
An Empirical Study of Usages, Updates and Risks
of Third-Party Libraries in Java Projects

Ying Wang∗, Bihuan Chen∗, Kaifeng Huang∗, Bowen Shi∗, Congying Xu∗, Xin Peng∗, Yijian Wu∗, Yang Liu†
∗School of Computer Science and Shanghai Key Laboratory of Data Science, Fudan University, China

†School of Computer Science and Engineering, Nanyang Technological University, Singapore

Abstract—Third-party libraries play a key role in software de-
velopment as they can relieve developers of the heavy burden of
re-implementing common functionalities. However, third-party li-
braries and client projects evolve asynchronously. As a result, out-
dated third-party libraries might be used in client projects while
developers are not aware of the potential risk (e.g., security bug).
Outdated third-party libraries may be updated in client projects
in a delayed way, and developers may be less aware of the poten-
tial risk (e.g., API incompatibility) in updates. Developers of third-
party libraries may be unaware of how their third-party libraries
are used or updated in client projects. Therefore, a quantitative
and holistic study on usages, updates and risks of third-party li-
braries in open-source projects can provide concrete evidences on
these problems, and practical insights to improve the ecosystem.

In this paper, we contribute such a study in Java ecosystem. In
particular, we conduct a library usage analysis (e.g., usage inten-
sity and outdatedness) and library update analysis (e.g., update
intensity and delay) on 806 open-source projects and 13,565 third-
party libraries. Then, we carry out a library risk analysis (e.g., us-
age risk and update risk) on 806 open-source projects and 544 se-
curity bugs. These analyses aim to quantify the usage and update
practices and the potential risk of using and updating outdated
third-party libraries with respect to security bugs from two holis-
tic perspectives (i.e., open-source projects and third-party li-
braries). Our findings suggest practical implications to developers
and researchers on problems and potential solutions in maintain-
ing third-party libraries (e.g., smart alerting and automated up-
dating of outdated third-party libraries). To indicate the useful-
ness of our findings, we design a smart alerting system for assist-
ing developers to make confident decisions when updating third-
party libraries. 33 and 24 open-source projects have confirmed
and updated third-party libraries after receiving our alerts.

Index Terms—outdated libraries, security bugs

I. INTRODUCTION

Third-party libraries allow developers to reuse common func-
tionalities instead of reinventing the wheel, and substantially im-
prove developers’ productivity. In contrast to the benefits third-
party libraries bring to software development, some problems
arise due to the asynchronous evolution between third-party
libraries and client projects. From the perspective of client
projects, outdated third-party libraries can be commonly used
but seldom updated, or updated in a delayed way. Developers
need to invest a tremendous amount of costs in software main-
tenance to keep third-party libraries up-to-date. Old third-party
library versions contain bugs, which might cause crashes or in-
crease attack surfaces in client projects. New third-party library
versions refactor code, fix bugs and add features, which might
break library APIs [12, 25]. Even worse, developers lack effec-
tive mechanisms to be aware of these potential risks in using

and updating third-party libraries. From the perspective of third-
party libraries, developers also lack effective channels to learn
about the usages and updates of their third-party libraries in
client projects. As a result, such information fails to be fed
back to the library development cycle to improve their design.

To provide concrete and comprehensive evidences on these
problems, a quantitative and holistic study on usages, updates
and risks of third-party libraries in open-source projects is
needed. On one hand, the study should define metrics to quan-
tify usages, updates and risks such that the severity of the prob-
lems can be concretely revealed. On the other hand, the study
should take the perspective of all involved parties (i.e., open-
source projects and third-party libraries) such that a holistic
view can be characterized for the ecosystem. Although several
studies have been proposed in Java ecosystem, none of them can
contribute such a study. For example, some studies measured
the usage popularity of third-party libraries at different granu-
larities (e.g., versions [27, 35], classes [15, 23, 36] and meth-
ods [29, 42]); some studies investigated the usages of outdated
third-party libraries [26, 28]; and some studies explored the rea-
sons for updating or not updating third-party libraries [11, 28].
However, they only analyze the usages or updates mostly from
the perspective of third-party libraries; and fail to characterize
the severity of and the risk in using and updating third-party
libraries, e.g., outdatedness of used third-party libraries, delay
when updating third-party libraries, security bugs in used third-
party libraries, and incompatible library methods when updating
third-party libraries. This situation hides problems in maintain-
ing third-party libraries and hinders practical solutions.

To improve on such situation sustainably, this paper con-
tributes to quantitatively and holistically characterize usages, up-
dates and risks of third-party libraries in open-source projects
in Java ecosystem by answering three research questions:

• RQ1: Library Usage Analysis. What is the usage intensity
and usage outdatedness of third-party libraries?

• RQ2: Library Update Analysis. What is the update inten-
sity and update delay of third-party libraries?

• RQ3: Library Risk Analysis. What is the potential risk in
using and updating outdated third-party libraries?

We conduct library usage analysis and library update analysis
on 806 well-maintained Java open-source projects and 13,565
third-party libraries, and conduct library risk analysis on the
806 projects and 544 security bugs in the 13,565 third-party
libraries. These analyses were conducted based on formulated

metrics, and the data crawling and analyses in this study took
about four months on a desktop machine.

Through these analyses, we aim to provide useful findings to
developers and researchers. For example, 33.0% of projects
have more than 20% of methods calling library APIs. 60.0% of
libraries have at most 2% of their APIs called across projects.
37.2% of projects adopt multiple versions of the same library
in different modules. 54.9% of projects leave more than half
of the library dependencies never updated. 50.5% of projects
have an update delay of more than 60 days. 68.8% of library
releases contain security bugs. 35.3% of buggy library releases
have over 300 APIs deleted in the safe release.

Our findings help to uncover problems in maintaining third-
party libraries, quantify the significance of these problems to
raise attention in the ecosystem, and enable follow-up research
to address the problems; e.g., ecosystem-level knowledge graph,
and smart alerting and automated updating of outdated libraries.

To demonstrate the usefulness of our findings, we propose a
security bug-driven alerting system to provide multiple fine-
grained information for developers to make confident decisions
about third-party library version updates. Our preliminary eval-
uation shows that 89.6% of the 451 open-source projects that
adopt buggy third-party library versions can be safe. For the 38
unsafe open-source projects, we quantify the risk and updating
effort. 33 and 24 open-source projects have confirmed and
updated buggy third-party libraries after receiving our alerts.

In summary, this paper makes the following contributions:
• We conducted large-scale empirical analyses to quantitatively

and holistically analyze usages, updates and risks of third-
party libraries in Java open-source projects.

• We provided practical implications to developers and re-
searchers, released our dataset, and proposed a prototype sys-
tem to demonstrate the usefulness of our findings.

II. RELATED WORK

Usage Analysis. Mileva et al. [35] and Kula et al. [27] an-
alyzed usage trend and popularity of library versions. Then,
Mileva et al. [36] and Hora and Valente [23] explored usage
trend and popularity of library API elements (e.g., classes and
interfaces) by mining import statements. De Roover et al. [15]
analyzed library usage at API element level by AST parsing.
These approaches report coarse-grained library usage mostly for
one specific library, but do not report aggregated results across
all libraries. Instead, we aim at method-level usage analysis
for projects and libraries at the ecosystem level.

Bauer et al. [8, 9] extracted used library APIs in a project.
Zaimi et al. [53] analyzed the number of used library versions
and classes for a project. They report library usage for one
project, but not across a corpus of projects.

