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ABSTRACT
Although deep learning (DL) software has been pervasive in various
applications, the brittleness of deep neural networks (DNN) hin-
ders their deployment in many tasks especially high-stake ones. To
mitigate the risk accompanied with DL software fault, a variety of
DNN testing techniques have been proposed such as test case selec-
tion. Among those test case selection or prioritization methods, the
uncertainty-based ones such as DeepGini have demonstrated their
effectiveness in finding DNN’s faults. Recently, TestRank, a learning
based test ranking method has shown their out-performance over
simple uncertainty-based test selection methods. However, this is
achieved with a more complicated design which needs to train
a graph convolutional network and a multi-layer Perceptron. In
this paper, we propose a novel and lightweight DNN test selection
method to enhance the effectiveness of existing simple ones. Be-
sides the DNN model’s uncertainty on test case itself, we take into
account model’s uncertainty on its neighbors. This could diversify
the selected test cases and improve the effectiveness of existing
uncertainty-based test selection methods. Extensive experiments
on 5 datasets demonstrate the effectiveness of our approach.

CCS CONCEPTS
• Software and its engineering→ Software testing and debug-
ging.
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1 INTRODUCTION
Deep learning (DL) models or deep neural networks (DNN) are
adopted in various application domains. However, they are not
easily tested or verified and have recently caused a number of
safety-related incidents, such as a serious traffic accident in which
Tesla Autopilot mistook a white tractor-trailer for the sky [4]. To
address the brittleness of DNNs, testing for DNNs is attracting
increasing attention.

As developing a DNN follows a data-centric programming para-
digm, the key to DNN testing also lies in the selection of test data. In
the DNN software development process data generally needs to be
labeled with a large amount of effort. The labeled data can be used
to supervise the DNN model training or to test the model before de-
ployment. However labeling the data is a costly task, especially for
tasks that require domain-specific knowledge (e.g., medical images,
pathology reports, etc.). In most of today’s application, collecting a
large amount of raw data (e.g., images, text, etc.) for a specific task
is a relatively easy and potentially automatic task. These unlabeled
data can be used as candidates for DNN model testing, and can be
used for improving the model’s performance after labeling a subset
of instances. To increase the efficiency of DNN testing and detect
defects in the model with minimal cost, it is essential to select the
test cases with the highest probability of being incorrect and label
them accordingly. This ensures that efforts are focused on the most
critical aspects of testing, resulting in a higher efficiency ratio.

To improve testing efficiency and reduce labeling cost, a vari-
ety of test case selection methods have been proposed for DNN
model testing, which include neuron coverage (NC) [30, 31, 39, 44],
surprise adequacy (SA) [22, 23, 46], and prediction uncertainty-
based [5, 10, 43] methods. Several studies [20, 32, 47] have shown
that the test case selection method based on prediction uncertainty
achieved the best results and less overhead. Recently, an effective
test selection method, TestRank, proposed by Li et al. [29] explores
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both intrinsic attributes and contextual attributes of test samples.
Specifically, TestRank trains a ranking model integrating a graph
convolutional network (GCN) and amulti-layer Perceptron (MLP) to
estimate the probability of test samples being incorrectly predicted
by the target DNN model. As demonstrated in their experiments,
TestRank has achieved the best results among the current DNN test
case selection methods. However, training a GCN is a complicated
option which could be replaced by a simple design.

In this paper, we aim to improve the effectiveness of simple test
selection methods based on prediction uncertainty [5, 10, 43]. The
prediction uncertainty of DNN models (e.g., DeepGini, Entropy,
etc.) is obtained from the probability distribution estimated by the
testing DNN model. However, several studies have shown that
the prediction confidence of the modern DNN models might be
not accurate enough [15, 25]. Un-calibrated DNN models could
suffer from over-confidence or under-confidence, i.e., they give
high probability to wrong predictions or low probability to correct
predictions [13, 37, 40]. On one hand, for a single test case, the
uncertainty calculated in terms of the original prediction probability
distribution of the DNNmodel might also deviate significantly from
the actual one, thus affecting the effectiveness of the uncertainty-
based test case selection methods. In particular, over-confident
cases are often easily spared by test case selection methods, thus
covering up the errors. On the other hand, the uncertainty of a DNN
model on the test case could be induced from its neighbors. Figure 1
shows some over-confidence and under-confidence examples tested
by the ResNet-18 DNN model on CIFAR-10 dataset. As shown in
the figure, there is a significant disagreement in the probability
distribution between the samples that cause over/under-confidence
and the neighboring samples with similar features, regardless of
whether their prediction results are correct or not.

To exploit the locality of DNN model’s prediction, we propose a
test case selection method based on 𝑘-nearest neighbor (𝑘-NN) pre-
diction smoothing: Nearest Neighbor Smoothing (NNS). Concretely,
we adjust the prediction distribution on a test case by interpolating
its original distribution and that of its neighbors. NNS is a plug-and-
play technique that can be easily integrated into existing uncertainty-
based test case selection methods. We applied NNS to four popular
uncertainty-based test case selection methods and evaluated them
extensively on five datasets. We experimentally compare NNS with
its original uncertainty-based counterparts, and the results show a
significant improvement over the original methods. Compared to
TestRank, NNS is lightweight and achieves comparable or even bet-
ter performance. Although SA-based methods demonstrate some
advantage on adversarial examples, NNS shows a more pronounced
advantage on clean data. The efficiency of NNS is more than an
order of magnitude higher than TestRank and SA-based methods.

Our main contributions can be summarized as follows:

• We propose a DL test case selection method named NNS based
on 𝑘-NN prediction smoothing.

• We instantiate NNS with two representation learning methods
and integrate it into 4 uncertainty-based test selection methods.

• We empirically evaluate our proposed method NNS against Tes-
tRank, SA-based and uncertainty-based test selection methods.

2 BACKGROUND AND RELATEDWORK
We introduce the background of DNN, testing techniques for DL
system, TestRank, and 𝑘-NN for DL.

2.1 Deep Neural Networks
Deep Neural Networks (DNNs) are the foundation of deep learning.
A DNN model consists of multiple layers, each of which contains
several small computational units called neurons [12]. Each layer
in a DNN performs nonlinear computations on the output of the
previous layer, which are controlled by learnable parameters of the
neurons. The output of each layer in a DNN can be considered as
a representation of the input data. The multi-level representation
of data can be obtained through learning process of a DNN model.
Deeper layers can learn the more abstract features of the input data.

We denote the DNN model as𝑀 (𝑥) = 𝑓 (𝜃, 𝑥) : X → Y , where
𝜃 is the model parameter. Assume that the model has 𝐿 layers, and
for the 𝑙-th layer, the computation of the layer against the output of
the previous layer is denoted as 𝑓𝑙 , and the parameters of the layer
are denoted as 𝜃𝑙 . The DNN model can be represented as Eq. 1:

𝑀 (𝑥) = 𝑓 (𝜃, 𝑥) = 𝑓𝐿−1 (𝜃𝐿−1, 𝑓𝐿−2 (𝜃𝐿−2, · · · 𝑓0 (𝜃0, 𝑥)) (1)

Let’s take an image classification task as an example, the in-
put of the DNN model is an image 𝑥 ∈ R𝐷 . Assuming that there
are 𝐶 classes, the prediction of the DNN model on 𝑥 is the 𝑦 =

argmax𝑐 𝑝 (𝑐 |𝑥) where 𝑝 (𝑐 |𝑥) denotes the probability predicted by
the DNN model𝑀 that 𝑥 belongs to class 𝑐 .

2.2 Testing for Deep Learning Systems
Testing for deep learning systems has some resemblances with
traditional software testing, but at the same time is very different.
In the traditional software testing field, test case selection and test
case prioritization techniques have been extensively studied and
proven to be very effective testing (especially regression testing)
strategies. Test case selection is to select a part of the existing
test case set for execution, expecting the selected part of the test
cases to detect as many faults as possible. The purpose of test case
prioritization is to prioritize the test cases in the test case set in an
optimal way, andwhen the test stops at a certain point, it is expected
that the executed test cases will detect as many faults as possible.

In a deep learning classification system, a fault occurs in the DNN
software when a DNN model classify a sample differently from its
actual class. Unlike traditional software where test cases are written
by testers, in deep learning test cases are collected data. In deep
learning testing, the test case selection problem can be described
as follows: given the target model𝑀 for testing, and the budget 𝐵,
select a subset𝑇𝑆 of test cases from the test suite𝑇 , so that as many
as faults of𝑀 can be detected by 𝑇𝑆 , where |𝑇 | ≫ 𝐵 , |𝑇𝑠 | = 𝐵.

