we also plan
to support more types of violations apart from crashes.

6 DATA AVAILABILITY

All the experimental data and source code of our work is available
at our replication site https://diavio.github.io/diavio/.
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