Lammel et al. [29] conducted library usage analysis at the
method level only for one specific library or project, but did not
measure the aggregated results across a spectrum of libraries
and projects. Qiu et al. [42] also studied method-level library
usage but only from the perspective of libraries. However, they
analyzed usage intensity only for JDK library, and reported
that 41.2% of the methods and 41.6% of the fields are never

adopted by any project. This situation is much more severe in
third-party libraries as JDK library is used by each project.

In summary, existing library usage analysis for Java ecosys-
tem provides partial facets about library usage. To the best of
our knowledge, we are the first to holistically analyze library
usage at a fine-grained level for both projects and libraries.

Kula et al. [26] studied the adoption of latest library versions
when developers introduced libraries, and found that 82% of
projects used the latest version. Based on our usage outdated-
ness analysis, it seems developers seldom update libraries af-
ter introduction. Cox et al. [14] introduced three metrics to
define the dependency freshness at the dependency and project
level. We use one of the metrics to quantify usage outdatedness.

Apart from Java ecosystem, studies have been conducted for
npm and Android ecosystems. Wittern et al. [51] analyzed the
popularity of npm packages and the adoption of semantic ver-
sioning in npm packages. Abdalkareem et al. [6] studied reasons
and drawbacks of using trivial npm packages. For Android apps,
library code is shipped into APK files, and library detection
approaches [7, 32, 33, 56] have been developed. Li et al. [31]
analyzed the popularity of mobile libraries. It is interesting to
conduct fine-grained library usage in these ecosystems.

Update Analysis. Bavota et al. [10, 11] analyzed when and
why developers updated inter-dependencies, and they found
that a high number of bug fixes could encourage dependency
updates, but API changes could discourage dependency updates.
Fujibayashi et al. [21] explored the relationship between library
release cycle and library version updates. Kula et al. [28] ana-
lyzed the practice of library updates, and found that developers
rarely updated libraries. They also conducted eight manual case
studies to understand developer’s responsiveness to new library
releases and security advisories, and found that developers
were not likely to respond to security advisories mostly due to
the unawareness of vulnerable libraries. Different from these
studies, we quantify update intensity, update delay and update
risk from the perspective of projects and libraries.

Apart from Java ecosystem, library update analysis has been
conducted for other ecosystems. Derr et al. [19] studied why
developers updated mobile libraries, analyzed the practice of se-
mantic versioning, and conducted a library updatability analysis.
Salza et al. [44] analyzed mobile library categories that were
more likely to be updated, and identified six update patterns.
Lauinger et al. [30] and Zerouali et al. [55] measured the time
lag of an outdated npm package from its latest release, and
Decan et al. [17] analyzed the evolution of this time lag. Decan
et al. [16] also compared problems and solutions of library
releases in three ecosystems, and found that the problems and
solutions varied from one to another, and depended both on
the policies and the technical aspects of each ecosystem.

Risk Analysis. Decan et al. [18] analyzed the risk of security
bugs on the npm package dependency network. Zimmermann
et al. [57] measured security threats of security bugs and main-
tainers on the npm package dependency network. We focus on
security bugs in Java libraries, and take a different perspective
than theirs, i.e., considering client projects that use buggy li-
brary versions and measuring usage and update risk at the

method level. Dietrich et al. [20] analyzed update risk with
109 Java programs and 212 dependencies, and found that 75%
of version updates are not compatible. Differently, we actually
quantify such incompatibilities.

Cadariu et al. [13] proposed an alerting system to report
Java library dependencies that have security bugs. Mirhosseini
and Parnin [37] studied the usage of pull requests and badges
to notify outdated npm packages. Such alerting systems, similar
to some existing tools like OWASP [3], Snyk [4] and Depend-
abot [2], are coarse-grained as they do not analyze whether
security bugs in library versions really affect a project. This
was evidenced in a recent study [54].

To mitigate the above problem, some advances have been
proposed to analyze whether security bugs in libraries are truly
in the execution path of a project. Hejderup et al. [22] con-
structed a versioned ecosystem-level call graph, and checked
whether a security bug can be reached through the call graph.
Plate et al. [39] used dynamic analysis to check whether the
methods that were changed to fix security bugs were executed
by a project. Then, Ponta et al. [40] extended Plate et al.’s work
[39] by combining static analysis to partially mitigate the test
coverage problem. However, none of them is open-sourced. Ex-
cept for Ponta et al.’s work [40], they only notify developers
about security bugs, but leave developers unaware of potential
risk (or effort) to update buggy library versions. Ponta et al.’s
risk analysis [40] only reports calls to library APIs that are
deleted in the new version. Instead, we conduct fine-grained
change analysis on library APIs by considering their call graphs.

III. EMPIRICAL STUDY METHODOLOGY

A. Study Design

For the ease of presentation, hereafter we refer to third-party
library as library and Java open-source project as project. Be-
fore elaborating the RQs (see Sec. I), we define library terms to
avoid confusion. A library version is a library with the version
number. A library release is a library version with the release in-
formation (e.g., release date). A library dependency is a library
version declared as a dependency in a project.

Our library usage analysis in RQ1 systematically analyzes
the currently used libraries in projects. It first investigates how
intensively a project depends on libraries (i.e., usage intensity
from the perspective of projects) and how intensively a library is
used across projects (i.e., usage intensity from the perspective of
libraries). It aims to quantify the significance of using libraries
in project development and the impact of evolving libraries.
Then, it investigates how far the adopted library versions are
away from the latest versions (i.e., usage outdatedness) from
the perspective of projects and libraries. It aims to quantify
the commonness and severity of adopting outdated libraries in
projects and motivate the necessity of RQ2.

Our library update analysis in RQ2 systematically analyzes
the historical library version updates in projects. It first explores
how intensively a project updates library versions (i.e., update
intensity from the perspective of projects) and how intensively
a library’s versions are updated across projects (i.e., update in-
tensity from the perspective of libraries). It aims to quantify the

practices of updating library versions. Then, it measures how
long library version updates lag behind library releases (i.e.,
update delay) from the perspective of projects and libraries. It
aims to quantify the developers’ reaction time to new library
releases and motivate the necessity of RQ3.

Our library risk analysis in RQ3 systematically investigates
the security bugs in libraries. It first measures how many buggy
library versions a project uses (i.e., usage risk from the perspec-
tive of projects) and how many security bugs exist in a library
release (i.e., usage risk from the perspective of libraries). It aims
to quantify the risk in using outdated libraries and delaying
library version updates with respect to security bugs. Then, it
measures how many library APIs in buggy library versions a
project calls (i.e., update risk from the perspective of projects)
and how many library APIs in a buggy library release differs
from a safe library release (i.e., update risk from the perspective
of libraries). It aims to quantify the risk in updating buggy
libraries in terms of potential API incompatibilities.

B. Corpus Selection

We conducted this study on a corpus of Java open-source
projects selected from GitHub. We focused on Java because it is
widely-used and hence our findings can be beneficial to a wider
audience. Specifically, we first selected non-forked Java projects
that had more than 200 stars to ensure the project quality, which
resulted in an initial set of 2,216 projects. Of these projects, we
selected projects that used Maven or Gradle as the automated
build tool in order to ease the extraction of declared library de-
pendencies in projects, which restricted our selection to a set of
1,828 projects. We picked active and well-maintained projects
that had commit in the last three months with the intention
to prefer a local generality of our findings at the cost of a
global generality. Audiences from well-maintained projects can
be more actionable given our findings, while including inactive
projects would generate less representative findings for them.
Finally, we had 806 projects, denoted as P . We crawled their
repositories and commits on master branch from GitHub using
a desktop with 2.29 GHz Intel Core i5 CPU and 8 GB RAM.
We conducted library crawling and library analyses on the same
desktop, which took a total of four months.

