
Patch Based Vulnerability Matching for Binary Programs
Yifei Xu∗

School of Software Engineering,
MoE KLINNS

Xi’an Jiaotong University
China

xyf0921@stu.xjtu.edu.cn

Zhengzi Xu∗
School of Computer Science and

Engineering
Nanyang Technological University

Singapore
xu0002zi@e.ntu.edu.sg

Bihuan Chen
School of Computer Science

Fudan University
China

bhchen@fudan.edu.cn

Fu Song
School of Information Science and

Technology
ShanghaiTech University

China
songfu@shanghaitech.edu.cn

Yang Liu
Nanyang Technological University

Singapore
Institute of Computing Innovation

Zhejiang University
China

yangliu@ntu.edu.sg

Ting Liu
School of Cyber Science and
Engineering, MoE KLINNS
Xi’an Jiaotong University

China
tingliu@mail.xjtu.edu.cn

ABSTRACT

The binary-level function matching has been widely used to de-
tect whether there are 1-day vulnerabilities in released programs.
However, the high false positive is a challenge for current function
matching solutions, since the vulnerable function is highly simi-
lar to its corresponding patched version. In this paper, the Binary
X-Ray (BinXray), a patch based vulnerability matching approach,
is proposed to identify the specific 1-day vulnerabilities in target
programs accurately and effectively. In the preparing step, a basic
block mapping algorithm is designed to extract the signature of a
patch, by comparing the given vulnerable and patched programs.
The signature is represented as a set of basic block traces. In the de-
tection step, the patching semantics is applied to reduce irrelevant
basic block traces to speed up the signature searching. The trace
similarity is also designed to identify whether a target program is
patched. In experiments, 12 real software projects related to 479
CVEs are collected. BinXray achieves 93.31% accuracy and the
analysis time cost is only 296.17ms per function, outperforming the
state-of-the-art works.

CCS CONCEPTS

•Theory of computation→ Program analysis; • Security and

privacy→ Software reverse engineering.

KEYWORDS

Vulnerability Matching, Patch Presence Identification, Binary Anal-
ysis, Security

∗Both authors contributed equally to this research.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ISSTA ’20, July 18–22, 2020, Virtual Event, USA
© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-8008-9/20/07. . . $15.00
https://doi.org/10.1145/3395363.3397361

ACM Reference Format:

Yifei Xu, Zhengzi Xu, Bihuan Chen, Fu Song, Yang Liu, and Ting Liu. 2020.
Patch Based Vulnerability Matching for Binary Programs. In Proceedings
of the 29th ACM SIGSOFT International Symposium on Software Testing and
Analysis (ISSTA ’20), July 18–22, 2020, Virtual Event, USA. ACM, New York,
NY, USA, 12 pages. https://doi.org/10.1145/3395363.3397361

1 INTRODUCTION

Vulnerability whose patch has been released is called as 1-day
vulnerability. It would be exploited to attack the users who fail
to adopt the latest security patches. It is one of the most serious
and common security threats. The binary-level code matching has
been considered as a good solution to detect 1-day vulnerabilities in
released programs [14, 20, 46]. It compares the similarity between
functions with known vulnerabilities and target functions in a
given binary executable. If a target function is similar to a known
vulnerable function, it will be predicated as vulnerable.

To improve the vulnerability detection capability, many works
have been proposed to improve the binary-level code matching
accuracy. DiscovRE [18] and CACompare [23] achieve function
matching across architectures by lifting the binary instructions
to a unified intermediate representation. BLEX [17] uses program
execution to extract the semantic features to improve the matching
accuracy. BinGo [11] and BinGo-E [48] combines syntactic, struc-
tural and semantic features to produce more accurate matching
results. However, it is difficult for the current function matching
solutions to differentiate vulnerable and patched functions, since
patches usually introduce subtle changes to fix vulnerabilities [37].
The patched functions would be identified as vulnerable, resulting
in high false positive rates in detecting vulnerabilities [34]. As a
result, these works require security experts to manually analyze
potential vulnerable functions to find the genuine ones, which is
time-consuming.

It is not trivial to address this problem. On the one hand, ap-
proaches need to be tolerant enough to identify vulnerable func-
tions even with the presence of vulnerability-irrelevant small code
changes like function upgrades and compiler optimizations. On the
other hand, approaches also need to be precise enough to filter out

376

https://doi.org/10.1145/3395363.3397361
https://doi.org/10.1145/3395363.3397361

ISSTA ’20, July 18–22, 2020, Virtual Event, USA Yifei Xu, Zhengzi Xu, Bihuan Chen, Fu Song, Yang Liu, and Ting Liu

those already patched functions. Zhang and Qian [49] proposed an
algorithm to determine whether a function has been patched or not.
They extract syntactic and semantic changes from source code and
build a “source code to binary” matching model. However, it needs
to analyze the source code, and thus it is not applicable when the
source code is not available. To the best of our knowledge, there
lacks an effective and efficient approach for binary-level vulnera-
bility matching with patch identification. We have summarized the
following three properties for such an approach to be practical for
real-world projects.

• P1. The approach needs to be accurate in identifying the patches
in the target functions.

• P2. The approach needs to be scalable for large real-world pro-
grams.

• P3. The approach should use no information from the source
code to work in closed source program binaries.

To fulfill these properties, we propose a patch based vulnerabil-
ity matching approach, named as Binary X-Ray (BinXray). It can
precisely differentiate patched functions from vulnerable functions
in the binaries. It reduces the error rate by more than 30% compared
to the state-of-the-art function matching tool, Bingo-E [48], with
less time consumed. It is more accurate than the patch identification
tool FIBER[49], without source code.

For P1. To accurately identify patched functions and detect
real vulnerable functions, BinXray introduces two-step signature
matching approach. First, to narrow the searching space, BinXray
generates the function signature from the functions with known
vulnerabilities, and uses the signatures to search for suspicious tar-
get functions in the binaries through matching. Second, it generates
patch signatures by comparing the differences between the vulner-
able functions and their patched versions. The patch signatures
will be used to identify the patched functions from the suspicious
target functions. To extract accurate patch signatures, we propose a
structural basic block mapping algorithm to locate the changed and
unchanged basic blocks between two functions. BinXray makes
patch prediction based on the length sensitive similarity matching
of the patch signature with the target function.

For P2. To improve the scalability, BinXray proposes patch sig-
nature extraction algorithm, which only captures essential parts
of the patching semantics. Since most of the security patches only
induce small changes within a few basic blocks in binary pro-
grams [29, 42, 50], BinXray locates the areas which only consist
of the changes induced by patching vulnerabilities, and generates
patch signatures based on them instead of generating signatures
at the granularity of the whole function. This can also greatly im-
proves the matching speed. Moreover, changes in other parts of
the functions won’t be included in signatures, which are irrelevant
to vulnerabilities. Thus, they will not affect the predicting results,
leading to a more robust prediction against the noises from other
changes.

For P3. From signature generation to patch identification,BinXray
performs all the analysis at binary level. Therefore, it does not need
any source code information which makes it suitable for programs
without source code, such as firmware or third-party libraries.

This work makes the following contributions.

Figure 1: Running Example: control flow graphs of the func-

tion dtls1_process_heartbeat() with the HeartBleed Bug in

OpenSSL versions 1.0.1f (a) and 1.0.1g (b)

• We propose a basic block mapping algorithm to accurately and
efficiently map blocks in function differencing to generate patch
signatures.

• A basic block boundary based algorithm is designed to locate
the changes induced by patching. By reducing the size of patch
signatures, it can improve the speed and scalability.

• We implement the prototype of BinXray, which can automat-
ically extract patch signatures and accurately identify patched
functions without any source code information. In experiments,
12 real software projects related to 479 CVEs are collected.BinXray
achieves 93.31% accuracy in predicting the patch presence, and
the analysis time cost is only 296.17ms per function, outperform-
ing the state-of-the-art works.

2 OVERVIEW

In this section, we first introduce a motivating example, and then
present the overview of our approach.

2.1 Motivating Example

We use the HeartBleed bug (CVE-2014-0160 [1]) in OpenSSL as
the running example. It occurs in dtls1_process_heartbeat()
function. Figure 1(a) shows the control flow graph (CFG) of the
vulnerable function in version 1.0.1f and Figure 1(b) shows the
CFG of the patched function in version 1.0.1g. The patch adds a
check in the source code which results in six new basic blocks in
binary, named 𝐸 ′, 𝐹 ′, 𝐺 ′, 𝐿′,𝑀 ′ and 𝑁 ′ in Figure 1(b). In addition,
due to patching, the instructions in another four basic blocks, named
𝐴′, 𝐶 ′, 𝐷 ′ and 𝐼 ′ in Figure 1(b), are also slightly changed.