The current test case selection methods for deep learning are
almost all based on test case prioritization, where the test cases in
𝑇 are ranked by the test case prioritization method, and the first 𝐵
test cases are selected as 𝑇𝑆 . Therefore, later we do not distinguish
between test case selection and test case prioritization, we all refer
to them as test case selection.

Below we introduce the uncertainty metrics that are used in
uncertainty-based test case selection methods, where 𝐶 is the set

502



In Defense of Simple Techniques for Neural Network Test Case Selection ISSTA ’23, July 17–21, 2023, Seattle, WA, USA

Over-Confidence Under- Confidence 

Truth: Horse Horse Horse Horse Horse Horse
Prediction: Bird Horse Horse Horse Horse Horse
Probability: 99% 99% 99% 100% 99% 99%

Truth: Truck Truck Truck Truck Truck Truck
Prediction: Cat Truck Truck Truck Truck Truck
Probability: 99% 100% 100% 99% 99% 99%

Truth: Dog Deer Deer Deer Deer Dog
Prediction: Truck Frog Deer Dog Deer Frog
Probability: 99% 82% 52% 98% 83% 98%

k-NN

Airplane Airplane Airplane Airplane Airplane Airplane
Airplane Airplane Airplane Airplane Airplane Airplane
32% 99% 96% 99% 99% 99%

Horse Horse Horse Horse Horse Horse
Horse Horse Horse Horse Horse Horse
32% 99% 99% 99% 99% 97%

Truck Truck Truck Truck Truck Truck
Truck Truck Automobile Truck Truck Truck
37% 99% 92% 99% 99% 99%

k-NN

Figure 1: Motivation Examples

of output classes (or labels), and 𝑝𝑐 (𝑥) is the prediction probability
of 𝑥 to class 𝑐 according to𝑀 :
• DeepGini. The Gini impurity of a test input 𝑥 with respect to a
model𝑀 is given by Eq. 2 [10], whichmeasures the likelihood of 𝑥
being incorrectly predicted. A high Gini impurity represents a
high uncertainty.

𝐷𝑒𝑒𝑝𝐺𝑖𝑛𝑖 (𝑥) = 1 −
∑︁
𝑐∈𝐶

𝑝2𝑐 (𝑥) (2)

• MaxP. The maximum probability score of a test input 𝑥 with re-
spect to a model 𝑀 is given by Eq. 3 [18, 32]. A low maximum
probability score represents a high uncertainty.

𝑀𝑎𝑥𝑃 (𝑥) = max
𝑐∈𝐶

𝑝𝑐 (𝑥) (3)

• Margin. Themargin of a test input 𝑥 with respect to a model𝑀 is
given by Eq. 4 [42], where 𝑐∗ = argmax

𝑐∈𝐶
𝑝𝑐 (𝑥). It is a popular and

well-regarded data sampling metric in active learning. Intuitively,
margin is the difference between the highest and the second
highest prediction probabilities. A low margin represents a high
uncertainty.

𝑀𝑎𝑟𝑔𝑖𝑛(𝑥) = max
𝑐∈𝐶

𝑝𝑐 (𝑥) − max
𝑐∈𝐶\𝑐∗

𝑝𝑐 (𝑥) (4)

• Entropy. The entropy of a test input 𝑥 with respect to a model𝑀
is given by Eq. 5 [5], which summarizes the prediction probabil-
ity distribution. In information theory the entropy is generally
represented by 𝐻 , and it’s input is probability distribution. Intu-
itively, the entropy is lower for a certain prediction where only
one 𝑝𝑐 (𝑥) is high, and higher for an uncertain prediction where
the prediction probability for each class is similar. A high entropy
represents a high uncertainty.

𝐸𝑛𝑡𝑟𝑜𝑝𝑦 (𝑥) = 𝐻 (𝑝 (𝑥)) = −
∑︁
𝑐∈𝐶

𝑝𝑐 (𝑥) log𝑝𝑐 (𝑥). (5)

2.3 TestRank
TestRank [29] introduces a rankingmodel which consists of a Graph
Convolutional Network (GCN) and a Multi-layer Perceptron (MLP).

In the first stage, TestRank constructs a weighted 𝑘-NN graph
whose nodes are labeled and unlabeled data instances. Then Tes-
tRank leverages a representation learning method (BYOL [14]) to
initialize node embedding of the GCN, which is trained in a semi-
supervised learning way with the signal whether the tested model
correctly predicts the labeled data instance. Finally, the representa-
tion learned by GCN concatenated with softmax returned by the
trained model is fed into a MLP whose prediction score is employed
to rank test case. The benefit of taking test cases’ neighbors into
account is demonstrated in the experiments of TestRank. However,
compared to uncertainty-based test case selection methods, this is
achieved by a more complicated design with a GCN and a MLP.

2.4 𝑘-NN for Deep Learning
𝑘-NN [9, 11, 48] is a classical method inmachine learning. Deep learn-
ing tasks are usually faced with high-dimensional complex data
inputs such as images and speech, and retrieving𝑘-NN using raw in-
puts is no longer effective. Recently, retrieving𝑘-NN via DNNmodel
representations has been shown to be effective in various tasks.

Papernot et al. [38] proposed an indirect estimate of the model
prediction confidence by measuring the nonconformity of the pre-
dictions of the input data and its nearest neighbors. Jiang et al. [21]
proposed a method to calculate the trust score of the DNN model
predictions using the topological information of the input data and
its nearest neighbors. Bahri et al. proposed to deal with noisy labels
using 𝑘-NN [2], and to alleviate the predictive churn phenomenon
using 𝑘-NN [1]. Baldock et al. [3] calculated the prediction depth
from the nearest neighbors obtained from the representation of the
input data in different layers of the DNN model, and used this to
determine the difficulty of the DNNmodel to learn that data sample.

Our approach also computes 𝑘-NN by representation, but we use
𝑘-NN for prediction smoothing and apply it to test case selection.

3 METHOD
Wefirst present how to adjust prediction probability distributionwith
nearest neighbor smoothing, and then describe our selectionmethod.
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3.1 Nearest Neighbor Smoothing
We first introduce Nearest Neighbor Smoothing (NNS). The predic-
tion of model𝑀 on test 𝑥 might be inaccurate, because the model is
not calibrated or the data is out of distribution. Inspired by the label
smoothing technique in machine learning field [45], we smooth the
prediction distribution with Eq. 6.

𝑝 = 𝛼𝑝𝑀 + (1 − 𝛼)𝑝𝑘𝑁𝑁 . (6)

Here we omit the instance 𝑥 to avoid clutter. 𝑝𝑀 denotes the proba-
bility distribution made by the DNN model𝑀 . 𝑝𝑘𝑁𝑁 is the average
probability distribution of 𝑥 ’s 𝑘-nearest neighbors, which will be
detailed below. 𝛼 ∈ [0, 1] is the smoothing weight.

Nowwe elaborate the designs of 𝑝𝑘𝑁𝑁 . We retrieve the𝑘-nearest
neighbors of instance 𝑥 , which depends on the representation of
instances and the distance measures used. For representation learn-
ing, we could use the target DNN model or auxiliary pre-trained
models such as SimCLR [7] or BYOL [14]. After learning represen-
tation of instances, we use Euclidean or cosine distance to measure
the distance between instances. Let 𝑁𝑘 (𝑥) denote the retrieved
𝑘-nearest neighbors of 𝑥 , we get the estimated distribution 𝑝𝑘𝑁𝑁

as follows:
𝑝𝑘𝑁𝑁 (𝑥) = 1

𝑘

∑︁
𝑡 ∈𝑁𝑘 (𝑥)

𝑝𝑀 (𝑡). (7)

Here we employ the average of probability distributions of near-
est neighbors, while could be weighted according to the distance
between neighbors and instance 𝑥 .

We use the above adjusted prediction distribution to compute
the uncertainty metrics such as DeepGini [10] or Entropy [5]. Let
us elaborate the benefit of this design. Firstly, we examine the Gini
index of an instance 𝑥 .