IV. LIBRARY USAGE ANALYSIS

To study library usages, we develop lib-extractor to extract
library dependencies from each project’s configuration files
(i.e., pom.xml and build.gradle for Maven and Gradle projects)
in a commit. Maven and Gradle support various mechanisms
(e.g., inheritance, version range and variable expansion) to de-
clare library dependencies, and we support them in lib-extractor.
Basically, for Maven projects, lib-extractor extracts a library
dependency via parsing three fields: groupId, artifactId and
version; and for Gradle projects, it extracts a library dependency
via parsing similar fields: group, name and version.

A library dependency d is denoted as a 4-tuple 〈p, f, com,
v〉, where p and f denote the project and configuration file
where d is declared (here p.date denotes the date when p’s

(a) Usage Intensity across Projects (b) Usage Intensity across Libraries
Fig. 1: Distributions of Usage Intensity across Projects and Libraries

repository is crawled), com denotes the commit where d is ex-
tracted (here com.date denotes the submission date of com),
and v denotes the library version declared in d. v is denoted as
a 2-tuple 〈l, ver〉, where l denotes a library, and ver denotes a
version number of l. l is denoted as a 2-tuple 〈group, name〉,
where group and name denote l’s organization and name.

We ran lib-extractor on the latest commit of each project in
P , and obtained 164,470 library dependencies, denoted as Dus,
24,205 library versions, denoted as Vus = {d.v | d ∈ Dus}, and
13,565 libraries, denoted as Lus = {v.l | v ∈ Vus}.

A. Usage Intensity

Definition. We define usage intensity at a fine-grained level
from the perspective of a project and library: usip, the percent
of a project p’s methods that call library APIs, and usil, the
percent of a library l’s APIs that are called across projects.
Different from previous studies (e.g., [23, 27, 35, 36]), we
explore library usage at the method level. The most closest
work is from Qiu et al. [42], but only considers JDK libraries.

To compute usip and usil, we need to extract library APIs,
project methods, and API calls in project methods. We crawled
the jar file of each library version v ∈ Vus from library reposito-
ries (e.g., Maven and Sonatype) declared in configuration files.
We successfully crawled jar files for 16,384 library versions,
denoted as Ṽus, but failed for the other 7,821 (32.3%) library
versions. The main reason is snapshot versions1 (76.1%) whose
jar files are no longer available; and the other reasons are very
old library versions that are no longer available and private li-
braries that we do not have permissions to access. From Ṽus, we
identified 7,229 libraries, denoted as L̃us.

Then, we used Soot [48] on the jar files for Ṽus to extract
library APIs, denoted as A. Each library API a ∈ A is de-
noted as a 2-tuple 〈v, api〉, where v ∈ Ṽus denotes a library
version, and api denotes a library API. Here, we conservatively
treat public methods and fields in public classes as library APIs.
Next, we used JavaParser [46] with type binding on project
repositories and jar files of the used library versions to extract
project methods, denoted as M, and API calls in project
methods, denoted as C. Each project method m ∈ M is
denoted as a 2-tuple 〈p,method〉, where p denotes a project,

1a.k.a. changing versions whose features are under active development but
are allowed for developers to integrate before stable versions are released.

and method denotes a method in p. Each API call c ∈ C is
denoted as a 2-tuple 〈a,m〉, where a ∈ A denotes a library
API, and m ∈ M denotes the project method where a is called.

Using P , Ṽus, L̃us, A, M and C, we compute usip and
usil by Eq. 1. Vl = {v | v ∈ Ṽus ∧ v.l = l} denotes l’s
used versions, and usil takes their maximum usage intensity.

∀p ∈ P, usip =
|{c.m | c ∈ C ∧ c.m.p = p}|
|{m | m ∈M∧m.p = p}|

∀l ∈ L̃us, usil =max
v∈Vl

|{c.a | c ∈ C ∧ c.a.v = v}|
|{a | a ∈ A ∧ a.v = v}|

(1)

Findings. Using usip and usil, we show distributions of
usage intensity across projects and libraries in Fig. 1a and 1b,
where the y-axis respectively denotes the number of projects
and libraries whose usage intensity falls into a range. On one
hand, 74 (9.2%) projects do not call library APIs; i.e., 28
projects do not use libraries, 5 projects use library versions that
are unavailable, and 41 projects only use the resource files in jar
files. 265 (32.9%) projects have at most 10% of methods calling
library APIs. 266 (33.0%) and 64 (7.9%) projects have more
than 20% and 40% of methods that call library APIs, respec-
tively. On the other hand, 4,337 (60.0%) libraries have at
most 2% of their APIs called across projects; and only 281
(3.9%) libraries have more than 40% of their APIs called across
projects. Notice that 733 libraries do not have class files, but
only have resource files in the jar files (e.g., Angular only
contains web assets), and are not included in Fig. 1b.

Summary. Projects usually have a moderate dependency
on library APIs. Such concrete usage dependency also re-
flects the required efforts on library maintenance (e.g., li-
brary updates and migrations). Only a very small part of li-
brary APIs in most libraries are used. Library developers
should utilize such usage statistics to guide API evolution.
Project developers can tailor unused library features.

During our crawling, snapshot versions are the main rea-
son for unavailable jar files. Thus, we explore the used library
versions and find that 7,345 (30.3%) library versions in Vus

are snapshot versions, and 5,951 (81.0%) of them are no
longer available. 344 (42.7%) projects use snapshot versions,
and 161 (20.0%) and 183 (22.7%) projects respectively adopt
at most and more than five snapshot versions.

Moreover, during our fine-grained analysis, we find that mul-

(a) Usage Outdatedness across Projects (b) Usage Outdatedness across Libraries
Fig. 2: Distributions of Usage Outdatedness across Projects and Libraries

tiple versions of the same library are used in different mod-
ules of a project as different modules in a project can separately
declare library dependencies to suit different needs and release
schedules. Overall, 300 (37.2%) projects adopt multiple ver-
sions of the same library in different modules. 84 (10.4%) and
57 (7.1%) projects respectively contain one and two libraries
whose multiple versions are used. 84 (10.4%) projects contain
more than five libraries whose multiple versions are adopted.
Further, among the 2,032 cases of using multiple versions of the
same library, 1,600 (78.7%) and 233 (11.5%) cases respectively
involve two and three versions of the same library; and 95
(4.7%) cases use more than five versions of the same library.

Summary. Snapshot library versions and multiple versions
of the same library are commonly used in one-third of the
projects. They could increase maintenance cost in the long
run due to incompatible APIs. The latter could even lead to
dependency conflicts when modules are inter-dependent.
Thus, tools are needed to better manage them.