Given an unknown binary executable which may contain this
function, we want to know whether the HeartBleed bug exists or
not. If a traditional function matching approach is adopted and the
vulnerable function in Figure 1(a) is used as the matching target, the
corresponding function in the unknown binary may be matched.
For instance, the patched function in Figure 1(b) can be matched,

377

Patch Based Vulnerability Matching for Binary Programs ISSTA ’20, July 18–22, 2020, Virtual Event, USA

Figure 2: Overview of BinXray

since they share a large number of common blocks 𝐵′, 𝐻 ′, 𝑃 ′, 𝐽 ′,
𝐾 ′, 𝑂 ′, 𝑄 ′, 𝑅′, 𝑆 ′, 𝑇 ′ and 𝑈 ′ with the same structure. However, it
is unclear whether the matched function has been patched or not,
since the two functions have a high degree of similarity, so tedious
manual examination is usually necessary to differentiate genuine
and spurious one.

BinXray is designed to address this problem. Its goal is to differ-
entiate patched functions from vulnerable functions by identifying
patch presences so that vulnerable functions can be identified with
a low false positive rate.

2.2 Approach Overview

Figure 2 shows the overview of our approach, named BinXray.
Taking the binary code of a vulnerable function (VF), a patched
version of the same function, called patched function (PF), and a
target program as inputs, the goal of BinXray is to effectively and
efficiently check whether the target program has any functions
(TF) that are similar to the vulnerable function but have not been
patched yet. For each CVE, VF is the function before the patch
commit. PF is the function after it. By diffing VF and PF, BinXray
can generate the patch signature. TF is detected by the function
matching algorithm using VF as the signature in the target binary.
The core components of BinXray are: target function matching
(Section 3.1), patch signature generation (Section 3.2), and patch
presence identification (Section 3.3).
Terms and Acronyms. For convenient reference, we summarize
the frequently used terms and their acronyms in Table 1.
Target Function Matching. BinXray generates lightweight func-
tion signatures and leverages functionmatching algorithm to quickly
identify target functions (TFs) that are similar to the VF. Note that
these TFs may not have been patched. The matching algorithm
uses syntactic and structural information of VF, as the function
signature, to identify TFs. Hence it is scalable and accurate enough
to identify TFs.
Patch Signature Generation. BinXray automatically generates
binary level patch signatures from the normalized binary code of the
given VF and PF. Instead of incorporating the entire function into
the signature, it first creates a mapping between the basic blocks
(BBs) of two functions, from which BinXray identifies Changed

Table 1: Terms and Acronyms

Term Acronym Description

Vulnerable
Function VF A function that contains a vulnerability

Patched
Function PF A function whose vulnerability has been

patched
Target
Function TF A function to be checked whether the

vulnerability has been patched or not

Basic Block BB A sequence of consecutive instructions
without any branching

Changed
Basic
Block

CBB
A block that has been changed, added, or
deleted in the differences between a VF
and its PF

Boundary
Basic
Block

BBB A block that is the parent or the child of
a CBB, or the root or leave of a CFG

Trace - A sequence of consecutive BBs without
any loops

Valid Trace VT

A sequence of consecutive basic blocks
that starts and ends with some BBBs,
crosses at least one CBB, without any
loops

Basic Blocks (CBBs) and computes two sets of valid traces (VTs):
one set𝑇1 from the CBBs of the VF and one set𝑇2 from the CBBs of
the PF. The two trace sets (𝑇1,𝑇2) are regarded as a patch signature.
Patch Presence Identification. BinXray determines whether
each identified TF has been patched or not, by matching it with the
patch signature. If the TF is more close to VF than PF, it is considered
to be vulnerable. Otherwise, it is considered to be patched.

3 METHODOLOGY

In this section, we elaborate the core components of our approach.

3.1 Target Function Matching

Given a target program, a VF and its PF, in order to reduce the time
consumption, we first narrow down the searching scope by locating
TFs in the target program that are similar to VF, on which the patch
presence identification is performed. We adopt a lightweight tech-
nique for target function matching. For scalability consideration,
taking insights from [11, 18, 20], we use syntactic and structural
information of functions to construct the function signatures and
check whether two functions are similar or not. The syntactic infor-
mation consists of the sequence of mnemonic operators in binary
instructions, function calls and constant values. The structural
information consists of the number of instructions, basic blocks,
branches and the control flow graph.

Using the function signatures, our target function matching
achieves a high accuracy to identify the TFs. This is because that
vulnerable functions are usually large whose syntactic and struc-
tural information are rich and unique, which allows us to differenti-
ate them from other functions. Therefore, although the lightweight
technique scarify a little accuracy in order to be scalable, the results
are still accuracy enough for patch presence identification in our
experiments. Remark that this target function matching is not the
contribution of this work, hence it may be similar to other exist-
ing approaches. We include it because we would like to show the
complete workflow of our framework.

378

ISSTA ’20, July 18–22, 2020, Virtual Event, USA Yifei Xu, Zhengzi Xu, Bihuan Chen, Fu Song, Yang Liu, and Ting Liu

Figure 3: Case for Duplicate Basic Blocks Mapping

3.2 Patch Signature Generation

In patch signature generation, BinXray first computes the differ-
ences between the binary code of a VF and its corresponding PF,
then creates a patch signature, which will be used in patch presence
identification. It consists of three sub-components: binary instruc-
tion normalization, basic block mapping and valid trace generation.

3.2.1 Binary Instruction Normalization. The source code of a pro-
gram is compiled into binary instructions by compilers. Due to com-
pilation optimization, register allocation and assignment, address
shifting, and other compilation settings, the binary instructions of
two similar or same functions may be dissimilar after compilation.
Since BinXray generates patch signatures by leveraging the differ-
ences between vulnerable and patched functions, it is important to
eliminate changes that are introduced by compilers. Otherwise, the
generated patch signatures will contain many irrelevant changes.
Therefore, normalization is used to reduce the compiler introduced
changes.

BinXray applies three normalization rules to binary instructions:
address normalization: replacing concrete addresses by a sym-
bolic term "address"; memory normalization: replacing indirect
memory access by a symbolic term "mem"; and register normal-

ization: replacing concrete registers by a symbolic term "reg". The
normalization process is exemplified as follows:

Address normalization:
call 0x80488094 ->call address
Memory normalization:
mov [ebp], edx ->mov mem, edx
Register normalization:
mov ebp, esp ->mov, reg, reg

It is important to mention that BinXray does not normalize
constants since some patches may change constants only in order
to fix vulnerabilities, e.g., increasing the buffer size to fix a buffer
overflow vulnerability. Normalizing constants will prevent BinXray
from capturing this kind of patches.

3.2.2 Basic Block Mapping. Basic block mapping tries to map the
same basic blocks between two functions. It is a technique to com-
pute differences of the functions, in which unmatched blocks are
regarded as the differences. There are basic blocks mapping algo-
rithms in literature such as Bindiff [21] and Diaphora [5]. However,
they sacrifice the accuracy in order to maximize the mapping speed
and improve the scalability. Indeed, they use the hash values of the
basic blocks to perform the mapping. If there are several duplicated
blocks in one function that have the same hash value, they may fail
to match the block with the correct one. For example, Figure 3(a)
shows two CFGs need to be matched, as block1 and block1’ are
the same, block2, block3 and block3’ are the same, and block2’ is

Figure 4: Example for Greedy Matching Algorithm

changed from block2 and different compared to others. Existing
approaches can match block1 with block1’. However they may mis-
match block2 with block3’ since they share the same hash value as
shown in Figure 3(b). The inaccuracy mapping will significantly
affect the validity of the generated patch signatures. Therefore, we
propose a new basic block mapping algorithm, which takes the
syntax and context information of the basic blocks to alleviate the
hash collision problem (i.e., different basic blocks have same hash
value). Our method can complete mapping like Figure 3(c), where
block2 and block2’ can be recognized as CBBs correctly. We man-
ually verified 36 real cases, that duplicate blocks turn up in one
function. Our experimental results show that it outperforms the
existing mapping algorithms in [5, 21].

Our basic block mapping algorithm first computes the hash
values of basic blocks in both functions, based on their normalized
instructions. Then it puts all the basic blocks with same hash value
into the same basket. After that, if a basket has exactly two basic
blocks from two different functions respectively, these two basic
blocks are matched. If a basket only have basic blocks from one
function, then these blocks must be changed basic blocks (CBB). If a
basket has multiple blocks from both functions, then it is nontrivial
to connect a mapping between these basic blocks. To solve this
problem, we leverage their structural information and propose
a greedy algorithm to establish the mapping between two basic
blocks using similarity scores. For each pair of basic blocks from two
different functions in one basket, BinXray computes a similarity
score between them using their structural information (note that
their syntactic information is already encoded as hash values). The
similarity score of two basic blocks is computed by calculating
the edit distance of the normalized instruction sequence in their
adjacent basic blocks. If a basic block has more than one adjacent
basic blocks, the similarity score will be weighted according to the
control flow. The aggregated weight of the in-degree is normalized
to be the same as the out-degree. After obtaining the pair-wise
similarity scores of basic blocks, all the pairs will be put in a matrix.
BinXray iteratively selects a pair of basic blocks from the matrix
that has the highest similarity score, regards it as a pair of matched
basic blocks and removes them from the matrix, until no more pair
of basic blocks can match. Finally, all the remaining basic blocks in
the matrix are regarded as CBBs. After computing the basic block
mapping in one basket, the information will be propagated to other
baskets as the contexts for other basic blocks.