ˆ𝐺𝑖𝑛𝑖 (𝑥)
= 1 −

∑︁
𝑐∈𝐶

𝑝𝑐 (𝑥)2

= 1 −
∑︁
𝑐∈𝐶

(
𝛼𝑝𝑀,𝑐 (𝑥) + (1 − 𝛼)𝑝𝑘𝑁𝑁,𝑐 (𝑥)

)2
= 1 −

∑︁
𝑐∈𝐶

(𝛼2𝑝𝑀,𝑐 (𝑥)2 + 2𝛼 (1 − 𝛼)𝑝𝑀,𝑐 (𝑥)𝑝𝑘𝑁𝑁,𝑐 (𝑥)

+(1 − 𝛼)2𝑝𝑘𝑁𝑁,𝑐 (𝑥))2)

= 𝛼2
(
1 −

∑︁
𝑐∈𝐶

𝑝𝑀,𝑐 (𝑥)2
)
+ (1 − 𝛼)2

(
1 −

∑︁
𝑐∈𝐶

𝑝𝑘𝑁𝑁,𝑐 (𝑥)2
)

−2𝛼 (1 − 𝛼)
∑︁
𝑐∈𝐶

𝑝𝑀,𝑐 (𝑥)𝑝𝑘𝑁𝑁,𝑐 (𝑥) + 2𝛼 (1 − 𝛼) .

The first and second terms are Gini index of prediction distribu-
tions of 𝑥 and its 𝑘-NNs respectively. Therefore, the overall uncer-
tainty on the test case 𝑥 takes into account both 𝑥 and its neighbors.
Their contributions are balanced with the weights. Besides, the
third term can be seen as the similarity between the test case 𝑥 with
their neighbors in terms of model’s prediction distribution (inner
product between two distributions). This term could measure the
representativeness of 𝑥 with respect to its neighbors. When we
rank test case in terms of this enhance Gini index, those instances
whose neighbors have been selected will be penalized as they have
been represented. Thus our method could improve the diversity
between the selected test cases.

Algorithm1:Nearest Neighbor Smoothing based Test Case
Selection
Input: target model𝑀 , test suite 𝑇 , budget 𝐵,

representation extractor 𝐸, uncertainty measure
function𝑚𝑒𝑎𝑠𝑢𝑟𝑒 , 0 ≤ 𝛼 ≤ 1, 𝑘 > 0

Output: selected test cases 𝑇𝑆

1 initialize representation list 𝑅 = 𝜙 ;
2 initialize prediction list 𝑃 = 𝜙 ;
3 initialize distance matrix 𝐷𝑀𝑖, 𝑗 = 0(1 ≤ 𝑖, 𝑗 ≤ |𝑇 |, 𝑖 ≠ 𝑗) ;
4 initialize priority queue 𝑄 = 𝜙 ;
5 initialize 𝑇𝑆 = 𝜙 , 𝑒 𝑓 𝑓 𝑜𝑟𝑡 = 0 ;
6 for 𝑖 in |𝑇 | do
7 𝑅𝑖 = 𝐸 (𝑇𝑖 ) ; // representation extraction

8 𝑃𝑖 = 𝑀 (𝑇𝑖 ) ; // prediction extraction

9 end
10 for 𝑖 in |𝑇 | do
11 for 𝑗 in |𝑇 | do
12 if 𝑖 ≠ 𝑗 then
13 𝐷𝑀𝑖, 𝑗 = 𝐶𝑜𝑠𝑖𝑛𝑒𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 (𝑅𝑖 , 𝑅 𝑗 ) ; // test

case distance

14 end
15 end
16 end
17 for 𝑖 in |𝑇 | do
18 𝑝𝑘𝑁𝑁 = 𝜙 ;
19 𝑠𝑘𝑁𝑁 = 𝐴𝑟𝑔𝑀𝑖𝑛𝑘 (𝐷𝑀𝑖 , 𝑘) ; // find 𝑘-NN

20 𝑝𝑀 = 𝑃𝑖 ;
21 for 𝑗 in 𝑠𝑘𝑁𝑁 do
22 𝑝𝑘𝑁𝑁 = 𝑝𝑘𝑁𝑁 ∪ 𝑃 𝑗 ;
23 end
24 𝑝 = 𝑛𝑛𝑠 (𝛼, 𝑝𝑀 , 𝑝𝑘𝑁𝑁 ) ; // prediction

probabilities smoothing

25 𝑢𝑛𝑐𝑒𝑟𝑡𝑎𝑖𝑛𝑡𝑦 =𝑚𝑒𝑎𝑠𝑢𝑟𝑒 (𝑝) ;
26 𝑖𝑛𝑠𝑒𝑟𝑡 (𝑄, < 𝑢𝑛𝑐𝑒𝑟𝑡𝑎𝑖𝑛𝑡𝑦,𝑇𝑖 >) ;
27 end
28 while 𝑒 𝑓 𝑓 𝑜𝑟𝑡 ≤ 𝐵 do // test case selection
29 < 𝑢𝑛𝑐𝑒𝑟𝑡𝑎𝑖𝑛𝑡𝑦, 𝑡 >= 𝑝𝑜𝑝𝑀𝑎𝑥 (𝑄) ;
30 𝑇𝑆 = 𝑇𝑆 ∪ 𝑡 ;
31 𝑒 𝑓 𝑓 𝑜𝑟𝑡 = 𝑒 𝑓 𝑓 𝑜𝑟𝑡 + 1 ;
32 end
33 return 𝑇𝑆

For Entropy we have the following inequality thanks to its con-
cavity:

𝐻 (𝛼𝑝𝑀 + (1 − 𝛼)𝑝𝑘𝑁𝑁 ) ≥ 𝛼𝐻 (𝑝𝑀 ) + (1 − 𝛼)𝐻 (𝑝𝑘𝑁𝑁 ).

As the entropy of adjusted distribution is lower bounded by the
convex combination of entropies of prediction distribution of in-
stance 𝑥 and its nearest neighbors, we can take into account both
uncertainty of them approximately.

3.2 NNS Based Test Case Selection
We number each test case in the test case set 𝑇 , starting from 1 to
the total number of test cases |𝑇 |. Each number represents a unique
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test case. We use some lists and matrices to save the intermediate
results such as test case representations, prediction results, and
distances, so that these calculation only needs to be processed once
and the results can be reused, and if new test cases are added to the
test case set, only new test cases need to be processed incrementally,
which can improve the efficiency of test case selection. Algorithm
1 shows the basic flow of the NNS test case selection algorithm,
which can be divided into the following steps:

Step 1: Representation and prediction output extraction.
In this step, we extract the representation and the prediction output
of each test case in the test suite. First, we use the representation
extractor 𝐸 to extract the representation of all test cases in the test
suite to get the representation of each test case, which is saved in
the representation list 𝑅 in the form of vectors by their numbers
(line 7). As introduced before, the representation of a test case can
be extracted by the target DNN model’s inner layers, or extracted
by a DNN model trained by semi-supervised learning like BYOL
[14], so we take the representation extractor as a parameter can be
passed in. Then, we obtain the prediction output of the target DNN
model𝑀 for each test case, and save the prediction output in vector
form by their numbers in the prediction output list 𝑃 (line 8).

Step 2: Construct a distance matrix. In this step, we con-
struct a matrix of distances between two test cases. We compute
the distance between two test case representations using the repre-
sentation vectors extracted in the first step and save the results in
the distance matrix 𝐷𝑀 (line 10-16). We use the cosine distance to
calculate the distance between representations (see Eq. 8).

𝐶𝑜𝑠𝑖𝑛𝑒𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 (𝑋,𝑌 ) = 1 −𝐶𝑜𝑠𝑖𝑛𝑒𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 (𝑋,𝑌 )

𝐶𝑜𝑠𝑖𝑛𝑒𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 (𝑋,𝑌 ) = 𝑋 · 𝑌
∥𝑋 ∥ ∥𝑌 ∥

(8)

The higher the cosine similarity of the two test case representations
the closer the distance is. The 𝑖-th row in the distance matrix 𝐷𝑀
is a list of the distances between test case𝑇𝑖 and all other test cases.

Step 3: Prediction smoothing and uncertainty calculation.
In this step, we calculate the uncertainty of each test case after
prediction smoothing, and use it to rank the test cases. For each test
case 𝑇𝑖 , we first get the index of the test case’s 𝑘-NNs by the row
𝐷𝑀𝑖 in the distance matrix (line 18-29), and then take the prediction
vector 𝑃𝑖 of the test case and its prediction vector 𝑝𝑘𝑁𝑁 of 𝑘-NN
from 𝑃 according to the index (line 20-23). We get the smoothed
prediction 𝑝 , and calculate the uncertainty of the test case using
the given uncertainty measure with 𝑝 as input (line 24-25). Finally,
the test samples are ranked by uncertainty (line 26).

Step 4: Test case selection. In this step, test case selection is
completed and returned. Based on the budget 𝐵, test cases are added
to the test case subset 𝑇𝑆 in descending order of uncertainty, and
that subset 𝑇𝑆 is returned (line 28-33).