B. Usage Outdatedness

Definition. We define usage outdatedness of a library de-
pendency d, denoted as usod, as the number of library re-
leases with a higher version number at the time of repository
crawling. For each library l ∈ L̃us, we crawled version
number and release date of l’s all library releases from library
repositories. We had 288,312 library releases, denoted as Rus.
Each library release r ∈ Rus is denoted as a 2-tuple 〈v, date〉,
where v denotes a library version, and date denotes v’s release
date. Using Dus and Rus, we compute usod by Eq. 2.

∀d ∈ Dus, usod =|{r | r ∈ Rus ∧ r.v.l = d.v.l∧
r.v.ver > d.v.ver ∧ r.date < d.p.date}| (2)

Then, we define usage outdatedness from the perspective of a
project and library: usop, the average usage outdatedness of the
library dependencies in a project p, and usol, the average us-
age outdatedness of the library dependencies on a library l. Us-
ing P , L̃us, Dus and usod, we get usop and usol by Eq. 3.
∀p ∈ P, usop =avgd∈Dpusod,Dp = {d | d ∈ Dus ∧ d.p = p}

∀l ∈ L̃us, usol =avgd∈Dl
usod,Dl = {d | d ∈ Dus ∧ d.v.l = l}

(3)

Findings. Using usop and usol, we report distributions of
usage outdatedness across projects and libraries in Fig. 2a and
2b. On one hand, only 28 (3.5%) projects use the latest library
versions. 83 (10.3%) projects use libraries that are averagely at

most two versions away from the latest. 306 (38.0%), 118
(14.6%) and 19 (2.4%) projects adopt libraries that are av-
eragely over 10, 20 and 50 versions away from the latest,
respectively. 33 projects are not included in Fig. 2a as 28
projects do not adopt libraries, and the jar files of the library
versions in 5 projects are all no longer available. On the other
hand, in all the projects that use them, 3,269 (45.2%) libraries
are already the latest, 1,419 (19.6%) libraries are averagely at
most two versions away from the latest, and 1,025 (14.2%)
and 134 (1.9%) libraries are averagely over 10 and 50 versions
away from the latest, respectively.

Summary. Outdated library is nearly adopted in every
project. The distance to the latest release is often consid-
erably large. Mechanisms are needed to make project de-
velopers aware of risks (e.g., security bugs) of outdated
library or benefits (e.g., new features) of newer release,
while allowing library developers to directly notify such
risks and benefits to the projects that adopt their library.

V. LIBRARY UPDATE ANALYSIS

To study library updates, we develop up-extractor to extract
library version updates from a project’s commit history. It scans
a project p’s commits to identify each commit com that changes
p’s configuration files. It then uses lib-extractor (see Sec. IV) on
com and com’s previous commit so as to respectively extract
the library dependencies before and after com. Finally, using
the two sets of library dependencies, it identifies library version
updates by searching library dependencies whose version
number is changed. Each library version update u is denoted
as a 6-tuple 〈p, f, com, l, ver1, ver2〉, where p, f , com and l
respectively denote the project, configuration file, commit and
library where u occurs, and ver1 and ver2 respectively denote
the version number before and after the update.

We used up-extractor to the commits of each project in P ,
and extracted 5,217,348 library version updates, denoted as U .

A. Update Intensity

Definition. We define update intensity from the perspec-
tive of a project and library: upip, the percent of a project p’s
currently declared library dependencies whose version numbers
were updated in p’s commits, and upil, the percent of projects
that currently contain a dependency on a library l and updated

(a) Update Intensity across Projects (b) Update Intensity across Libraries
Fig. 3: Distributions of Update Intensity across Projects and Libraries

l’s version number in commits. Using P , Lus, Dus and U , we
compute upip and upil by Eq 4, where Dp = {d | d ∈
Dus ∧ d.p = p} and Pl = {d.p | d ∈ Dus ∧ d.v.l = l}.
∀p ∈ P, upip =|{d | d ∈ DP ∧ (∃u ∈ U , u.p = d.p ∧ u.f = d.f∧

u.l = d.v.l)}|/|Dp|
∀l ∈ Lus, upil =|{p | p ∈ Pl ∧ (∃u ∈ U , u.p = p ∧ u.l = l)}|/|Pl|

(4)

Findings. Using upip and upil, we report distributions of
update intensity across projects and libraries in Fig. 3a and
3b. On the one hand, 114 (14.1%) projects did not update any
currently-declared library dependency. Of them, 90 projects
never updated any library dependency, and 24 projects updated
library dependencies that were removed. 89 (11.0%) and 329
(40.8%) projects respectively updated at most 20% and 50% of
their currently-declared library dependencies. 354 (43.9%) and
101 (12.5%) projects respectively updated more than 50% and
80% of their currently-declared library dependencies. Notice
that 9 projects do not declare any library dependency and are not
included in Fig. 3a. On the other hand, 4,414 (32.5%) libraries
were never updated in all the projects that depend on them.
At the other extreme, 7,210 (53.2%) libraries were updated
in more than 95% of the projects that use them. Such two
extremes are mainly caused by the fact that 90.3% of these
libraries are only used by one project. If excluding all 10,499
libraries only used by one project, we find that of the remaining
3,066 libraries, 2,004 (65.4%) libraries were not updated in
more than half of the projects that adopt them.

Summary. Project developers do update libraries. Still, half
of the projects leave more than half of the adopted libraries
never updated; and one-third of the libraries are not up-
dated in more than half of the projects that use them. Con-
sidering that the selected projects are well-maintained,
the update practice is considerably poor. Awareness of the
importance of updating libraries should be raised.

We further analyze the changes of version numbers in li-
brary version updates. Defined by semantic versioning [41], ver-
sion numbers must take the form of X.Y.Z, where X , Y and
Z is the major, minor and patch version. Bug fixes not affecting
APIs increment Z, backwards compatible API changes or addi-
tions increment Y , and backwards incompatible API changes
increment X . Generally, developers need no integration effort if
updating to a patch or minor version, but need some integration
effort if updating to a major version. We identified 5,117,870

(a) Updates (b) Upgrades (c) Downgrades
Fig. 4: Update, Upgrade and Downgrade Distributions

(98.1%) library version updates from U whose version numbers
start with X.Y or X.Y.Z, denoted as Û .

On one hand, we explore whether developers upgrade or
downgrade a library version. As reported in Fig. 4a, most up-
dates are upgrades; and a very small part (3.6%) of updates are
downgrades due to incompatible APIs. 14.9% of them include
diverse suffixes in version numbers, and hence are unknown due
to incomparable version numbers. On the other hand, we study
whether developers update major, minor, patch or snapshot ver-
sions, and give the results in Fig. 4b and 4c. First, 14.5% of up-
grades replace snapshot versions with stable versions due to the
unstable nature of snapshot versions; and 20.9% of downgrades
switch back to snapshot versions due to heavy dependency on
unstable APIs. Second, 79.8% upgrades are minor or patch as
they are supposed to be API compatible; and 72.5% downgrades
are minor or patch due to violations of semantic versioning.
Third, major upgrades or downgrades are less common as
incompatible APIs can be introduced in major versions.

Summary. Semantic versioning is not strictly followed.
Tools are needed to analyze whether any incompatible
change is introduced before a new version is released,
and suggest the correct version number that follows se-
mantic versioning. Besides, major versions deserve a
mechanism to be kept updated.

B. Update Delay

Definition. We define update delay of a library version
update u, denoted as updu, as the delay between the commit
date of u and the release date of the library version after u.
For each library version update u ∈ U , we crawled the release
data of 〈u.l, u.ver2〉 from library repositories. We successfully
crawled for 1,507,196 (28.9%) library version updates, denoted
as Ũ , resulting in 155,969 library releases, denoted as Rup.