379

Patch Based Vulnerability Matching for Binary Programs ISSTA ’20, July 18–22, 2020, Virtual Event, USA

Example. Suppose there are seven basic blocks Ba, Bb, Bc, B1, B2,
B3, and B4 in one basket, where Ba, Bb, and Bc are from a VF, and
the others are from its corresponding PF. The similarity scores of
basic block pairs are computed as shown in Figure 4(a). The greedy
algorithm first selects the pair (Bb,B3) which has highest similarity
score 1.0 and removes them from the matrix, resulting the matrix
as shown in Figure 4(b). Repeating this procedure, the pairs (Ba,
B4) and (Bc, B2) are matched, the resulting matrixes are shown in
Figure 4(c) and Figure 4(d). Finally, the remaining basic block is B1
from the PF which is regarded as a CBB.

3.2.3 Valid Trace Generation. To precisely express the patch signa-
ture of the given VF and PF, BinXray generates two sets of valid
traces, one for VF and the another for PF. Based on the basic block
mapping results between the VF and PF, it locates all the CBBs of
these two functions. BinXray identifies the boundary basic blocks
(BBBs) for each CBB, where a BBB is either an adjacent basic block
of the CBB but not a CBB, or the root or leaf of the CFG of the func-
tion. A valid trace (VT) is a sequence of consecutive basic blocks
that starts and ends with some BBBs, crosses at least one CBB,
without any loops. If a loop occurs, we will flat (to treat the loop
as being iterated once) it so that they will not affect the number of
traces. Since BinXray relies mostly on syntax information, flatten
the loop is a good choice which does not alter the syntax much. To
build the VT, we put all the CBBs and BBBs into one connected
graph. All the BBBs are the root and leaf nodes of the graph; and
the CBBs are internal nodes. The valid traces are all the possible
paths in the graph. BinXray generates two sets of VTs for the VF
and PF, which are regarded as the patch signature. We denote by
𝑇1 the set of VTs of the VF, and 𝑇2 the set of VTs of the PF.
Example. Recalling the running example, CBBs in the function
dtls1_process_heartbeat() in the version 1.0.1f (cf. Figure 1(a))
are: 𝐴, 𝐶 , 𝐷 , and 𝐹 , and the BBBs in this function are: 𝐵, 𝐸, 𝐾 , 𝐺 .
The CBBs in the patched function (cf. Figure 1(b)) are: 𝐴′, 𝐶 ′, 𝐷 ′,
𝐸 ′, 𝐹 ′, 𝐺 ′, 𝐼 ′, 𝐿′,𝑀 ′ and 𝑁 ′, and the BBBs in this function are: 𝐵′,
𝐻 ′, 𝑃 ′, 𝐽 ′ and𝑈 ′.

The VTs of the function dtls1_process_heartbeat() in ver-
sion 1.0.1f (i.e., Figure 1(a)) are:

𝐴->𝐵; 𝐵->𝐶->𝐷->𝐸;
𝐴->𝐶->𝐷->𝐸; 𝐵->𝐶->𝐷->𝐺 ;
𝐴->𝐶->𝐷->𝐺 ; 𝐵->𝐶->𝐾 ;
𝐴->𝐶->𝐾 ; 𝐸->𝐹 ->𝐺 ;

Similarly, the VTs for the patched function (i.e., Figure 1(b)) are:
𝐴′->𝐵′; 𝐴′->𝐶′->𝐿′->𝑈 ′;
𝐴′->𝐶′->𝐷′->𝑀′->𝑈 ′; 𝐴′->𝐶′->𝐷′->𝐸′->𝐹 ′->𝑁 ′->𝑈 ′;
𝐴′->𝐶′->𝐷′->𝐸′->𝐹 ′->𝐺′->𝐻 ′; 𝐴′->𝐶′->𝐷′->𝐸′->𝐹 ′->𝐺′->𝐽 ′;
𝐴′->𝐶′->𝐷′->𝐸′->𝑃 ′; 𝐵′->𝐶′->𝐿′->𝑈 ′;
𝐵′->𝐶′->𝐷′->𝑀′->𝑈 ′; 𝐵′->𝐶′->𝐷′->𝐸′->𝐹 ′->𝑁 ′->𝑈 ′;
𝐵′->𝐶′->𝐷′->𝐸′->𝐹 ′->𝐺′->𝐻 ′; 𝐵′->𝐶′->𝐷′->𝐸′->𝐹 ′->𝐺′->𝐽 ′;
𝐵′->𝐶′->𝐷′->𝐸′->𝑃 ′; 𝐻 ′->𝐼 ′->𝐽 ′;

The VT sets can be optimized by merging the VTs which are
connected end to end. The advantage of combining CBBs with BBBs
to form the VTs is twofold. First, it pinpoints changes induced by
vulnerability patching. Figure 5 has shown the real-world vulner-
ability CVE-2015-1790 in OpenSSL as an example. The CFG on
the left part shows the related function PKCS7_dataDecode() in
OpenSSL 1.0.1 l. The right part presents the detail of the function

Figure 5: Justification of Using Boundary Basic Blocks

in three consecutive versions. In OpenSSL 1.0.1 l, the function is
vulnerable, and we regard it as a target. In 1.0.1 m, the function
has been updated (the red color blocks) in Area 1, but it is still
vulnerable. In 1.0.1 n, the vulnerability has been fixed by adding
sanity checks (the yellow blocks) in Area 2. BBBs help to locate
the areas which are related to the patch signatures in target func-
tions. Changes outside the areas will be filtered out. If we use the
signature to detect the patch presence in the target function (1.0.1
l), according to the BBBs, only changes in Area 2 will be considered.
Other changes will be treated as noises so that they will not af-
fect the patch presence identification. On this example, using BBBs
(green blocks), BinXray can focus on the changed (yellow) blocks,
while neglecting the noises (red blocks).

Second, it significantly reduces the number of basic blocks and
traces used in signature generation and patch presence identifi-
cation. As shown in Figure 5, the function PKCS7_dataDecode()
has around 100 basic blocks, which can form thousands of differ-
ent traces. If we enumerate all the blocks and traces to build the
signature, the signature size would be too large and the patch iden-
tification process would take a long time. Using BBBs, the signature
size is reduced to 5 basic blocks and 2 traces. Our experimental
results show that using BBBs significantly improves BinXray’s
performance. Indeed, BinXray can finish analysis in less than one
second even on a large function, while it will takes more than ten
minutes, if the entire function is used to build the signature.

3.3 Patch Presence Identification

Patch presence identification predicates whether a TF has been
patched or not. The key idea is check whether the TF is more
similar to VF or PF. If the TF is more similar to VF than PF, then
the TF is regarded as a vulnerable function, otherwise it is regarded
as a patched one. The patch presence identification consists four
parts: trace generation, trace reduction, similarity comparison and
decision algorithm.

3.3.1 Trace Generation. To match patch signatures in target func-
tion, BinXray first creates four sets of valid traces from VF, PF,
and TF:𝑇3,𝑇4,𝑇5 and𝑇6, as shown in Figure 6, where (𝑇1,𝑇2) is the
patch signature.

380

ISSTA ’20, July 18–22, 2020, Virtual Event, USA Yifei Xu, Zhengzi Xu, Bihuan Chen, Fu Song, Yang Liu, and Ting Liu

Figure 6: The Relationship between Valid Traces Sets

To generate𝑇3 and𝑇4, BinXray first builds the mapping between
the VF and TF by using the basic block mapping algorithm in
Section 3.2.2, and then extracts the CBBs of the VF and TF. Unlike
the patch signature generation, BinXray reuses the BBBs generated
between the VF and PF. It creates set 𝑇3 by combining the CBBs in
TF with BBBs from patch signatures which are adjacent to those
CBBs. One or more local CFGs can be constructed, and trace sets
are generated by traversing those local CFGs. Similarly, it creates
set 𝑇4 by combining the CBBs in VF with the corresponding BBBs.
The reason for using BBBs is that it ensures only the relevant blocks
are included in the sets. If there are some CBBs in other part of the
function which are not related to the vulnerability, they will not
form valid traces since no BBBs are adjacent to them. Therefore, it
helps to remove the noises. Finally, the same procedure is applied to
get the set 𝑇5 from the TF and the set 𝑇6 from the PF by leveraging
the mapping between the TF and PF.