4 EXPERIMENT DESIGN
We present our experiment design on NNS based test case selection.

4.1 Datasets and Models
For a fair comparison with TestRank [29], we refer to and follow
their experimental setup of the selection of datasets and DNN
models, and extend the two datasets (MNIST and Fashion-MNIST)

with two DNN models (LeNet-1 and LeNet-5). In total, our experi-
ments use five datasets, namely MNIST [28], Fashion-MNIST [49],
CIFAR-10 [24], SVHN [36] and STL-10 [8]. They are commonly
used datasets in the evaluation of test case selection methods.

Specifically, the MNIST dataset collected 70,000 grayscale images
of 28× 28 handwritten digits. The original authors splitted the data
into two subsets, the training set containing 60,000 images and the
test set containing 10,000 images.

The Fashion-MNIST dataset follows the MNIST dataset setting,
using the same data format, the same amount of data, and the same
data split, with difference that the task corresponding to this dataset
is a classification task for ten categories of fashion products. These
ten categories of fashion products are T-shirt/top, trouser, pullover,
dress, coat, sandal, shirt, sneaker, bag, and ankle boot.

The CIFAR-10 dataset collects 60,000 32 × 32 color images of ten
different types of objects. These ten types of objects are airplane,
automobile, bird, cat, deer, dog, frog, horse, ship, and truck. The
original authors divided the data into two subsets, the training set
containing 50,000 images and the test set containing 10,000 images.

The SVHN (The Street View House Numbers) dataset collects a
total of 630,420 images of 32 × 32 real-world house numbers, corre-
sponding to a classification task of ten digits. The official database
provides three subsets: the training set with 73,257 images, the test
set with 26,032 images, and the extended set with 531,131 images.

STL-10 dataset collects 113,000 96×96 color images. These images
include ten types of objects, namely, airplane, bird, car, cat, deer,
dog, horse, monkey, ship, and truck. Unlike other datasets, only
some of the data in the STL-10 dataset are labeled. The dataset
contains a total of 13,000 labeled images, of which 5,000 are for
the training set and 8,000 for the test set. The dataset also contains
100,000 unlabeled images.

According to the complexity of the task, we use the appropri-
ate DNN model architecture for each dataset. For the MNIST and
Fashion-MNIST datasets, we use LeNet-1 and LeNet-5 [27], respec-
tively. For the CIFAR-10 dataset, we use ResNet-18 [16]. For the
SVHN dataset, we use Wide-ResNet [50]. For the STL-10 dataset,
we use ResNet-34 [16].

In order to simulate real-world application scenarios, the data in
each dataset is re-splitted into training samples, validation samples
and test samples according to different usages. The training samples
are used for training the target DNN model, the validation samples
are used for evaluating the accuracy of the target DNN model, and
the test samples are further spiltted into labeled and unlabeled parts.
The labeled test samples are only used in TestRank to train its GCN
and MLP. The unlabeled test samples are used to evaluate the test
case selection method. For each dataset, we train three models by
sampling different distributions of data from the training samples.
The IDs of the three models are A, B and C. The settings of the
corresponding DNN models can be found in Table 1.

4.2 Noisy Data
Our experiments consider two types of noisy data, namely Out-
of-Distribution (OOD) data and adversarial example data. Out-of-
distribution data are data that are not contained in the same distri-
bution as the data used for training the target DNN model. Broadly
speaking out-of-distribution data can be either oriented to the same
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Table 1: Dataset and Model Setup

Dataset #Classes #Training Samples #Validation Samples #Test Samples DNN Architecture Model ID Model Acc. (%)Labeled Unlabeled

MNIST 10 20,000 1,000 7,800 41,200 LeNet-1
A 96.3
B 97.2
C 93.4

Fashion-MNIST 10 20,000 1,000 7,800 41,200 LeNet-5
A 88.4
B 86.2
C 81.5

CIFAR-10 10 20,000 1,000 7,800 31,200 ResNet-18
A 70.1
B 66.4
C 68.3

SVHN 10 50,000 531,000 10,000 39,000 Wide-ResNet
A 94.3
B 92.6
C 81.6

STL-10 10 5,000 500 1,500 6,000 ResNet-34
A 54.8
B 54.0
C 53.6

task as the target DNN model, or oriented to a different task. In our
experiments only the former case is considered, because it is not
possible to obtain correct results if inference is performed using a
DNN model on data oriented to a different task, so it is not mean-
ingful for the evaluation of test case selection methods. We selected
three datasets as out-of-distribution data, including MNIST-C [35],
Fashion-MNIST-C [47], CIFAR-10-C [17].

The adversarial examples are generated by the DNN adversarial
attack methods, i.e., for the target DNNmodel, a subtle perturbation
𝛿 is added to the original data sample 𝑥 , which causes the DNN
model to change the prediction result for the adversarial example
𝑥 +𝛿 . The perturbation to the sample is restricted to a certain range
𝜖 , i.e., |𝛿 | < 𝜖 . We use four popular adversarial attack methods,
which are FGSM [13], BIM [26], CW [6] and DeepFool [34].

4.3 Baseline Methods
We compared our approach with four uncertainty-based test case
selection methods, five SA-based methods, as well as TestRank. We
choose four uncertainty-based test case selection methods that are
widely used and effective, which are DeepGini [10], MaxP [18, 32],
Margin [42] and Entropy [5]. We choose five SA-based methods
following the setup in [47], which are Distance-Based SA (DSA),
Per-Class Likelihood-Based SA (PC-LSA), Per-Class Mahalanobis-
Distance Based SA (PC-MDSA), Per-Class Multimodal LSA (PC-
MLSA) and Per-Class Multimodal MDSA (PC-MMDSA).

We evaluated two representation extraction methods separately,
using the target model itself as a representation extractor or with a
dedicated representation extractor obtained by unsupervised learn-
ing. We also evaluated our methods using DeepGini, MaxP, Margin
and Entropy as uncertainty calculation methods, respectively. For
our method in the experiments we distinguish the uncertainty calcu-
lation methods by subscripts. The methods using the model itself as
a representation extractor are labeled as: 𝑁𝑁𝑆𝐷𝑒𝑒𝑝𝐺𝑖𝑛𝑖 , 𝑁𝑁𝑆𝑀𝑎𝑥𝑃 ,
𝑁𝑁𝑆𝑀𝑎𝑟𝑔𝑖𝑛 and 𝑁𝑁𝑆𝐸𝑛𝑡𝑟𝑜𝑝𝑦 . The methods using a dedicated rep-
resentation extractor to extract the representation are labeled as:
𝑁𝑁𝑆

𝑈𝑛𝑠𝑢𝑝

𝐷𝑒𝑒𝑝𝐺𝑖𝑛𝑖
, 𝑁𝑁𝑆

𝑈𝑛𝑠𝑢𝑝

𝑀𝑎𝑥𝑃
, 𝑁𝑁𝑆

𝑈𝑛𝑠𝑢𝑝

𝑀𝑎𝑟𝑔𝑖𝑛
and 𝑁𝑁𝑆

𝑈𝑛𝑠𝑢𝑝

𝐸𝑛𝑡𝑟𝑜𝑝𝑦
. In our

experiments the parameter 𝑘 is set to 10 and the parameter 𝛼 to 0.5
for 𝑁𝑁𝑆 and 𝑁𝑁𝑆𝑈𝑛𝑠𝑢𝑝 , except where otherwise indicated.

For the MNIST dataset, we use the Basic Autoencoder [19] as a
dedicated representation extractor. For the Fashion-MNIST dataset,
we use the Convolutional AutoEncoder [33] as a dedicated repre-
sentation extractor. For the CIFAR-10, SVHN and STL-10 datasets,
we use BYOL [14] as a dedicated representation extractor.

4.4 Evaluation Metrics
We use Average Percentage of Fault Detection (APFD) [41] to evalu-
ate the overall performance of a test case selection method. We also
use Test Relative Coverage (TRC) [29] to evaluate the performance
of a test case selection method for a given budget.

APFD is widely used to evaluate the overall performance of a
test case selection method, and is calculated by Eq. 9.

𝐴𝑃𝐹𝐷 = 1 − 𝑇𝐹1 +𝑇𝐹2 + · · · +𝑇𝐹𝑚
𝑛𝑚

+ 1
2𝑛

(9)

where 𝑛 denotes the total number of test cases in test suite, 𝑚
denotes is the total number of faults exposed in the software under
test suite, and 𝑇𝐹𝑖 denotes the position of the first test in test suite
that exposes fault 𝑖 . The value of APFD ranges from 0 to 1, with
higher values representing higher fault detection efficiency.