(a) Update Delay across Projects (b) Update Delay across Libraries
Fig. 5: Distributions of Update Delay across Projects and Libraries

From Rup, we had 9,438 libraries, denoted as Lup (i.e., Lup =
{r.v.l | r ∈ Rup}). Of the library version updates we failed
to crawl, 87.8% are caused by unavailable snapshot versions.
Using Ũ and Rup, we compute updu by Eq. 5.

∀u ∈ Ũ , updu = u.com.date− r.date,

r ∈ Rup ∧ r.v.l = u.l ∧ r.v.ver = u.ver2
(5)

Then, we define update delay from the perspective of a
project and library: updp, the average update delay of the
library version updates in a project p, and updl, the average
update delay of the library version updates on a library l. Using
P , Lup, Ũ and updu, we compute updp and updl by Eq. 6.

∀p ∈ Pup, updp =avgu∈Upupdu,Up = {u | u ∈ Ũ ∧ u.p}

∀l ∈ Lup, updl =avgu∈Ul
updu,Ul = {u | u ∈ Ũ ∧ u.l = l}

(6)

Findings. Using updp and updl, we show distributions of
update delay across projects and libraries in Fig. 5a and 5b.
On the one hand, 186 (23.1%) projects updated their library
dependencies at a lag of at most 30 days. 407 (50.5%), 256
(31.8%) and 174 (21.6%) projects had an update delay of more
than 60, 120 and 180 days, respectively. 107 (13.3%) projects
are not included in Fig. 5a since we failed to compute the update
delay (i.e., 90 projects never updated any library dependency;
and 17 projects updated library dependencies but we failed to
crawl the release date). On the other hand, 6,856 (72.6%)
libraries were updated at a lag of at most 30 days. 1,951
(20.7%), 1,355 (14.4%) and 985 (10.4%) libraries had an
update delay of over 60, 120 and 180 days.

Summary. Project developers have a slow reaction to new
library releases. Such a wide time window could increase
the risk (e.g., security bugs) of using outdated libraries, or
even increase the difficulty of updating to new releases as
more library APIs would be used during this time window.

VI. LIBRARY RISK ANALYSIS

Several tools (e.g., Black Duck [1], Veracode [5], SAP [40],
OWASP [3], Snyk [4] and Dependabot [2]) have been recently
proposed to notify developer about security bugs in used li-
brary versions. Besides, bug fixing is also recognized as the
most common reason for updating libraries [19]. Therefore, we
study library risks with respect to security bugs. To this end,
we develop bug-crawler to collect security bugs in a library by

first searching from Veracode’s vulnerability database [5] and
then crawling the metadata (e.g., affected library releases and
security patch) of each security bug. We represent a security
bug in a library release as a bug-release pair g, denoted as a
2-tuple 〈b, r〉, where b denotes a security bug, and r denotes a
library release that b affects (i.e., r is buggy).

We focused on the security bugs in the libraries (i.e., Lus)
used by the 806 projects. We applied bug-crawler to each
library l ∈ Lus, and collected 544 security bugs, affecting
252 libraries. These 252 libraries have 17,421 library releases
(computed from Rus), denoted as Rri. By parsing affected
library releases of the 544 security bugs, we had 35,196 bug-
release pairs, denoted as G. From G, we had 11,989 buggy
library releases, denoted as R̃ri (i.e., R̃ri = {g.r | g ∈ G}).

A. Usage Risk

Definition. We define usage risk of a project as two indica-
tors: usr1p, the number of buggy library versions a project uses,
and usr2p, the number of security bugs in the buggy library
versions a project uses. We define usage risk of a library release
as usrr, the number of security bugs in a library release. These
indicators report the upper bound of usage risk because not all
security bugs will actually affect a project. Using P , Dus, G
and Rri, we compute usr1p, usr2p and usrr by Eq. 7, where
Dp = {d | d ∈ Dus ∧ d.p = p}.

∀p ∈ P, usr1p = |{d.v | d ∈ Dp ∧ (∃g ∈ G, g.r.v = d.v)}|

∀p ∈ P, usr2p =
∑

d∈Dp

|{g.b | g ∈ G ∧ g.r.v = d.v}|

∀r ∈ Rri, usrr = |{g.b|g ∈ G ∧ g.r = r}|

(7)

Findings. Using usr1p, usr2p and usrr, we present distri-
butions of usage risk across projects and library releases in
Fig. 6a and 6b. On one hand, 451 (56.0%) projects adopt buggy
library versions. 328 (40.7%) projects adopt 1 to 5 buggy li-
brary versions, and 123 (15.3%) projects even use more than
5 buggy library versions. In 207 (25.7%) projects, their used
buggy library versions have 1 to 5 security bugs. In 188 (23.3%)
projects, their used buggy library versions even have more than
10 security bugs. On the other hand, of the 17,421 library
releases, only 5,432 (31.2%) library releases do not have
security bug. 5,953 (34.2%) library releases have 1 security
bug, while 3,911 (22.4%) and 1,149 (6.6%) respectively have
more than 2 and 5 security bugs.

0 1-5 6-10 11-15 16-20 21-25 26-30 31-35 36-40 41-45 46-50 > 50
The Number of Buggy Library Versions/Security Bugs in Buggy Library Versions a Project Uses (#)

0

50

100

150

200

250

300

350
Th

e
N

um
be

r o
f P

ro
je

ct
s (

#)
355

328

65

27
15 7 1 2 1 2 0 3

355

207

56
42

22
38

29
10 15 8 5

19

Buggy Library Versions
Security Bugs in Buggy Library Versions

(a) Usage Risk across Projects

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25>25
The Number of Security Bugs in a Library Release (#)

0

1000

2000

3000

4000

5000

6000

Th
e

N
um

be
r o

f L
ib

ra
ry

 R
el

ea
se

s (
#)

5432

5953

2125

1227
957

578
268 111 90 42 86 129 42 27 30 25 23 11 12 21 7 69 26 34 5 10 81

(b) Usage Risk across Library Releases
Fig. 6: Distribution of Usage Risk across Projects and Library Releases

Summary. More than half of the projects use library ver-
sions that contain security bugs. Two-third of the library re-
leases contain security bugs. The relatively common exis-
tence of security bugs indicates the potential risk faced by
projects if project developers are unaware of the security
bugs in used libraries or delay library updates.

B. Update Risk

Definition. We define update risk of a project as two indica-
tors: upr1p, the number of called APIs in buggy library versions
a project uses, and upr2p, the number of API calls to buggy
library versions a project uses. These two indicators report the
upper bound of update risk as not all called APIs in buggy
library versions will be deleted (i.e., the API signature does
not exist, which will fail the compilation) or modified (i.e.,
the API signature is not changed but its behavior is changed,
which will pass the compilation) in safe library versions. Using
P , C and G, we compute upr1p and upr2p by Eq. 8.
∀p ∈ P, upr1p = |{c.a|c ∈ C ∧ c.m.p = p ∧ (∃g ∈ G, g.r.v = c.a.v)}|
∀p ∈ P, upr2p = |{c|c ∈ C ∧ c.m.p = p ∧ (∃g ∈ G, g.r.v = c.a.v)}|

(8)

We define update risk of a buggy library release as two in-
dicators: upr1r , the number of APIs in a buggy library re-
lease that are deleted in the safe library release, and upr2r , the
number of APIs in a buggy library release that are modified
in the safe library release. There can be multiple safe library
releases that fix the security bugs in the buggy library release.
Here, we choose the safe library release with the smallest ver-
sion number. These two indicators also report the upper bound
of update risk as not all deleted/modified APIs are used by a
project. Using R̃ri and A, we can compute upr1r and upr2r by
Eq. 9, where Ax = {a | a ∈ A∧ a.v = x.v} (i.e., the APIs in
a library release x), rsafe denotes the safe library release, and
u computes the APIs whose signature is not changed but its
code or the code of its transitively called methods is changed
(i.e., potentially changing its behavior).