3.3.2 Trace Reduction. To further improve the prediction accuracy
and performance, BinXray will eliminate irrelevant traces in the
aforementioned trace sets (𝑇4 and 𝑇6). For each valid trace 𝑡 in the
set 𝑇4, if there does not exist any valid trace in 𝑇1 that contains the
same CBB of 𝑡 , the valid trace 𝑡 will be eliminated from the set 𝑇4,
resulting in a reduced set of valid traces𝑇41. Similarly, BinXraywill
eliminate the irrelevant trace from𝑇6, by comparing with the traces
in 𝑇2, resulting in a reduced set of valid traces 𝑇62. The reduction
ensures that the remaining traces in 𝑇41 and 𝑇62 will contain some
CBBs in the patch signature, which are considered as relevant in
the patch presence identification.
Example. Figure 7 provides the complementary part for the run-
ning example in Figure 1. The VF in Figure 7(a) is the same as the
one in Figure 1(a). Figure 7(b) shows the function in a modified
version as the TF. The basic block 𝑃 ′′ is added into the TF, resulting
in blocks (𝐼 , 𝐽) being marked as CBB in the VF in Figure 7(a). Re-
call that the BBBs (𝐵, 𝐸, 𝐾 , 𝐺) are in the patch signature, BinXray
generates the trace set𝑇4 for the VF, which contains only one valid
trace as shown below:

𝐺->𝐼 ->𝐽 ;

In trace reduction, each trace in the reduced sets needs to contain
at least one block in the CBB sets of the patch signature. In Fig-
ure 1(a), the CBBs are: 𝐴, 𝐶 , 𝐷 and 𝐹 . Therefore, the trace𝐺->𝐼 ->𝐽
will be removed by the trace reduction. By removing it, BinXray
filters out the irrelevant traces and the final accuracy will be im-
proved.

3.3.3 Similarity Comparison. BinXray performs patch presence
identification by calculating the similarity score between trace sets
and patch signatures. To compute similarity score for each pair of
trace sets, we first show how to compute similarity score for a pair

Figure 7: Running Example Continues: function

dtls1_process_heartbeat() in OpenSSL

of traces. For each trace in a trace pair, BinXray will first connect
the basic blocks in the trace to form a sequential instruction trace
by removing all the jump instructions. Then, two instruction traces
are compared to obtain the similarity score. The score is computed
according to the Equation (1).

𝑆𝑖𝑚(𝑡1, 𝑡2) =
𝑚𝑎𝑥 (𝑙𝑒𝑛(𝑡1), 𝑙𝑒𝑛(𝑡2)) − 𝑒𝑑𝑖𝑡 (𝑡1, 𝑡2))

𝑚𝑎𝑥 (𝑙𝑒𝑛(𝑡1), 𝑙𝑒𝑛(𝑡2))
(1)

BinXray computes the Levenshtein distance between two in-
struction traces, denoted as 𝑒𝑑𝑖𝑡 (𝑡1, 𝑡2). Then the distance is de-
ducted from the maximum length of the traces and divided by the
maximum length. The resulting score measures the normalized
similarity between two traces.

After having individual score of each pair of traces, the final
similarity between two trace sets is computed according to the
following equation.

𝑆𝑖𝑚(𝑇1,𝑇2) =
∑
𝑡1∈𝑇1,
𝑡2∈𝑇2

𝑆𝑖𝑚(𝑡1, 𝑡2) ∗ (𝑙𝑒𝑛(𝑡1) + 𝑙𝑒𝑛(𝑡2))
|𝑇1 | ∗ 𝑙𝑒𝑛(𝑇2) + |𝑇2 | ∗ 𝑙𝑒𝑛(𝑇1)

(2)

The similarity score of two trace sets 𝑆𝑖𝑚(𝑇1,𝑇2) is normalized
according to the trace length. The score is timed by the length of
the 𝑡1 and 𝑡2, and divided by a base, which is the number of traces
in the𝑇1 times the total length of all traces in𝑇2 add the number of
traces in the 𝑇2 times the total length of all traces in 𝑇1. It ensures
that the final score is scaled within the range [0,1].

The equation guarantees that the longer traces contribute more
weight than the shorter ones. The long traces are usually the ones
that contain the patch information. Therefore, they should be more
contributive to the similarity score. The short traces usually come
from the small and isolated blocks in the function, which might
be the noise with little patch information. They should have less
weight so that the overall score will not be affected by them.
Example. Figure 8 displays two sets of valid traces for the similarity
computation. BinXray will compare every trace in A with every
trace in B. According to Equation (1), the similarity score of (A1,
B1) is 0.8 (4 out of 5 instructions match) and the similarity score

381

Patch Based Vulnerability Matching for Binary Programs ISSTA ’20, July 18–22, 2020, Virtual Event, USA

Figure 8: Trace Sets Example for Similarity Score Calcula-

tion

of (A2, B1) is 0 (none of the instructions match). Then, according
to Equation (2) the overall similarity is normalized based on the
trace length, which is 0.48 (= 0.8 ∗ 9/15 + 0 ∗ 6/15). Due to the
normalization, although the trace A2 is different from B1, it has
less effect to the overall similarity score than trace pair (A1,B1).
It helps to mitigate the noise by lowering the weight of the short
instruction traces.

3.3.4 Decision Algorithm. We propose a decision algorithm to de-
termine whether a target function has been patched. The core idea
of this algorithm is to infer the relationship of functions by leverag-
ing their differences and similarities. It is more accurate in dealing
with partial similarity problem. Figure 6 shows the relationship
between valid traces sets. Each trace set represents the unique part
related to vulnerability in the corresponding function. There are
three cases described below:
CASE 1: 𝑇1 and 𝑇2 are both non-empty. If the TF has been
patched, then the difference between the TF and VF should be more
significant than the one between the TF and PF. Otherwise if the
TF is vulnerable, then the difference between the TF and PF should
be more significant than the one between the TF and VF. Therefore,
in this case, BinXray checks whether Sim(𝑇3,𝑇2)>Sim(𝑇5,𝑇1) holds
or not. If Sim(𝑇3,𝑇2)>Sim(𝑇5,𝑇1) holds, then we say the TF has been
patched; otherwise it is vulnerable.
CASE 2:𝑇1 is empty and𝑇2 is non-empty.𝑇1 is empty meaning
that the patch has added some fresh code. If the TF has been patched,
then𝑇3 will be similar to𝑇2 and𝑇62 will be empty. Otherwise if the
TF is vulnerable, then𝑇62 will be similar to𝑇2, and𝑇3 will be empty.
In this case, BinXray checks whether Sim(𝑇2,𝑇3)>Sim(𝑇2,𝑇62) holds
or not. If Sim(𝑇2,𝑇3)>Sim(𝑇2,𝑇62) holds, we say the TF has been
patched; otherwise it is vulnerable.
CASE 3:𝑇2 is empty and𝑇1 is non-empty.𝑇2 is empty meaning
that the patch deleted some code. Similar to CASE 2, we say the TF
is patched if Sim(𝑇1,𝑇41)>Sim(𝑇1,𝑇5); otherwise, it is vulnerable.

4 EVALUATION

4.1 Experiment Setups

Our approach takes the binary code of pairs of vulnerable and
patched functions as input.We choose to collect vulnerabilities from
widely-used libraries with Common Vulnerabilities and Exposures
(CVE) identifiers. There are websites providing CVE information,
such as CVEDetails [3], NVD [7] and CVE List [4]. In addition, some
open source library websites also provide well-documented security
updates, such as OpenSSL [9]. We extract CVE information from
those websites, which consists of the CVE IDs, names of involved

Table 2: Real-World Programs and Their Patch Presence

Identification Results

Program CVE
(#)

Version
(#)

Function
(#)

Function
Accuracy

CVE
Accuracy

Openssl 70 22 2280 95.04% 95.72%
FFmpeg 52 55 1486 89.64% 92.37%
Libxml2 37 12 852 94.95% 97.92%
Freetype 57 19 616 93.34% 98.14%
binutils 147 10 412 90.33% 96.24%
Tcpdump 88 3 273 100% 100%
Libpng 4 18 162 95.68% 100%
Openvpn 6 7 53 100% 100%
Sqlite3 6 10 53 81.13% 93.75%
Libeixf 7 12 28 75% 100%
Libxslt 3 5 15 100% 100%
Expat 2 4 8 87.50% 100%
Total 479 - 6238 93.31% 96.87%

functions, versions of programs that are vulnerable or patched.
For each CVE used in the experiments, we manually confirmed
that its information is valid. In future, we plan to collect more
vulnerabilities from security update commits using security-related
commit identification approaches, such as the approach in [42] for
source code and [47] for binary executable.