APFD is a good measure of the overall performance of test case
selection methods, but is not suitable for comparing different test
case selection methods for a given budget. Therefore, we also use
TRC to compare the performance of different test effort selection
methods for a given budget. TRC can be expressed by Eq. 10.

𝑇𝑅𝐶 =
#𝐷𝑒𝑡𝑒𝑐𝑡𝑒𝑑𝐹𝑎𝑖𝑙𝑢𝑟𝑒𝑠

min(#𝐵𝑢𝑑𝑔𝑒𝑡, #𝑇𝑜𝑡𝑎𝑙𝐹𝑎𝑖𝑙𝑢𝑟𝑒𝑠) (10)

TRC measures how far a test input selection method is to the ideal
case in a given budget. the value of TRC also ranges from 0 to 1,
the higher the value represents the higher the proportion of faults
detected in a given budget.

4.5 Research Questions
We attempt to answer the following three research questions (RQs):

RQ1: Effectiveness on Clean Data. How effective is our test
case selection method on clean data?

We first want to know how well our method works on a test
dataset with the same distribution as the training data of the DNN,

506



In Defense of Simple Techniques for Neural Network Test Case Selection ISSTA ’23, July 17–21, 2023, Seattle, WA, USA

Table 2: APFD on Clean Data
Dataset MNIST Fashion-MNIST CIFAR-10 SVHN STL-10
Model ID A B C A B C A B C A B C A B C
Ideal 98.78 98.61 96.76 93.67 93.55 90.43 84.92 82.91 82.87 94.93 94.08 88.30 80.37 78.69 76.99
TestRank 90.06 90.18 93.17 83.17 83.38 83.88 74.66 73.67 74.30 85.63 87.59 84.76 70.20 69.13 67.71

𝑆
𝐴

DSA 90.81 90.53 90.10 77.94 77.51 76.52 67.22 64.84 66.06 85.08 84.44 79.46 64.67 61.84 61.26
PC-LSA 89.46 80.27 48.59 70.48 66.89 67.17 66.31 60.10 64.02 56.67 50.98 45.00 53.60 56.81 55.75
PC-MDSA 89.89 81.53 93.10 68.05 62.88 63.09 68.25 61.89 65.75 76.28 67.20 60.84 60.63 60.81 59.45
PC-MLSA 89.67 76.17 87.40 69.83 59.54 65.47 57.38 46.79 51.14 66.43 55.61 59.48 62.68 59.67 60.10
PC-MMDSA 78.25 76.67 85.50 61.57 58.73 58.27 56.56 58.44 58.22 71.33 70.42 56.50 46.38 52.89 47.23

𝑈
𝑛
𝑐
𝑒
𝑟
𝑡𝑎
𝑖𝑛
𝑡
𝑦 DeepGini 94.89 94.01 90.93 83.36 82.58 79.81 70.97 67.90 69.74 85.90 84.85 82.00 66.01 64.13 62.55

MaxP 94.88 94.00 90.93 83.34 82.54 79.75 70.92 67.86 69.70 85.88 84.82 81.88 65.95 64.05 62.47
Margin 94.86 93.97 90.89 83.21 82.39 79.49 70.76 67.72 69.57 85.78 84.72 81.54 65.81 63.79 62.28
Entropy 94.90 94.00 90.96 83.36 82.60 80.08 71.12 68.05 69.88 85.95 84.89 82.30 66.15 64.35 62.74

𝑁
𝑁
𝑆

DeepGini 96.48 96.02 93.68 84.09 83.00 80.34 72.42 70.02 70.55 89.95 89.86 85.25 66.51 64.82 62.36
MaxP 96.52 96.06 93.68 84.09 82.97 80.30 72.33 69.95 70.47 90.05 90.00 85.15 66.40 64.65 62.20
Margin 96.48 96.03 93.57 83.93 82.79 80.09 71.98 69.63 70.20 90.02 90.00 84.76 66.11 64.15 61.84
Entropy 96.33 95.86 93.61 83.89 82.88 80.56 72.50 70.03 70.69 89.70 89.52 85.41 66.67 65.14 62.63

𝑁
𝑁
𝑆
𝑈
𝑛
𝑠
𝑢
𝑝 DeepGini 95.68 95.66 93.25 84.11 83.01 80.02 75.99 73.79 74.53 86.39 86.98 81.79 72.83 71.19 67.03

MaxP 95.76 95.72 93.25 84.12 82.98 80.00 76.91 74.66 74.99 87.07 88.05 81.83 73.64 71.67 67.45
Margin 95.70 95.63 93.09 83.85 82.72 79.76 76.82 74.66 74.57 86.88 88.18 81.16 73.62 71.38 67.27
Entropy 95.43 95.42 93.17 83.80 82.77 80.24 73.84 71.69 73.28 84.82 84.81 81.62 71.20 70.00 66.17

and whether it can detect more faults faster. We use the test case
selection method mentioned in Section 4.3 on the unlabeled test
samples from the original dataset mentioned in Section 4.1. We
used 1%, 2%, 5%, 10%, 15%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90%
and 100% of the unlabeled test samples as the budget for test case
selection, respectively. We conducted experiments on each dataset
separately to calculate the APFD and TRC scores for each test case
selection method as a way to compare various methods.

RQ2: Effectiveness on Noisy Data. How effective is our test
case selection method on OOD data and adversarial example data?

In the real world, the data processed by the deep learning system
in the operational environment often differ in distribution from the
data used for training, such as different lighting and contrast of
the images. To verify the effectiveness of the method on data with
different distribution from the training data, i.e., noisy data, we use
two types of noisy data, OOD data and adversarial example data as
mentioned in Section 4.2 . For each dataset, we randomly select the
same number of OOD data from the corresponding OOD data as the
unlabeled test data to evaluate the effectiveness of the method on
the OOD data. Also the same number of adversarial examples as the
unlabeled test data were randomly selected from the corresponding
adversarial examples to evaluate the effectiveness of the method on
the adversarial example data. We used the same test case selection
budget as in RQ1. Consistent with RQ1, we also calculated the
APFD and TRC scores for each method separately.

RQ3: Efficiency. Is our method more efficient than TestRank
and SA-based test case selection methods?

We compared the efficiency of the methods by the time to com-
plete a test case selection process in a test suite.

RQ4: Impact of Parameters. How does different values for the
number of nearest neighbors𝑘 and the smoothingweight parameter
𝛼 NNS affect the effectiveness of test case selection?

The NNSmethod contains two parameters the number of nearest
neighbors 𝑘 and the smoothing weight 𝛼 . Different values for the
parameters may affect the effect of NNS. To give guidance on the

values of 𝑘 and 𝛼 , we did ablation experiments on them. First, we
fixed the parameter 𝛼 to 0.5 and changed 𝑘 to 0, 1, 2, 3, 5, 7, 10, 20,
50, 70, and 100 to obtain the APFD scores for various cases. And
then, we fixed the parameter 𝑘 to 10 and changed 𝛼 to 0, 0.1, 0.2,
. . . , 0.9, 1.0, and obtained the APFD scores for various values.

5 EXPERIMENT RESULTS
We present the results of our experiments, and we also summarize
and analyze the results. We implement our approach in Python
with Pytorch V1.9.0. The experiments were performed on Ubuntu
20.04 with an Intel i9 CPU, a NVIDIA GeForce RTX 3080 GPU and
32GB DDR4 RAM. For the implementation of TestRank, we directly
use its official code1. For the implementation of SA-based methods,
we invoke the API provided by the DNN-TIP library2.

5.1 Effectiveness on Clean Data (RQ1)
On clean data we evaluated two groups of 𝑁𝑁𝑆 methods, 𝑁𝑁𝑆 us-
ing a target DNN model to extract representations and 𝑁𝑁𝑆𝑈𝑛𝑠𝑢𝑝

using a dedicated representation extractor, and compared them
with a group of uncertainty-based test case selection methods and
also with TestRank.

Table 2 shows the comparison of the APFD obtained by each test
selection method on clean data, in which the items in bold indicate
the highest score of APFD. The third row of the table shows the
best APFD score that can be obtained in the ideal case, for the upper
limit of APFD for the test case selection method for that dataset
and the target DNN model.