∀r ∈ R̃ri, upr
1
r = |{a.api | a ∈ Ar} − {a.api | a ∈ Arsafe}|

∀r ∈ R̃ri, upr
2
r = |{a.api | a ∈ Ar} u {a.api | a ∈ Arsafe}|

(9)

Findings. Using upr1p, upr2p, upr1r and upr2r , we give dis-
tributions of update risk across projects and buggy library re-
leases in Fig. 7a and 7b. On one hand, of the 451 projects that

adopt buggy library versions, 151 (33.5%) projects do not call
APIs in used buggy library versions, 181 (40.1%) projects call
at most 20 APIs, and 82 (18.2%) projects call more than 40
APIs. In addition, 133 (29.5%) projects have at most 20 API
calls to used buggy library versions, and 122 (26.5%) projects
have more than 40 API calls. On the other hand, of the 11,989
buggy library releases, 2,664 (22.2%) do not have safe library
releases (i.e., the security bug affects all current library releases),
and thus are not included in Fig. 7b. 4,586 (38.3%) buggy
library releases have less than 40 APIs modified in the safe
library release, while 2,921 (24.4%) buggy library releases have
more than 100 APIs modified in the safe one. 2,065 (17.2%)
buggy library releases have less than 40 APIs deleted in the
safe library release. Surprisingly, 4,236 (35.3%) buggy library
releases have more than 300 APIs deleted in the safe one.

Summary. These API-level upper bounds of usage and up-
date risk present moderate risk in using and updating buggy
library versions. Tools are needed to provide a tight estima-
tion of risk via combining the library APIs used in a project
and the library APIs changed in safe versions such that
developers can confidently update buggy libraries.

VII. DISCUSSION

A. Implications to Researchers and Developers

Ecosystem-Level Knowledge Graph. Our study actually at-
tempts to put projects, libraries and security bugs in one pic-
ture and draw connections among them. Ideally, every parties in
the ecosystem should be involved to establish connections and
produce intelligence to foster the ecosystem. For example, if the
knowledge about how the APIs of a library are used by all the
projects that use the library is available, library developers can
get instant reminders when they evolve APIs that are widely
used and have high change impact. If the knowledge about secu-
rity bugs in a library and all the projects that use the library is
available, project developers can have instant alerts when new
security bugs are disclosed. Towards this paradigm, knowledge
graph seems to be a feasible solution. In particular, all open-
source projects and their called library APIs, library releases
and their APIs and call graphs, bugs (e.g., performance and
security) and their affect library APIs, licenses, and developers
should be connected into one whole graph. The main challenges

0
1-20

21-40
41-60

61-80
81-100

101-120
121-140

141-160
161-180

181-200
> 200

The Number of Called APIs/API Calls to Buggy Library Versions a Project Uses (#)

0

25

50

75

100

125

150

175
Th

e
N

um
be

r o
f P

ro
je

ct
s (

#)

151

181

37
26

14 10 10
4 6 4 2 6

151

133

45

19 20
10 8 6 8 7 4

40

Called Library APIs
Library API Calls

(a) Update Risk across Projects

0
1-20

21-40
41-60

61-80
81-100

101-120
121-140

141-160
161-180

181-200
201-220

221-240
241-260

261-280
281-300

> 300

The Number of Modified/Deleted APIs (#)

0

500

1000

1500

2000

2500

3000

3500

4000

Th
e

N
um

be
r o

f B
ug

gy
 L

ib
ra

ry
 R

el
ea

se
s (

#)

529

2598

1459

873

618

327 405
233 232 214 169 185 99 97 62 69

1156

409

1106

550
413 409 324 279 222 144 173 227 177 196 128 170 162

4236Modified APIs
Deleted APIs

(b) Update Risk across Library Releases
Fig. 7: Distribution of Update Risk across Projects and Library Releases

are: establish the infrastructure to support the huge graph,
collect these various kinds of data in a (nearly) real-time way,
and develop various graph analysis techniques to provide online
services for developers (e.g., alerting buggy library versions
and analyzing ecosystem-level change impact within IDEs).
This study provides a starting point to achieve such a paradigm.

Library Debloat. As a very small part of library APIs are
widely called across projects, many unused library features
are still kept in software systems, which can cause software
bloat, especially for embedded systems. Software bloat can hurt
performance [52] or broaden attack surface (e.g., code reuse
attack) [49]. Therefore, the low usage intensity of library APIs
opens an opportunity to tailor unused features in libraries (i.e.,
library debloat) in a specific usage context to avoid software
bloat. Some debloat techniques [43, 45] have been designed
for C/C++; Soto-Valero et al. [47] removed unused transitive
libraries as a whole but did not target partially-used libraries;
and Matos et al. [34] studied the possibility of splitting libraries
into bundles based on the API usages of a set of client projects.

Multiple Version Harmonization. Multiple versions of the
same library are commonly used in multi-module project. It
may increase the burden of project developers as it may cause
inconsistent library API behaviors across different modules,
or even lead to dependency conflicts when modules are inter-
dependent [38, 50]. Therefore, techniques are needed to auto-
matically detect multiple versions, analyze their differences in
client usage context, and refactor client code and configuration
files to harmonize into a single version. Inspired by our work,
Huang et al. [24] have proposed an interactive, effort-aware
library version harmonization approach.

Smart Alerting and Automated Updating. Given the wide
existence of buggy, outdated libraries in projects, it is urgent to
propose techniques to alert and update buggy, outdated libraries.
On one hand, alerts should be raised only when security bugs
in library versions are in execution paths of projects. Otherwise,
buggy library versions are safe and would cause false positives
if alerted. Moreover, multiple fine-grained information should
be provided to assist developers to make confident decisions
in updating buggy library versions. Specifically, alerts should
indicate the statistics about the library API calls affected by
security bugs, such that developers can assess the risk of using
buggy library versions. Alerts should also report the statistics

about the calls to library APIs that are deleted or modified in the
new library version, such that developers can assess the effort
to complete the update. On the other hand, automated library
updating techniques are needed to analyze behavior changes of
modified library APIs and locate replacements of deleted library
APIs. Another potential solution to automated updating is to
learn updating patterns from projects that finish the update.
However, it may be limited to the size of such update data.

Usage-Driven Library Evolution. Our library usage anal-
ysis presents an opportunity for library developers to conduct
usage-driven library evolution, e.g., giving high fix priority to
bugs in widely-used library APIs, carefully evolving widely-
used library APIs based on change impacts on client projects,
redesigning or optimizing library APIs based on their usage
statistics, and assessing whether new library APIs are adopted.