Using the collected CVE information, we download the source
code of target programs, compile them into binary executables using
gcc with default optimization (-O2), and then dump the binary code
of the functions using the binary disassembler IDA Pro [6]. For
each function with a CVE, we save two versions: its vulnerable and
patched versions respectively. For each CVE the changed functions
before the patch commit are considered as vulnerable and functions
after the patch commit are considered as patched.

In the experiments, we aim to answer the following research
questions:

RQ1 - How accurate is BinXray for patch detection?
RQ2 - What is the (breakdown) performance of BinXray?
RQ3 - How is the result of BinXray, compared to other related

works?
RQ4 - What are the useful applications of BinXray?
RQ1 and RQ2 evaluate whether BinXray meets P1 and P2

described in Section 1. As BinXray is designed not to use any
source code level information, it meets P3 by nature.

In the experiments, BinXray utilizes IDA Pro [6] to disassemble
binaries and dump the binary function information. BinXray is
implemented in Python 2.7 with more than 2K lines of code, and
supports for Intel X86 32bit and 64bit, ARM 64bit architectures. All
the programs run at HP desktop Z640 with CPU E5-2697 at 2.60GHz
and 64GB memory. We have released all the experimental data at
our website [8].

4.2 Accuracy Evaluation (RQ1)

In this evaluation, we aim to test whether BinXray can successfully
predict the patch presence given a potentially vulnerable function.
To prepare the data for the experiments, we have selected 12 dif-
ferent real-world programs across different domains such as cryp-
tography, database, and image processing. The selected benchmark

382

ISSTA ’20, July 18–22, 2020, Virtual Event, USA Yifei Xu, Zhengzi Xu, Bihuan Chen, Fu Song, Yang Liu, and Ting Liu

programs are diverse, representative, and widely used in the litera-
ture [15, 17, 31, 48] and have adequate amount of well-documented
vulnerabilities with CVE numbers. For each program, we collected
the binary level vulnerable and patched functions by using function
matching with its CVE function signatures. We manually confirmed
that all the functions used in the experiments are either vulnerable
or patched so that we can evaluate the patch identification accu-
racy in controlled settings. Then, we collected binaries in all the
versions for each program as targets. Note that in some versions
of binaries, there are a few vulnerable functions that are inlined
or removed from the binary during the compilation process. We
exclude these cases in our experiments. In total, we collected 479
CVEs of these programs, and collected all the functions affected by
these CVEs. After matching those functions in different versions
of binaries, we obtained 6238 target functions as test data. We run
the patch identification process of BinXray on these functions and
compared its results with the ground truth to obtain the accuracy
measurement.

Table 2 shows the prediction results on these functions. The
first four columns report the program name, the number of CVE
collected, the number of versions tested in the experiments, and the
number of functions to be predicted respectively. The fifth column
provides the accuracy in predicting the patch presence for each of
the target functions found by BinXray. The last column provides
the accuracy in predicting whether the CVE (vulnerability) has been
patched or not. When a CVE affects only one function, BinXray
predicts the CVE still exists in the binary if this function is predicted
as vulnerable, and predicts the CVE has been patched if this function
is predicted as patched.When one CVE containsmultiple vulnerable
functions, BinXray will predict as vulnerable, if more than one of
the functions are predicted as vulnerable Otherwise, it is predicted
as been patched.

The overall accuracy is above 93% for function level patch iden-
tification and over 96% for predicting the patches of CVEs. The
results show that for most of the programs with a few CVEs (i.e.,
TCPdump, Libpng, Openvpn, Libeixf, Libxslt, and Expat), BinXray
can identify the patch presence of the CVE with 100% accuracy. The
reason for the high accuracy is twofold. First, some of the functions
are very stable with only a few changes across all the versions.
Therefore, the patch signature will be the dominant change that
contributes the most to the final result, and make the function easy
to be identified correctly. Second, the functions that contain the
CVEs are usually large, so that different changes in one function
will have a high chance to be placed in different locations. For multi-
ple changes in one function, since BinXray is good at handling the
cases where the patch-related changes and other changes are sepa-
rated, it can accurately identify the patches and correctly predict
its presence.

False Prediction Discussion:We have manually examined the
false prediction cases made by BinXray. Most of them are caused
by the multiple times of changes made at the same location of
the function. Since most of the original code in patch related area
is modified by multiple changes, the patch signature generated
from the old version cannot match the newly modified functions.
Therefore, BinXray will make false predictions.

There is a special false prediction case in the experiment of
OpenSSL. CVE-2015-1791 [2] is a race condition vulnerability. It

Table 3: Performance of BinXray

Program Basic
Blocks (#)

Total
Time (s)

Time per
Function (ms)

OpenSSL 54.08 561.95 246.47
FFmpeg 90.18 6.42 4.32
Libxml2 60.47 55.61 65.27
Freetype 66.99 271.37 440.53
Binutils 83.21 375.16 911.32
TCPdump 45.31 28.57 104.65
Libpng 26.40 12.99 80.20
Openvpn 20.20 2.91 54.90
Sqlite3 291.16 449.27 8476.85
Libeixf 208.15 82.87 2959.66
Libxslt 95.07 0.22 14.67
Expat 15.38 0.09 11.25
Average 88.05 - 296.17

is patched in function ssl3_get_new_session_ticket() at ver-
sion 1.0.1n. BinXray can successfully distinguish the patch and
unpatched functions from version 1.0.1a to 1.0.1n. However, af-
ter 3 versions at 1.0.1q, the patch change has been reverted back
into the original functions. Therefore, BinXray classifies the ver-
sion after 1.0.1q as vulnerable. In fact, the vulnerability has been
fixed in another function. Even for human experts, it will takes
significant efforts to understand that the vulnerability patch has
been replaced by other changes in different places. Theoretically,
BinXray has made a correct prediction that the TF is vulnerable.
However, due to the patches in other functions, the vulnerability is
patched, resulting in a false positive in CVE prediction.

Answering RQ1: The results on the real-world programs
show that BinXray can effectively identify the patch in
the target functions. It has on average 93.31% accuracy
in predicting the patch presence and 96.87% accuracy in
identifying CVEs.

4.3 Performance Evaluation (RQ2)

Table 3 reports the performance to complete the patch presence
identification for the 12 real-world programs. The second column
reports the average number of basic blocks in the target function,
the third column gives the total overhead for all functions, and the
last column reports the average time overhead to identify patch for
one function. According to the table, the number of basic blocks in
each function is 88.05 on average. BinXray is very efficient, which
can make prediction in 296.17ms per function on average.

In the experiment, running BinXray on Sqlite3 took the longest
time (8476.85 ms per function). We manually verified the program
and located one function that caused the problem. Specifically,
there is a very large function, named sqlite3VdbeExec(), with
more than 1000 basic blocks. The trace sets generated by BinXray
consists of thousands of traces, which resulted in the significant
time consumption. The predictions on the other functions finished
within reasonable time period.

383

Patch Based Vulnerability Matching for Binary Programs ISSTA ’20, July 18–22, 2020, Virtual Event, USA

Figure 9: Basic Blocks in Original Functions vs Basic Blocks Used in BinXray

Table 4: Comparison with Binary Function Matching

Tool Vul (#)
Func.

Patched
Func.(#) FP FN Time

per func.
BinXray 1412 868 29 (1.27%) 84 (3.68%) 246.47ms
BinGO-E 868 (38.07%) 0 (0%) 428.09ms

Figure 9 reports the number of basic blocks that were used by
BinXray in the experiment for the 12 real-world projects (a larger
version of the figure can be found at [8]). For each project, the first
bar stands for the average number of basic blocks inside the target
functions. The second bar shows the number of CBBs in the func-
tion, and the third bar shows the basic blocks that used by BinXray
for signature generation (CBBs and BBBs). From these bars, we can
observe that BinXray effectively reduces the size of the basic block
sets by 82.55% on average to perform the signature generation and
patch identification. The number of basic blocks in the changed
area used in BinXray is much smaller than the number of blocks
in the entire function. The reduction of basic blocks significantly
improves the speed and accuracy of patch identification and make
BinXray practical for large real-world programs.

Answering RQ2: BinXray effectively reduces the num-
ber of basic blocks used by 82.55%. BinXray can perform
vulnerability matching with very low overhead so that it
is scalable for real-world binary programs.