Figure 2 shows the mean values of the TRC scores obtained for
each method under different budgets. The horizontal axis is the
budget for test case selection, the values are as a percentage of
the total sample, and the vertical axis is the TRC scores. When
evaluating test case selection methods using TRC scores, we are

1https://github.com/cure-lab/TestRank
2https://github.com/testingautomated-usi/dnn-tip
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Figure 2: TRC on Clean Data

more concerned with smaller budgets because when the budget
is large enough to cover the entire set of test cases, all test cases
are selected and the TRC for all test case selection methods must
be 100%, whereas a higher TRC score when the budget is small
indicates that more problems can be revealed at a smaller cost.
As mentioned in [29], the TRC score rises and then falls as the
budget increases, with the turning point being the point at which
the budget equals the total number of faults in the test case set. The
difference between the TRC scores obtained by the various methods
is more stable before the turning point, and gradually decreases
after the turning point.

Comparing with uncertainty-based methods. As show in
Table 2, 𝑁𝑁𝑆 and 𝑁𝑁𝑆𝑈𝑛𝑠𝑢𝑝 achieve the highest APFD scores in
all cases when 𝑇𝑒𝑠𝑡𝑅𝑎𝑛𝑘 is excluded. On MNIST dataset, 𝑁𝑁𝑆

and 𝑁𝑁𝑆𝑈𝑛𝑠𝑢𝑝 achieve 2.09% and 1.54% higher average APFD
score than 𝑈𝑛𝑐𝑒𝑟𝑡𝑎𝑖𝑛𝑡𝑦. On Fashion-MNIST dataset, 𝑁𝑁𝑆 and
𝑁𝑁𝑆𝑈𝑛𝑠𝑢𝑝 achieve 0.73% and 0.6% higher average APFD score than
𝑈𝑛𝑐𝑒𝑟𝑡𝑎𝑖𝑛𝑡𝑦. On CIFAR-10 dataset, 𝑁𝑁𝑆 and 𝑁𝑁𝑆𝑈𝑛𝑠𝑢𝑝 achieve
1.38% and 5.13% higher average APFD score than 𝑈𝑛𝑐𝑒𝑟𝑡𝑎𝑖𝑛𝑡𝑦. On
SVHN dataset,𝑁𝑁𝑆 and𝑁𝑁𝑆𝑈𝑛𝑠𝑢𝑝 achieve 4.10% and 0.76% higher
average APFD score than 𝑈𝑛𝑐𝑒𝑟𝑡𝑎𝑖𝑛𝑡𝑦. On STL-10 dataset, 𝑁𝑁𝑆

and 𝑁𝑁𝑆𝑈𝑛𝑠𝑢𝑝 achieve 0.27% and 6.1% higher average APFD score
than 𝑈𝑛𝑐𝑒𝑟𝑡𝑎𝑖𝑛𝑡𝑦, respectively. It can be seen that our method can
enhance the uncertainty-based test case selection method, but the
degree of improvement is different by the different representation
extraction methods. This suggests that the choice of data represen-
tation has a direct impact on the effectiveness of test case selection.

It can be seen from Figure 2 that the average TRC scores of
𝑁𝑁𝑆 and 𝑁𝑁𝑆𝑈𝑛𝑠𝑢𝑝 are all higher than 𝑈𝑛𝑐𝑒𝑟𝑡𝑎𝑖𝑛𝑡𝑦 before the
turning point in each plot. For quantitative comparison, we com-
pare the average TRC scores before the turning point for each
method. 𝑁𝑁𝑆 achieves 32.16% higher than 𝑈𝑛𝑐𝑒𝑟𝑡𝑎𝑖𝑛𝑡𝑦 on the

MNIST dataset,𝑁𝑁𝑆𝑈𝑛𝑠𝑢𝑝 achieves 4.21% higher than𝑈𝑛𝑐𝑒𝑟𝑡𝑎𝑖𝑛𝑡𝑦

on the Fashion-MNIST dataset, 𝑁𝑁𝑆𝑈𝑛𝑠𝑢𝑝 achieves 18.59% higher
than𝑈𝑛𝑐𝑒𝑟𝑡𝑎𝑖𝑛𝑡𝑦 on the CIFAR-10 dataset, and𝑁𝑁𝑆 achieves 23.5%
higher than 𝑈𝑛𝑐𝑒𝑟𝑡𝑎𝑖𝑛𝑡𝑦 on the SVHN dataset, and 𝑁𝑁𝑆𝑈𝑛𝑠𝑢𝑝

achieves 17.14% higher than 𝑈𝑛𝑐𝑒𝑟𝑡𝑎𝑖𝑛𝑡𝑦 on the STL-10 dataset.
This shows a significant improvement of our method compared to
𝑈𝑛𝑐𝑒𝑟𝑡𝑎𝑖𝑛𝑡𝑦.

Comparing with SA-based methods. It can be seen from
Table 2 that 𝐷𝑆𝐴 can achieve higher APFD scores than other SA-
based methods in most cases. The APFD scores achieved by 𝑁𝑁𝑆

and 𝑁𝑁𝑆𝑈𝑛𝑠𝑢𝑝 on each data set are higher than those of 𝐷𝑆𝐴.
On MNIST dataset, 𝑁𝑁𝑆 and 𝑁𝑁𝑆𝑈𝑛𝑠𝑢𝑝 achieve 5.39% and 4.79%
higher average APFD score than 𝐷𝑆𝐴. On Fashion-MNIST dataset,
𝑁𝑁𝑆 and𝑁𝑁𝑆𝑈𝑛𝑠𝑢𝑝 achieve 6.58% and 6.41% higher average APFD
score than𝐷𝑆𝐴. OnCIFAR-10 dataset,𝑁𝑁𝑆 and𝑁𝑁𝑆𝑈𝑛𝑠𝑢𝑝 achieve
7.35% and 13.03% higher average APFD score than 𝐷𝑆𝐴. On SVHN
dataset, 𝑁𝑁𝑆 and 𝑁𝑁𝑆𝑈𝑛𝑠𝑢𝑝 achieve 6.40% and 2.38% higher aver-
age APFD score than𝐷𝑆𝐴. On STL-10 dataset,𝑁𝑁𝑆 and𝑁𝑁𝑆𝑈𝑛𝑠𝑢𝑝

achieve 2.98% and 12.30% higher average APFD score than 𝐷𝑆𝐴.
It can be seen from Figure 2 that the TRC scores achieved by the
SA-based methods also have a significant disadvantage compared
to other methods.

Comparing with TestRank. From the Table 2, on a total of 15
models across the five datasets, our methods 𝑁𝑁𝑆 and 𝑁𝑁𝑆𝑈𝑛𝑠𝑢𝑝

get the highest APFD scores in both six cases, for a total of 12 cases
accounting for 80%, while 𝑇𝑒𝑠𝑡𝑅𝑎𝑛𝑘 gets the highest APFD scores
in three cases accounting for 20%. It can be seen from Figure 2
that on the MNIST and SVHN datasets, the TRC scores of the 𝑁𝑁𝑆

method are significantly higher than 𝑇𝑒𝑠𝑡𝑅𝑎𝑛𝑘 before the turn-
ing point, and on the CIFAR-10 and STL-10 datasets, 𝑁𝑁𝑆𝑈𝑛𝑠𝑢𝑝

is comparable to 𝑇𝑒𝑠𝑡𝑅𝑎𝑛𝑘 . Only on the Fashion-MNIST dataset,
𝑇𝑒𝑠𝑡𝑅𝑎𝑛𝑘 outperform our method. This may be because that the
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Table 3: APFD on OOD Data
Dataset MNIST Fashion-MNIST CIFAR-10
Model ID A B C A B C A B C
Ideal 91.42 90.24 91.03 71.60 72.48 70.49 79.69 77.92 78.93
TestRank 75.70 77.21 73.81 56.57 59.43 56.81 66.60 66.40 66.90

𝑆
𝐴

DSA 79.50 78.79 77.01 58.51 60.08 57.74 62.70 60.77 61.79
PC-LSA 68.68 66.69 49.66 59.51 58.52 58.11 60.87 57.11 59.34
PC-MDSA 65.57 65.09 70.72 57.74 57.23 56.74 62.38 58.70 61.27
PC-MLSA 66.80 63.77 67.81 58.50 56.59 57.08 54.89 45.64 54.19
PC-MMDSA 67.66 64.36 68.42 59.12 60.12 58.51 53.97 54.61 55.46

𝑈
𝑛
𝑐
𝑒
𝑟
𝑡𝑎
𝑖𝑛
𝑡
𝑦 DeepGini 78.41 78.94 77.67 57.86 59.48 56.40 65.24 63.28 65.29