B. Application for Usefulness Demonstration

Based on the implication on smart alerting, we design a proto-
type of a security bug-driven alerting system for buggy libraries.
It consists of two main components: risk analysis and effort
analysis; and it has two databases: bug database and library
database. The bug database currently has 544 security bugs
collected in our risk analysis (see Sec. VI) and the correspond-
ing buggy library methods (i.e., the methods that are changed
in the security patch to fix a security bug) in affected library
versions. The library database currently has all the released
versions of the 252 libraries affected by 544 security bugs.

Our risk analysis is implemented to decide whether a project
directly or indirectly calls buggy library methods. It first uses
JavaParser [46] with type binding to extract library API calls in
the project. Then, it uses Soot [48] to construct the call graphs
of these called library APIs. Finally, it checks whether the li-
brary methods in each call graph contain buggy library methods
from our bug database. If yes, we consider the called library
API as risky and affecting the project (i.e., the corresponding
security bug could in the execution path of the project). After
this analysis, we can report the number of security bugs that
affect the project in each buggy library version (i.e., NB), the
number of risky library APIs called in the project (i.e., NA),
and the number of calls to risky library APIs in the project
(i.e., NC). These three metrics provide developers with the risk
and impact of adopted buggy library versions.

Our effort analysis is implemented to suggest the new library
versions and the updating effort. For each higher library version
than the buggy library version, it first determines whether the
called library APIs are deleted or modified in the higher
library version. Here, an API is modified if the body code of
the API or the code of the library methods in its call graph
is modified. Then, it checks whether the called library APIs
that are not deleted directly or indirectly call buggy library
methods in the higher library version. If yes, we skip this
higher library version because it still contains security bugs
affecting the project. If no, we can report the number of called
library APIs that are deleted (i.e., NAD), the number of called
library APIs that are modified (i.e., NAM), the number of calls
to the deleted library APIs (i.e., NCD), and the number of
calls to the modified library APIs (i.e., NCM). These metrics
measure the updating effort on the suggested library version.

We have run our alerting system against the 451 projects
that use buggy libraries (see Sec. VI) to determine whether
the buggy libraries affect the projects. We find that 413 projects
are not affected by the buggy libraries and can be safe. For the
38 unsafe projects, we list the detailed results in Table I for
10 projects due to space limitation, where column P lists the
projects, BL reports the number of buggy libraries affecting
the project, NB, NA and NC are the reported metrics in risk
analysis (where the total number of security bugs, called library
APIs, and calls to the library APIs are listed in parentheses),
SL reports the number of suggested library versions, and the
other columns list the metrics in effort analysis for one sug-
gested library version. Results for other projects and other sug-
gested library versions are at https://3rdpartylibs.github.io.

Our preliminary evaluation indicates that all 38 projects are
mostly affected by one buggy library version. While many se-
curity bugs exist in the buggy library version, mostly only one
security bug affects a median of 2 library APIs which are called
by a median of 4 times. For example, in the fourth project, 7 of
the 40 called library APIs are affected by 1 security bug, and are
called by 24 times. Multiple safe library versions are suggested
for developers to choose according to updating effort. For
example, 5 versions are suggested for the fourth project. In one
of them, 20 of the 40 called library APIs are modified, affecting
81 library API calls; and no called library API is deleted.

We submitted issues to 274 of the 413 safe projects by report-
ing the used buggy library versions, the security bugs in them
and safe versions. We did not submit for the remaining 139
projects as they already updated the buggy library versions at
the time of our issue reporting, disabled issues and also did
not use other issue trackers, or were read-only projects. Finally,
we got replies from 78 projects in a week. Specifically, 29
issues have been confirmed and 23 of them have been fixed.
28 issues do not affect the projects as they affect test code only
or are not in the execution path, while developers will still fix
it in 4 issues. 14 issues are still under analysis. Developers
ask for pull request or thank for our issue without any further
action in 7 issues. These results indicate that developers tend
to update buggy libraries as long as they contain security bugs.

Then, we submitted issues to 31 of the 38 unsafe projects

TABLE I: Results of Applying Our Alerting System
P BL NB NA NC SL NAD NAM NCD NCM
1 1 1(5) 3(19) 4(36) 5 0 6 0 10
2 1 1(7) 2(6) 7(18) 5 0 5 0 11
3 1 1(2) 1(3) 1(3) 23 0 2 0 2
4 1 1(7) 7(40) 24(119) 5 0 20 0 81
5 1 1(2) 3(40) 4(68) 6 27 6 41 10
6 1 1(2) 2(26) 21(190) 15 0 6 0 49
7 1 1(4) 1(1) 3(3) 4 1 0 3 0
8 1 1(4) 3(16) 24(51) 5 1 7 1 36
9 1 1(3) 1(7) 1(7) 16 0 2 0 2

10 1 2(5) 1(4) 1(4) 4 4 0 4 0

by reporting the execution path to the security bug and our
fine-grained information in Table I. We did not submit for the
remaining 7 projects as they already updated the buggy library
versions at the time of our issue reporting or were read-only
projects. Finally, we received replies from 10 projects. 4 issues
have been confirmed and 1 of them has been fixed. 4 issues
are still under analysis. Developers decide to not fix the issue
for backward compatibility in 1 issue, and ask for pull request
in 1 issue. We are enlarging our security bug and library
database, and collaborating with our two interested industrial
partners to deploy our tool into continuous integration.

C. Threats to Validity

Indirect Library Dependencies. Our study is focused on di-
rect library dependencies, i.e., libraries that are directly declared
in projects’ configuration files. Libraries can depend on other
libraries, i.e., indirect library dependencies. It can be expected
that, if indirect library dependencies are considered, the depen-
dency on libraries can be heavier, the potential risk in terms of
security bugs can be higher, and the problem of using multiple
versions of the same library can be more severe.

Subject Representativity. We use well-maintained projects
because library usage and update are software maintenance
activities and inactive projects might contain less representative
maintenance data and bias our findings. An independent study
on those not well-maintained projects is needed to compare the
findings. Besides, we fail to crawl jar files and release dates
of some libraries, and hence they are excluded from some of
our analyses, but we have tried our best and clarified the data
for each analysis. We believe our data is still representative
and meaningful due to the large size.

VIII. CONCLUSIONS

We conducted a quantitative and holistic study to characterize
usages, updates and risks of third-party libraries in Java open-
source projects. Specifically, we quantified the usage and update
practices from the perspective of open-source projects and third-
party libraries, and analyzed risks in terms of security bugs in
third-party libraries. We provided implications to developers
and researchers on problems and remedies in maintaining third-
party libraries. We designed a security bug-driven alerting sys-
tem prototype for buggy libraries. We released our dataset and
source code of our tools at https://3rdpartylibs.github.io.

ACKNOWLEDGMENT

This work was supported by the National Natural Science
Foundation of China (Grant No. 61802067). Bihuan Chen is
the corresponding author of this paper.

REFERENCES
[1] Black duck. [Online]. Available: https://www.blackducksoftware.com
[2] Dependabot. [Online]. Available: https://dependabot.com
[3] Owasp dependency-check. [Online]. Available: https://owasp.org/

www-project-dependency-check/
[4] Snyk. [Online]. Available: https://snyk.io
[5] Veracode. [Online]. Available: https://www.veracode.com
[6] R. Abdalkareem, O. Nourry, S. Wehaibi, S. Mujahid, and E. Shihab,

“Why do developers use trivial packages? an empirical case study on
npm,” in FSE, 2017, pp. 385–395.