4.4 Related Works Comparison (RQ3)

Comparison to Function Matching Works. To compare with
the existing binary function matching techniques for vulnerability
matching, we have selected BinGo-E [48] from recent state-of-the-
art works as baseline tool. BinGo-E is selected because it has the
best performance and its source code is successfully requested from
the authors. We use the Openssl data set (2280 target functions of
70 CVEs in 22 versions) to test BinGo-E. Table 4 shows the results
of BinGo-E against BinXray. The second and third columns report
the number of vulnerable functions and patched functions in the
ground truth. The fourth and fifth columns provide the false positive
and false negative. The last column reports the time used to process
one function. BinGo-E is an accurate function matching tool, which
can match all the functions in data set. However, since it cannot
determine the patch presence, it labels all the matched function as
vulnerable. However, there are 868 functions having been patched,
which results in a high false positive rate (38.07%). In comparison,
BinXray has a much lower false positive rate with a reasonable
low false negative rate. BinXray takes half of the time to make
prediction on one function.

Comparison to other Patch Identification Works. In this
experiment, we compare BinXray with FIBER [49], a state-of-the-
art patch presence identification tool for Android. We have obtained
the patch data set from the author of [49]. It contains 107 vulnerabil-
ities in different versions of Android kernels. We managed to select
an Android kernel, and construct two versions of it, one reproduces
all of the CVEs and the other patched all of them. Excluding the
mismatching between the kernel and patch and the impact of com-
pilation, eventually, we manually verify 76 vulnerabilities in the

384

ISSTA ’20, July 18–22, 2020, Virtual Event, USA Yifei Xu, Zhengzi Xu, Bihuan Chen, Fu Song, Yang Liu, and Ting Liu

Table 5: Comparison with Patch Identification

Tool Data Accuracy Time (per Vul.)
FIBER 107 CVEs 94% aver. min: 12.59s; max: 23.74s
BinXray 76 out of 107 97.37% 49.06ms

compiled Android binaries (Samsung bullhead configuration) and
test the performance of BinXray on them.

Table 5 shows the result of FIBER and BinXray on detecting the
Android vulnerability patches. The accuracy of FIBER is calculated
based on the 107 CVEs as stated in its paper, while BinXray is based
on the 76 manually verified CVEs. Overall, BinXray has a slightly
better performance than FIBER in terms of accuracy. It is much
faster than FIBER, since FIBER requires heavy program analysis.
Moreover, FIBER needs the source code information so that it is not
applicable for closed source software. BinXray can work in larger
scope, since it only requires the binary diffs.

Answering RQ3: BinXray outperforms the vulnerability
matching tool BinGo-E. Compared with patch identifica-
tion tool FIBER, BinXray achieves higher accuracy and
speed without using the source code information.

4.5 Applications (RQ4)

4.5.1 Binary Program Version Identification. One potential appli-
cation of BinXray is to determine the version of unknown binary
programs. Version detection is an important step in binary anal-
ysis, especially for software security [16]. In different versions of
programs, there are changes to update or patch functions. Since
BinXray can precisely detect these changes, it can leverage them
as signatures to determine the program versions. We conducted
experiments in identifying program versions with OpenSSL bina-
ries. First, we used function diffing technique to obtain a changed
functions list for OpenSSL. Table 6 has shown the OpenSSL ver-
sion 1.0.1 a to 1.0.1 e with their corresponding changed functions.
The original function is labeled as tag0. After one change has been
made, the tag number will be increased by one (tag1). These binary
functions are fed into BinXray to learn the signatures. After ex-
tracting the signature, BinXray can correctly identify the tags for
given binary functions in the table. To determine the binary ver-
sion, BinXraywill predict all the 11 functions’ tags and match them
against the table. If all the 11 functions have tag0, the given binary
should be version 1.0.1 a. If the functions rc4_hmac_md5_cipher
and ssl23_client_hello are tag1 and the rest functions are tag0,
the given binary should be version 1.0.1 b, etc. The experimental re-
sults show that, by identifying function tags, BinXray can precisely
identifies the binary versions.

4.5.2 IoT Device Vulnerability Detection. Firmware in IoT devices
utilize many open source libraries, which may contain software
vulnerabilities. However, these libraries are often in binary format
without source code information. Therefore, as an outsider, it is
difficult to know what changes have been made to the libraries and
how many vulnerabilities remain. In this situation, BinXray can be
used to detect and validate the vulnerabilities in libraries that used
by firmware. To demonstrate this capability, we have used BinXray

Table 6: OpenSSL Version Timeline

OpenSSL 1.0.1Function Name a b c d e
rc4_hmac_md5_cipher tag0 tag1 tag1 tag1 tag1
ssl23_client_hello tag0 tag1 tag1 tag1 tag1
dtls1_enc tag0 tag0 tag1 tag2 tag2
tls1_enc tag0 tag0 tag1 tag2 tag2
cms_EncryptedContent... tag0 tag0 tag1 tag1 tag1
ssl3_get_client_hello tag0 tag0 tag0 tag1 tag1
www_body tag0 tag0 tag0 tag1 tag1
do_ssl3_write tag0 tag0 tag0 tag1 tag1
ssl3_cbc_digest_record tag0 tag0 tag0 tag0 tag1
tls1_cbc_remove_padding tag0 tag0 tag0 tag0 tag1
ssl3_cbc_copy_mac tag0 tag0 tag0 tag0 tag1

to search the vulnerabilities in 7 real-world IoT device firmware
that contain Openssl library. We extracted and parsed the binary
files in those firmware and used patch signatures generated from
Openssl in previous experiments to detect vulnerabilities. In total,
it successfully identifies that 49 vulnerabilities have been patched
and 48 vulnerabilities still remain in the firmware. The results
have been manually confirmed. Due to the complex composition
of the firmware and the difficulty of parsing firmware, the average
accuracy of BinXray in this experiment is 81.5%. More details can
be found at [8]. The result shows that BinXray can provide an
effective solution in the scenario mentioned above.

Answering RQ4: Experimental results have demon-
strated the capability of BinXray in determining the exact
version of the real-world binaries. Moreover, it can pre-
cisely detect CVEs in firmware.

4.6 Threats to Validity & Future Work

BinXray has some limitations, which need to be overcome. First, the
prerequisite of our work is accurate function matching. If the func-
tion matching algorithm cannot find the target functions, BinXray
cannot proceed to identify the patches. Therefore, if the target func-
tion has been significantly changed so that the function cannot be
matched, our algorithm cannot work.

Second, the experiments are conducted on binaries compiled for
Intel X86 32 bit, 64 bit, ARM 64bits system. BinXray is designed
to support any kind of architectures as long as the signature is
extracted within the same type of architecture. However, BinXray
currently does not support cross-architecture patch detection. In
the future, we plan to use the intermediate representation to lift the
binary instruction to higher level to support the cross-architecture
comparisons.

Third, as discussed in Section 4.2, BinXray is not able to handle
the case where a function receives multiple changes at the same
location in different versions. Such changes may mislead BinXray
to make incorrect decisions. A possible solution is to use inter-
function semantic analysis to find the root cause of the vulnerability
and checkwhether the problem has been addressed or not. However,
heavy program analysis will significantly decrease the performance.

385

Patch Based Vulnerability Matching for Binary Programs ISSTA ’20, July 18–22, 2020, Virtual Event, USA

Therefore, we need to design algorithms to make trade-off between
the performance and accuracy.

5 RELATEDWORK

In this section, we review the most closely related works in two di-
rections: binary function matching and binary patch identification.
Binary FunctionMatching.Binary-level function similaritymatch-
ing has drawn much attention because of its important applications,
e.g., copyright checking, malware analysis and binary program
auditing [17, 19, 25, 40, 43]. Saebjornsen et al. [40] attempt to nor-
malize the binary instructions and utilize the structural informa-
tion to match the similar function codes. BinHunt [22] and iBin-
Hunt [35] use symbolic execution and taint analysis to determine
the differences between functions. The heavy program analysis
methods introduce high overhead. Therefore, various works try to
address the problem by introducing lightweight matching methods.
TRACY [15] proposes to use 𝑘-tracelet to address basic block merg-
ing problem in matching binary functions. DiscovRE [18] tries to
identify similar vulnerable functions across architectures with the
help of numeric and structural features. BLEX [17] adopts seven
dynamic features by executing the functions to be tolerant for small
changes. BinGo [11] and BinGo-E [48] try to find similar function
pairs by using multiple kinds of features (i.e., syntax, semantics, and
emulation features). 𝛼Diff [31] uses deep neural networks to auto-
matically learn features from raw bytes of the binaries. Bourquin
et al. [10] present a polynomial algorithm to improve the accuracy
in calculating the function similarity. Xu et al. [46] use neural net-
works to embed the features and match the embedded graph to
improve the matching speed and accuracy. Luo et al. [33] extract
semantic features of the functions and match the functions with
obfuscations. Genius [20] builds CFG of functions, embeds the CFG
into high level numeric features and searches for known vulnerabil-
ity in the firmware. Pewny et al. [38, 39] propose cross-architecture
bug search by translating the binary instructions into intermediate
representations. Lin et al. [30] search the bug in the firmware by us-
ing the attributed CFG with support vector machine technique. Hu
et al. [23] try to rebuild the argument and indirect jumps in the bi-
nary to increase the matching precision. Hu et al. [24] combine the
static and the dynamic approaches to detect the code clones with
obfuscation. David et al. [13] use statistical probability to measure
the similarity of the program strands. Ming et al. [36] determine
whether two program execution traces are similar by using the
system call sliced segment equivalence checking algorithm.