MaxP 78.55 78.86 77.72 57.79 59.37 56.34 65.18 63.22 65.24
Margin 78.62 78.71 77.77 57.60 59.12 56.11 65.03 63.06 65.09
Entropy 78.04 79.06 77.45 58.03 59.67 56.58 65.39 63.46 65.45

𝑁
𝑁
𝑆

DeepGini 83.90 83.27 84.28 57.60 59.66 56.17 66.77 64.98 66.03
MaxP 84.34 83.31 84.50 57.53 59.53 56.10 66.64 64.84 65.93
Margin 84.50 83.02 84.47 57.30 59.18 55.83 66.28 64.43 65.65
Entropy 82.95 83.11 83.61 57.78 59.89 56.35 66.87 65.08 66.11

𝑁
𝑁
𝑆
𝑈
𝑛
𝑠
𝑢
𝑝 DeepGini 79.08 77.56 78.61 55.96 58.18 54.62 68.51 66.52 68.25

MaxP 79.82 77.83 79.28 55.89 58.02 54.55 69.25 67.05 68.81
Margin 80.03 77.49 79.29 55.61 57.55 54.23 69.11 66.80 68.52
Entropy 77.93 77.19 77.51 56.14 58.48 54.82 66.49 64.88 66.76

data in Fashion-MNIST dataset are all small-sized grayscale im-
ages, which are relatively concentrated in representation space,
and 𝑇𝑒𝑠𝑡𝑅𝑎𝑛𝑘 is able to capture finer patterns through learning
with GCN and MLP.

Comparing with ideal.We can see from the Table 2 that the
APFD scores of our methods are close to the ideal situation. The
best case is 𝑁𝑁𝑆𝑀𝑎𝑥𝑃 with model A on MNIST dataset, which
is 2.25% lower than ideal. And the worst case is 𝑁𝑁𝑆𝑀𝑎𝑟𝑔𝑖𝑛 with
model C on STL-10 dataset, which is 15.15% lower than ideal. On
average, our methods is 8.22% lower than ideal.

Answer to RQ1.On clean data, our method can consistently sig-
nificantly improve the performance of uncertainty-based test case
selection methods. Our method is quite competitive with TestRank,
and significantly outperforms SA-based methods.

5.2 Effectiveness on Noisy Data (RQ2)
We evaluated the OOD data and the adversarial example data sepa-
rately as noisy data using our method. Table 3 shows a comparison
of the APFDs obtained for each test selection method on the OOD
data, and Table 4 shows the comparison of APFDs obtained for each
test selection method on the adversarial example data.

Comparing with uncertainty-based methods. On OOD data,
𝑁𝑁𝑆 and𝑁𝑁𝑆𝑈𝑛𝑠𝑢𝑝 get the highest APFD scores in 7 out of 9 cases
when 𝑇𝑒𝑠𝑡𝑅𝑎𝑛𝑘 is excluded. On average, 𝑁𝑁𝑆 and 𝑁𝑁𝑆𝑈𝑛𝑠𝑢𝑝

achieve 2.19% and 0.49% higher APFD than 𝑈𝑛𝑐𝑒𝑟𝑡𝑎𝑖𝑛𝑡𝑦. On ad-
versarial examples, 𝑁𝑁𝑆 and 𝑁𝑁𝑆𝑈𝑛𝑠𝑢𝑝 get the highest APFD
scores in 14 out of 15 cases when𝑇𝑒𝑠𝑡𝑅𝑎𝑛𝑘 is excluded. On average,
𝑁𝑁𝑆 achieve 3.26% higher APFD than𝑈𝑛𝑐𝑒𝑟𝑡𝑎𝑖𝑛𝑡𝑦, but𝑁𝑁𝑆𝑈𝑛𝑠𝑢𝑝

achieve 0.45% lower than 𝑈𝑛𝑐𝑒𝑟𝑡𝑎𝑖𝑛𝑡𝑦. The results show that our
method can improve the performance of uncertainty-based test
case selection methods on noisy data. For adversarial examples,
using self extracted representation seems more effective.

Comparing with SA-based methods. On OOD data, 𝑁𝑁𝑆

and 𝑁𝑁𝑆𝑈𝑛𝑠𝑢𝑝 get the highest APFD scores in 6 out of 9 cases,
and SA-based methods get the highest APFD scores in 3 cases.
On adversarial examples, 𝑁𝑁𝑆 and 𝑁𝑁𝑆𝑈𝑛𝑠𝑢𝑝 get the highest
APFD scores in 5 out of 15 cases, and SA-based methods get the
highest APFD scores in 10 cases. The results show that the SA-based
methods have a significant advantage over the other methods on
adversarial examples.

Comparing with TestRank. On average, 𝑁𝑁𝑆 and 𝑁𝑁𝑆𝑈𝑛𝑠𝑢𝑝

achieve 2.50% and 0.80% higher APFD than 𝑇𝑒𝑠𝑡𝑅𝑎𝑛𝑘 . On average,
𝑁𝑁𝑆 achieve 3.26% higher APFD than𝑈𝑛𝑐𝑒𝑟𝑡𝑎𝑖𝑛𝑡𝑦, but𝑁𝑁𝑆𝑈𝑛𝑠𝑢𝑝

achieve 0.45% lower than𝑇𝑒𝑠𝑡𝑅𝑎𝑛𝑘 . Our methods are more effective
on OOD and adversarial example data compared to 𝑇𝑒𝑠𝑡𝑅𝑎𝑛𝑘 .

Comparing with ideal. We find that all the methods we evalu-
ated have greater gap in APFD on noisy data than on clean data. On
OOD data, 𝑁𝑁𝑆 and 𝑁𝑁𝑆𝑈𝑛𝑠𝑢𝑝 achieve 11.32% and 13.02% lower
average APFD than ideal situation. On adversarial examples, 𝑁𝑁𝑆

and 𝑁𝑁𝑆𝑈𝑛𝑠𝑢𝑝 achieve 11.50% and 15.20% lower average APFD
than ideal situation. That means noisy data is a harder task for test
case selection.

Answer to RQ2. Our method are more effective on OOD and
adversarial example data compared to 𝑇𝑒𝑠𝑡𝑅𝑎𝑛𝑘 and uncertainty-
based methods. For adversarial examples, using self extracted rep-
resentation are more effective. SA-based methods have a significant
advantage over the other methods on adversarial examples.

5.3 Efficiency (RQ3)
Table 5 shows the time cost of each test case selection methods.
Due to space limitation, we only show the results of 𝑁𝑁𝑆𝐷𝑒𝑒𝑝𝐺𝑖𝑛𝑖 ,
𝑁𝑁𝑆

𝑈𝑛𝑠𝑢𝑝

𝐷𝑒𝑒𝑝𝐺𝑖𝑛𝑖
, 𝑇𝑒𝑠𝑡𝑅𝑎𝑛𝑘 and SA-based methods, and the results

of other NNS variants are similar. We can see from the table that
the time cost of TestRank and SA-based methods are more than an
order of magnitude higher than our method. The reasons for this
gap will be discussed in detail in Section 5.5.

Answer to RQ3. Our method is much more efficient than Tes-
tRank and SA-based test case selection methods.

5.4 Impact of Parameters (RQ4)
Since we wanted to obtain the impact of different values of the
parameters on the overall performance of the test case selection
method, we study the impact of the parameters by looking at the
change in APFD scores. Figure 3 shows the effect of the number of
nearest neighbours parameter 𝑘 , i.e. the effect of taking different
values of 𝑘 on the APFD score when 𝛼 is fixed to 0.5. The horizontal
axis is the values of 𝑘 and the vertical axis is the values of APFD.
The three lines in the figure represent each of the three models
for the dataset. We observe that when the value of 𝑘 is small, the
APFD score increases rapidly with increasing values of 𝑘 . It can
be seen that considering the nearest neighbours is effective. On
the MNIST and Fashion-MNIST datasets, the APFD score decreases
slowly after reaching its maximum value as the value of 𝑘 increases.
On the CIFAR-10, SVHN and STL-10 datasets, the APFD scores
remain relatively stable when the value of 𝑘 is large. Considering
too many nearest neighbours is unnecessary, taking too large of 𝑘
not only introduces more computational overhead, but may also
bring about a loss in performance. We observe that the highest
APFD scores on different datasets generally can be achieved when
𝑘 ∈ [5, 20], so in general a value of 10 for 𝑘 is a appropriate choice.