These works aim to find matching function pairs with the tol-
erance of small changes. Therefore, they may generate high false
positive by matching the vulnerable functions with the patched
functions. Our work tries to focus on summarizing the differences
between the vulnerable functions and their patched versions. Thus,
it can significantly improve the accuracy of similarity-based vul-
nerability detection by filtering out the patched functions.
Source Code Function Matching and Patch Analysis. There
are also many works which try to search for similar code or similar
functions at source code level (e.g., [26, 28]), while ours works at
the binary code level. For known vulnerabilities, source-level patch
identification can be done directly by checking whether the code
has been updated with patches. Binary-level identification is more

challenging since functions will change due to factors (compiler
type, version and settings, program updates, and architecture). One
needs to distinguish the patch changes out of different changes to
perform patch identification.
Binary Patch Analysis and Identification. Several studies [29,
42, 50] have surveyed the vulnerability patches in the real-world
software to understand the common characterizations of patches.
BugTrace [12] tries to connect the link between the vulnerabili-
ties and their fixes via patch analysis. Soto et al. [41] study the
patch behaviors in Java program. Kim and Notkin [27] leverage
the understanding of patch diffs to help the programmer to find
vulnerabilities. These works have shown the detailed studies for
vulnerability patches in real-world software. However, they are on
the source code level and are not designed specifically for identify
vulnerable functions.

Zhang and Qian [49] propose FIBER to predict whether the func-
tion in Linux kernel has been patched or not. It relies on source
code information of the target function, so that the additional pre-
processing is required for different projects. Our work uses only
binary information so that it is more convenient and more suitable
when the source code is not available. VMPBL [32] tries to fur-
ther distinguish the patched and unpatched functions by building
a vulnerable function database and a patched function database.
Our work tries to automatically extract patch signatures for each
CVE and does not require any prior knowledge. Spain [47] tries
to identify the secretly patched vulnerabilities by comparing the
semantic changes at binary level. It aims to verify whether a patch is
security-related. Our work aims to identity whether the patch exists
or not. Memlock [45] leverages memory usage to guide fuzzing to
find vulnerabilities. Then, Wang et al. [44] propose to use memory
layout recovering to find vulnerabilities and patches.

6 CONCLUSIONS

This work proposes BinXray to eliminate the false positives in vul-
nerable binary function matching by identifying the patches in the
target functions without using source code level information. It can
automatically extract the signatures of the vulnerability patches
by diffing the vulnerable and patched functions. The patch signa-
tures are used to match the target functions to determine whether
they have been patched or not. The experimental results show that
BinXray is able to achieve high accuracy with very low overhead.
Moreover, BinXray can help to determine the binary level program
versions and finds real-world vulnerabilities in IoT firmware.

ACKNOWLEDGMENTS

This work was partially funded by National Key R&D Program
of China (2018YFB0803501), the Fundamental Research Funds for
the Central Universities, Singapore National Research Founda-
tion, under its National Cybersecurity R&D Program (Grant Nos.:
NRF2018NCR-NCR005-0001), National Satellite of Excellence in
Trustworthy Software System (Grant Nos.: NRF2018NCR-NSOE003-
0001), NRF Investigatorship (Grant Nos.: NRFI06-2020-0022), Na-
tional Natural Science Foundation of China (NSFC) grants (No.
61772408, No. U1766215, No. U1736205, No. 61721002, No. 61632015,
No. 61532019 , No. 61761136011 and No. 61902306), and Alibaba
Group through Alibaba Innovative Research (AIR) Program.

386

ISSTA ’20, July 18–22, 2020, Virtual Event, USA Yifei Xu, Zhengzi Xu, Bihuan Chen, Fu Song, Yang Liu, and Ting Liu

REFERENCES

[1] 2014. CVE-2014-0160. https://cve.mitre.org/cgi-bin/cvename.cgi?name=cve-
2014-0160.

[2] 2015. CVE-2015-1791. https://cve.mitre.org/cgi-bin/cvename.cgi?name=cve-
2015-1791.

[3] 2020. CVE Details. https://www.cvedetails.com/.
[4] 2020. CVE List. https://cve.mitre.org/index.html.
[5] 2020. Diaphora. https://github.com/joxeankoret/diaphora.
[6] 2020. IDA Pro. https://www.hex-rays.com/products/ida/.
[7] 2020. NVD. https://nvd.nist.gov/.
[8] 2020. Open Source Data and Results for the Paper. https://sites.google.com/view/

submission-for-issta-2020.
[9] 2020. OpenSSL Vulnerabilities. https://www.openssl.org/news/vulnerabilities.

html.
[10] Martial Bourquin, Andy King, and Edward Robbins. 2013. Binslayer: accurate

comparison of binary executables. In Proceedings of the 2nd ACM SIGPLAN Pro-
gram Protection and Reverse Engineering Workshop. ACM, 4.

[11] Mahinthan Chandramohan, Yinxing Xue, Zhengzi Xu, Yang Liu, Chia Yuan
Cho, and Hee Beng Kuan Tan. 2016. BinGo: Cross-architecture cross-os binary
search. In Proceedings of the 2016 24th ACM SIGSOFT International Symposium on
Foundations of Software Engineering. ACM, 678–689.

[12] Christopher S Corley, Nicholas A Kraft, Letha H Etzkorn, and Stacy K Lukins.
2011. Recovering traceability links between source code and fixed bugs via
patch analysis. In Proceedings of the 6th International Workshop on Traceability in
Emerging Forms of Software Engineering. ACM, 31–37.

[13] Yaniv David, Nimrod Partush, and Eran Yahav. 2016. Statistical similarity of
binaries. ACM SIGPLAN Notices 51, 6 (2016), 266–280.

[14] Yaniv David, Nimrod Partush, and Eran Yahav. 2018. Firmup: Precise static
detection of common vulnerabilities in firmware. In ACM SIGPLAN Notices,
Vol. 53. ACM, 392–404.

[15] Yaniv David and Eran Yahav. 2014. Tracelet-based code search in executables.
Acm Sigplan Notices 49, 6 (2014), 349–360.

[16] Ruian Duan, Ashish Bijlani, Meng Xu, Taesoo Kim, and Wenke Lee. 2017. Iden-
tifying open-source license violation and 1-day security risk at large scale. In
Proceedings of the 2017 ACM SIGSAC Conference on computer and communications
security. ACM, 2169–2185.

[17] Manuel Egele, Maverick Woo, Peter Chapman, and David Brumley. 2014. Blanket
execution: Dynamic similarity testing for program binaries and components.
USENIX.

[18] Sebastian Eschweiler, Khaled Yakdan, and Elmar Gerhards-Padilla. 2016. discovRE:
Efficient Cross-Architecture Identification of Bugs in Binary Code. In NDSS.

[19] Mohammad Reza Farhadi, Benjamin C. M. Fung, Philippe Charland, and Mourad
Debbabi. 2014. BinClone: Detecting Code Clones in Malware. In Proceedings of
the 8th International Conference on Software Security and Reliability. 78–87.

[20] Qian Feng, Rundong Zhou, Chengcheng Xu, Yao Cheng, Brian Testa, and Heng
Yin. 2016. Scalable graph-based bug search for firmware images. In Proceedings
of the 2016 ACM SIGSAC Conference on Computer and Communications Security.
ACM, 480–491.

[21] Halvar Flake. 2004. Structural comparison of executable objects. In Proc. of the
International GI Workshop on Detection of Intrusions and Malware & Vulnerability
Assessment, number P-46 in Lecture Notes in Informatics. Citeseer, 161–174.

[22] Debin Gao, Michael K Reiter, and Dawn Song. 2008. Binhunt: Automatically
finding semantic differences in binary programs. In International Conference on
Information and Communications Security. Springer, 238–255.

[23] Yikun Hu, Yuanyuan Zhang, Juanru Li, and Dawu Gu. 2017. Binary code clone
detection across architectures and compiling configurations. In Proceedings of
the 25th International Conference on Program Comprehension. IEEE Press, 88–98.

[24] Yikun Hu, Yuanyuan Zhang, Juanru Li, Hui Wang, Bodong Li, and Dawu Gu.
2018. BinMatch: A Semantics-based Hybrid Approach on Binary Code Clone
Analysis. In 2018 IEEE International Conference on Software Maintenance and
Evolution (ICSME). IEEE, 104–114.