Figure 4 shows the impact of the smoothing weight parameter
𝛼 , i.e. the effect of taking different values of 𝛼 on the APFD score
when 𝑘 is fixed at 10. The horizontal axis is the values of 𝛼 and
the vertical axis is the APFD values. When 𝛼 = 0, this means that
the target DNN model’s predictions for 𝑘-NN are used exclusively,
regardless of the target DNN model’s predictions for the test case
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Table 4: APFD on Adversarial Data
Dataset MNIST Fashion-MNIST CIFAR-10 SVHN STL-10
Model ID A B C A B C A B C A B C A B C
Ideal 86.49 88.36 87.61 75.36 80.57 78.79 83.29 82.87 82.66 89.25 88.76 83.92 81.93 82.01 81.08
TestRank 70.17 77.64 79.63 68.78 70.81 72.04 56.65 63.60 57.28 76.67 79.67 77.82 58.69 61.45 60.62

𝑆
𝐴

DSA 83.78 84.68 82.50 71.09 75.15 73.07 65.49 65.00 66.47 78.26 81.90 72.87 66.51 66.16 66.04
PC-LSA 83.35 76.12 49.98 69.43 72.67 71.75 69.19 64.54 67.80 71.25 59.66 47.49 63.50 63.58 65.75
PC-MDSA 82.46 75.31 80.49 67.18 69.88 69.20 69.10 65.18 68.10 81.44 76.67 66.08 66.52 68.28 67.75
PC-MLSA 82.83 73.43 78.33 68.31 66.95 70.45 65.57 51.92 57.53 74.82 65.76 64.49 68.03 67.41 68.41
PC-MMDSA 78.84 76.55 75.75 64.14 69.63 67.72 59.84 61.48 60.71 79.60 78.07 63.67 68.80 57.97 58.69

𝑈
𝑛
𝑐
𝑒
𝑟
𝑡𝑎
𝑖𝑛
𝑡
𝑦 DeepGini 62.06 74.31 76.02 61.89 63.43 63.81 67.20 68.02 69.46 66.60 80.01 76.37 66.90 68.35 67.59

MaxP 62.02 74.29 76.00 61.88 63.30 63.66 67.17 67.98 69.43 66.59 79.98 76.28 66.86 68.32 67.52
Margin 61.81 74.23 75.93 61.56 62.97 63.24 67.08 67.85 69.32 66.57 79.86 76.02 66.72 68.12 67.35
Entropy 62.20 74.41 76.13 62.05 63.76 64.29 67.29 68.16 69.59 66.58 80.10 76.58 67.02 68.52 67.76

𝑁
𝑁
𝑆

DeepGini 75.79 81.71 81.45 65.29 66.84 65.86 68.39 69.11 69.53 70.46 84.58 79.29 67.32 68.55 67.31
MaxP 75.74 81.63 81.40 65.22 66.63 65.66 68.34 69.06 69.46 70.47 84.65 79.28 67.26 68.46 67.19
Margin 75.52 81.43 81.20 64.79 66.10 65.12 68.10 68.80 69.23 70.32 84.53 79.12 67.01 68.10 66.91
Entropy 75.91 81.86 81.55 65.41 67.31 66.41 68.46 69.10 69.61 70.48 84.44 79.27 67.50 68.83 67.54

𝑁
𝑁
𝑆
𝑈
𝑛
𝑠
𝑢
𝑝 DeepGini 78.91 82.00 80.94 65.64 67.25 66.53 68.15 67.09 67.04 45.48 74.72 68.91 66.20 66.14 62.57

MaxP 78.73 81.82 80.74 65.67 67.06 66.34 68.55 67.73 67.42 46.19 76.25 70.18 66.38 66.30 62.88
Margin 78.25 81.34 80.22 65.32 66.50 65.72 67.70 67.22 66.71 46.15 77.57 71.66 65.35 65.19 62.17
Entropy 79.21 82.35 81.30 65.64 67.74 67.15 66.52 65.09 65.82 44.66 69.91 66.74 64.53 64.61 61.40

Table 5: Test Case Selection Time Cost (s)

𝑁𝑁𝑆𝐷𝑒𝑒𝑝𝐺𝑖𝑛𝑖 𝑁𝑁𝑆
𝑈𝑛𝑠𝑢𝑝

𝐷𝑒𝑒𝑝𝐺𝑖𝑛𝑖
TestRank DSA PC-LSA PC-MDSA PC-MLSA PC-MMDSA

MNIST 17.57 6.70 759.12 1892.32 271.35 107.11 191.02 239.22
Fashion-MNIST 9.87 9.83 875.17 1850.15 270.58 106.86 170.02 220.21
CIFAR-10 26.65 26.55 642.35 1928.72 227.80 215.99 180.55 322.30
SVHN 49.02 49.70 667.67 2004.35 285.42 113.45 202.33 251.38
STL-10 2.59 2.37 110.40 259.03 37.14 15.66 26.15 32.75

itself. As can be seen from the figure this is not the best choice.
When 𝛼 = 1, it degrades to the original uncertainty-based test case
selection method. We observe that the highest APFD scores on
different datasets generally occur in the middle range, so in general
a value of 0.5 is an appropriate choice.

Answer to RQ4. Our method can be significantly improved by
considering only a small number of nearest neighbors. Considering
too many nearest neighbors may degrade performance. In general,
a value of 10 for 𝑘 is a good choice. For the other hand, using only
the uncertainty of the test case itself or only the uncertainty of the
k nearest neighbor, can not achieve the best results. In general, a
value of 0.5 for 𝛼 is a good choice.

5.5 Discussion
Although our method does not have a particularly significant ad-
vantage over TestRank in terms of effectiveness, as demonstrated
in our experiments. Compared to TestRank, a learning-based test
case selection method, our method is lightweight and easy to use.
Specifically, the main advantages of our approach over TestRank
are as follows:
• No additional training overhead is required. TestRank requires a
GCN and an MLP to be trained before it can be used. 450 epochs
are needed to train the GCN and 150 epochs to train the MLP in
its official implementation. Our approach avoids this part of the
overhead.

• No additional labeling effort required. TestRank requires a sepa-
rate labeled dataset to train the ranking model, which introduces

additional labeling effort. And our method no labeled data is
needed, only unlabeled data.

• Smaller overhead for calculating 𝑘-NN. When training GCN,
TestRank needs to use representation to build a topology graph
between the test case and its 𝑘-NN, and the recommended 𝑘

value is 100. Our experimental results show that when 𝑘 = 10,
our method can get a good performance, and our method does
not require the construction of a topology graph.

• Good flexibility. TestRank needs to retrain the ranking model
when the test suite changes significantly. And our method can
be used directly on the new test suite.

There is one point worth noting in the experimental results,
the SA-based test case selection method shows some advantages
on the adversarial examples. We think this is because the SA of
a test sample reflects the novelty of the sample compared to the
training data, which can measure whether the test sample is in the
distribution of the training data, and it can be interpreted as an
OOD data detection metric. This also explains why the SA-based
method is less effective than other methods on clean data with the
same distribution as the training data.

From our experimental results, we can see that there are signifi-
cant differences in the performance of 𝑁𝑁𝑆 and 𝑁𝑁𝑆𝑈𝑛𝑠𝑢𝑝 under
different circumstances, which means the choice of representation
matters. Comparing the results of RQ1 and RQ2, we notice that
𝑁𝑁𝑆 works better on clean and OOD data for MNIST dataset, but
𝑁𝑁𝑆𝑈𝑛𝑠𝑢𝑝 works better on adversarial examples. Similar phenome-
non can be observed on other datasets. We deduce that 𝑁𝑁𝑆 works
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Figure 3: The Impact of 𝑘

well when the DNN model is well trained on clean data, such as on
MNIST and on SVHN. And adversarial examples are used to mislead
the DNN model on purposes, so it will have a greater impact on
the method that are better on clean data. We leave it as our future
work to investigate the guidance on how to select representations
on different types of data.

6 CONCLUSIONS
In this paper, we propose a novel and lightweight DNN test selec-
tion method, namely NNS, to improve testing efficiency and reduce
labeling cost. The key design idea is to calibrate the uncertainty
by utilizing 𝑘-nearest neighbors prediction smoothing to give the
error-prone test cases higher priority. Our method is applied to
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Figure 4: The Impact of 𝛼

four uncertainty-based test case selection methods with two rep-
resentation extraction variations. The results of the experiments
demonstrate that our method can consistently improve the per-
formance of uncertainty-based test case selection methods, and
outperform TestRank which is a learning based test case selection
method. Our method is a plug-and-play technique that can be eas-
ily integrated with different uncertainty measures and different
representation learning methods.
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