[25] Jiyong Jang, David Brumley, and Shobha Venkataraman. 2011. BitShred: feature
hashing malware for scalable triage and semantic analysis. In Proceedings of the
18th ACM Conference on Computer and Communications Security. 309–320.

[26] Lingxiao Jiang and Zhendong Su. 2009. Automatic mining of functionally equiv-
alent code fragments via random testing. In Proceedings of the eighteenth interna-
tional symposium on Software testing and analysis. ACM, 81–92.

[27] Miryung Kim and David Notkin. 2009. Discovering and representing systematic
code changes. In 2009 IEEE 31st International Conference on Software Engineering.
IEEE, 309–319.

[28] Seulbae Kim, Seunghoon Woo, Heejo Lee, and Hakjoo Oh. 2017. VUDDY: a
scalable approach for vulnerable code clone discovery. In Security and Privacy
(SP), 2017 IEEE Symposium on. IEEE, 595–614.

[29] Frank Li and Vern Paxson. 2017. A large-scale empirical study of security patches.
In Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communica-
tions Security. ACM, 2201–2215.

[30] Hong Lin, Dongdong Zhao, Linjun Ran, Mushuai Han, Jing Tian, Jianwen Xiang,
Xian Ma, and Yingshou Zhong. 2017. CVSSA: Cross-Architecture Vulnerability

Search in Firmware Based on Support Vector Machine and Attributed Control
Flow Graph. In Dependable Systems and Their Applications (DSA), 2017 Interna-
tional Conference on. IEEE, 35–41.

[31] Bingchang Liu, Wei Huo, Chao Zhang, Wenchao Li, Feng Li, Aihua Piao, and Wei
Zou. 2018. 𝛼Diff: cross-version binary code similarity detection with DNN. In
Proceedings of the 33rd ACM/IEEE International Conference on Automated Software
Engineering. ACM, 667–678.

[32] Danjun Liu, Yao Li, Yong Tang, BaoshengWang, andWei Xie. 2018. VMPBL: Iden-
tifying Vulnerable Functions Based on Machine Learning Combining Patched
Information and Binary Comparison Technique by LCS. In 2018 17th IEEE Inter-
national Conference On Trust, Security And Privacy In Computing And Communi-
cations/12th IEEE International Conference On Big Data Science And Engineering
(TrustCom/BigDataSE). IEEE, 800–807.

[33] Lannan Luo, Jiang Ming, Dinghao Wu, Peng Liu, and Sencun Zhu. 2014.
Semantics-based obfuscation-resilient binary code similarity comparison with
applications to software plagiarism detection. In Proceedings of the 22nd ACM
SIGSOFT International Symposium on Foundations of Software Engineering. ACM,
389–400.

[34] XiaozhuMeng and Barton PMiller. 2016. Binary code is not easy. In Proceedings of
the 25th International Symposium on Software Testing and Analysis. ACM, 24–35.

[35] Jiang Ming, Meng Pan, and Debin Gao. 2012. iBinHunt: Binary hunting with
inter-procedural control flow. In International Conference on Information Security
and Cryptology. Springer, 92–109.

[36] Jiang Ming, Dongpeng Xu, Yufei Jiang, and Dinghao Wu. 2017. BinSim: Trace-
based semantic binary diffing via system call sliced segment equivalence checking.
In Proceedings of the 26th USENIX Security Symposium.

[37] Hoan Anh Nguyen, Anh Tuan Nguyen, Tung Thanh Nguyen, Tien N Nguyen, and
Hridesh Rajan. 2013. A study of repetitiveness of code changes in software evolu-
tion. In Proceedings of the 28th IEEE/ACM International Conference on Automated
Software Engineering. IEEE Press, 180–190.

[38] Jannik Pewny, Behrad Garmany, Robert Gawlik, Christian Rossow, and Thorsten
Holz. 2015. Cross-architecture bug search in binary executables. In Security and
Privacy (SP), 2015 IEEE Symposium on. IEEE, 709–724.

[39] Jannik Pewny, Felix Schuster, Lukas Bernhard, Thorsten Holz, and Christian
Rossow. 2014. Leveraging semantic signatures for bug search in binary programs.
In Proceedings of the 30th Annual Computer Security Applications Conference. ACM,
406–415.

[40] Andreas Sæbjørnsen, Jeremiah Willcock, Thomas Panas, Daniel Quinlan, and
Zhendong Su. 2009. Detecting code clones in binary executables. In Proceedings
of the eighteenth international symposium on Software testing and analysis. ACM,
117–128.

[41] Mauricio Soto, Ferdian Thung, Chu-Pan Wong, Claire Le Goues, and David
Lo. 2016. A deeper look into bug fixes: patterns, replacements, deletions, and
additions. In Proceedings of the 13th International Conference on Mining Software
Repositories. ACM, 512–515.

[42] Yuan Tian, Julia Lawall, and David Lo. 2012. Identifying linux bug fixing patches.
In Proceedings of the 34th International Conference on Software Engineering. IEEE
Press, 386–396.

[43] Zhenzhou Tian, Ting Liu, Qinghua Zheng, Eryue Zhuang, Ming Fan, and Zijiang
Yang. 2017. Reviving sequential program birthmarking formultithreaded software
plagiarism detection. IEEE Transactions on Software Engineering 44, 5 (2017), 491–
511.

[44] Haijun Wang, Xiaofei Xie, Shang-Wei Lin, Yun Lin, Yuekang Li, Shengchao Qin,
Yang Liu, and Ting Liu. 2019. Locating vulnerabilities in binaries via memory
layout recovering. In Proceedings of the 2019 27th ACM Joint Meeting on European
Software Engineering Conference and Symposium on the Foundations of Software
Engineering. 718–728.

[45] Cheng Wen, Haijun Wang, Yuekang Li, Shengchao Qin, Yang Liu, Zhiwu Xu,
Hongxu Chen, Xiaofei Xie, Geguang Pu, and Ting Liu. 2020. Memlock: Memory
usage guided fuzzing. In Proceedings of the 42nd International Conference on
Software Engineering. IEEE.

[46] Xiaojun Xu, Chang Liu, Qian Feng, Heng Yin, Le Song, and Dawn Song. 2017.
Neural network-based graph embedding for cross-platform binary code similarity
detection. In Proceedings of the 2017 ACM SIGSAC Conference on Computer and
Communications Security. ACM, 363–376.

[47] Zhengzi Xu, Bihuan Chen, Mahinthan Chandramohan, Yang Liu, and Fu Song.
2017. SPAIN: security patch analysis for binaries towards understanding the
pain and pills. In Proceedings of the 39th International Conference on Software
Engineering. IEEE Press, 462–472.

[48] Yinxing Xue, Zhengzi Xu, Mahinthan Chandramohan, and Yang Liu. 2018. Accu-
rate and Scalable Cross-Architecture Cross-OS Binary Code Search with Emula-
tion. IEEE Transactions on Software Engineering (2018).

[49] Hang Zhang and Zhiyun Qian. 2018. Precise and accurate patch presence test for
binaries. In 27th {USENIX} Security Symposium ({USENIX} Security 18). 887–902.

[50] Hao Zhong and Zhendong Su. 2015. An empirical study on real bug fixes. In
Proceedings of the 37th International Conference on Software Engineering-Volume
1. IEEE Press, 913–923.

387

https://cve.mitre.org/cgi-bin/cvename.cgi?name=cve-2014-0160
https://cve.mitre.org/cgi-bin/cvename.cgi?name=cve-2014-0160
https://cve.mitre.org/cgi-bin/cvename.cgi?name=cve-2015-1791
https://cve.mitre.org/cgi-bin/cvename.cgi?name=cve-2015-1791
https://www.cvedetails.com/
https://cve.mitre.org/index.html
https://github.com/joxeankoret/diaphora
https://www.hex-rays.com/products/ida/
https://nvd.nist.gov/
https://sites.google.com/view/submission-for-issta-2020
https://sites.google.com/view/submission-for-issta-2020
https://www.openssl.org/news/vulnerabilities.html
https://www.openssl.org/news/vulnerabilities.html

	Abstract
	1 Introduction
	2 Overview
	2.1 Motivating Example
	2.2 Approach Overview

	3 Methodology
	3.1 Target Function Matching
	3.2 Patch Signature Generation
	3.3 Patch Presence Identification

	4 evaluation
	4.1 Experiment Setups
	4.2 Accuracy Evaluation (RQ1)
	4.3 Performance Evaluation (RQ2)
	4.4 Related Works Comparison (RQ3)
	4.5 Applications (RQ4)
	4.6 Threats to Validity & Future Work

	5 related work
	6 Conclusions
	Acknowledgments
	References