[7] M. Backes, S. Bugiel, and E. Derr, “Reliable third-party library detection
in android and its security applications,” in CCS, 2016, pp. 356–367.

[8] V. Bauer and L. Heinemann, “Understanding api usage to support
informed decision making in software maintenance,” in CSMR, 2012, pp.
435–440.

[9] V. Bauer, L. Heinemann, and F. Deissenboeck, “A structured approach
to assess third-party library usage,” in ICSM, 2012, pp. 483–492.

[10] G. Bavota, G. Canfora, M. Di Penta, R. Oliveto, and S. Panichella, “The
evolution of project inter-dependencies in a software ecosystem: The
case of apache,” in ICSM, 2013, pp. 280–289.

[11] ——, “How the apache community upgrades dependencies: an evo-
lutionary study,” Empirical Software Engineering, vol. 20, no. 5, pp.
1275–1317, 2015.

[12] C. Bogart, C. Kästner, J. Herbsleb, and F. Thung, “How to break an api:
Cost negotiation and community values in three software ecosystems,”
in FSE, 2016, pp. 109–120.

[13] M. Cadariu, E. Bouwers, J. Visser, and A. van Deursen, “Tracking known
security vulnerabilities in proprietary software systems,” in SANER, 2015,
pp. 516–519.

[14] J. Cox, E. Bouwers, M. van Eekelen, and J. Visser, “Measuring
dependency freshness in software systems,” in ICSE, vol. 2, 2015, pp.
109–118.

[15] C. De Roover, R. Lammel, and E. Pek, “Multi-dimensional exploration
of api usage,” in ICPC, 2013, pp. 152–161.

[16] A. Decan, T. Mens, and M. Claes, “An empirical comparison of
dependency issues in oss packaging ecosystems,” in SANER, 2017, pp.
2–12.

[17] A. Decan, T. Mens, and E. Constantinou, “On the evolution of technical
lag in the npm package dependency network,” in ICSME, 2018, pp.
404–414.

[18] ——, “On the impact of security vulnerabilities in the npm package
dependency network,” in MSR, 2018, pp. 181–191.

[19] E. Derr, S. Bugiel, S. Fahl, Y. Acar, and M. Backes, “Keep me updated:
An empirical study of third-party library updatability on android,” in
CCS, 2017, pp. 2187–2200.

[20] J. Dietrich, K. Jezek, and P. Brada, “Broken promises: An empirical study
into evolution problems in java programs caused by library upgrades,”
in CSMR-WCRE, 2014, pp. 64–73.

[21] D. Fujibayashi, A. Ihara, H. Suwa, R. G. Kula, and K. Matsumoto, “Does
the release cycle of a library project influence when it is adopted by a
client project?” in SANER, 2017, pp. 569–570.

[22] J. Hejderup, A. van Deursen, and G. Gousios, “Software ecosystem call
graph for dependency management,” in ICSE-NIER, 2018, pp. 101–104.

[23] A. Hora and M. T. Valente, “apiwave: Keeping track of api popularity
and migration,” in ICSME, 2015, pp. 321–323.

[24] K. Huang, B. Chen, B. Shi, Y. Wang, C. Xu, and X. Peng, “Interactive,
effort-aware library version harmonization,” in ESEC/FSE, 2020.

[25] M. Kim, D. Cai, and S. Kim, “An empirical investigation into the role
of api-level refactorings during software evolution,” in ICSE, 2011, pp.
151–160.

[26] R. G. Kula, D. M. German, T. Ishio, and K. Inoue, “Trusting a library:
A study of the latency to adopt the latest maven release,” in SANER,
2015, pp. 520–524.

[27] R. G. Kula, D. M. German, T. Ishio, A. Ouni, and K. Inoue, “An
exploratory study on library aging by monitoring client usage in a
software ecosystem,” in SANER, 2017, pp. 407–411.

[28] R. G. Kula, D. M. German, A. Ouni, T. Ishio, and K. Inoue, “Do
developers update their library dependencies?” Empirical Software
Engineering, vol. 23, no. 1, pp. 384–417, 2018.

[29] R. Lämmel, E. Pek, and J. Starek, “Large-scale, ast-based api-usage
analysis of open-source java projects,” in SAC, 2011, pp. 1317–1324.

[30] T. Lauinger, A. Chaabane, S. Arshad, W. Robertson, C. Wilson, and
E. Kirda, “Thou shalt not depend on me: Analysing the use of outdated
javascript libraries on the web,” in NDSS, 2017.

[31] L. Li, T. F. Bissyandé, J. Klein, and Y. Le Traon, “An investigation
into the use of common libraries in android apps,” in SANER, 2016, pp.
403–414.

[32] M. Li, W. Wang, P. Wang, S. Wang, D. Wu, J. Liu, R. Xue, and
W. Huo, “Libd: Scalable and precise third-party library detection in
android markets,” in ICSE, 2017, pp. 335–346.

[33] Z. Ma, H. Wang, Y. Guo, and X. Chen, “Libradar: Fast and accurate
detection of third-party libraries in android apps,” in ICSE, 2016, pp.
653–656.

[34] A. S. Matos, J. B. F. Filho, and L. S. Rocha, “Splitting apis: An
exploratory study of software unbundling,” in MSR, 2019, pp. 360–370.

[35] Y. M. Mileva, V. Dallmeier, M. Burger, and A. Zeller, “Mining trends
of library usage,” in IWPSE-Evol, 2009, pp. 57–62.

[36] Y. M. Mileva, V. Dallmeier, and A. Zeller, “Mining api popularity,” in
Testing – Practice and Research Techniques, 2010, pp. 173–180.

[37] S. Mirhosseini and C. Parnin, “Can automated pull requests encourage
software developers to upgrade out-of-date dependencies?” in ASE, 2017,
pp. 84–94.

[38] J. Patra, P. N. Dixit, and M. Pradel, “Conflictjs: finding and understanding
conflicts between javascript libraries,” in ICSE, 2018, pp. 741–751.

[39] H. Plate, S. E. Ponta, and A. Sabetta, “Impact assessment for vulnerabil-
ities in open-source software libraries,” in ICSME, 2015, pp. 411–420.

[40] S. E. Ponta, H. Plate, and A. Sabetta, “Beyond metadata: Code-centric and
usage-based analysis of known vulnerabilities in open-source software,”
in ICSME, 2018, pp. 449–460.

[41] T. Preston-Werner, “Semantic versioning 2.0. 0,” http://semver. org, 2013.
[42] D. Qiu, B. Li, and H. Leung, “Understanding the api usage in java,”

Information and software technology, vol. 73, pp. 81–100, 2016.
[43] A. Quach, A. Prakash, and L. K. Yan, “Debloating software through

piece-wise compilation and loading,” in USENIX Security, 2018.
[44] P. Salza, F. Palomba, D. Di Nucci, C. D’Uva, A. De Lucia, and F. Ferrucci,

“Do developers update third-party libraries in mobile apps?” in ICPC,
2018, pp. 255–265.

[45] H. Sharif, M. Abubakar, A. Gehani, and F. Zaffar, “Trimmer: application
specialization for code debloating,” in ASE, 2018, pp. 329–339.

[46] N. Smith, D. van Bruggen, and F. Tomassetti, “Javaparser: Visited,”
Leanpub, oct. de, 2017.

[47] C. Soto-Valero, N. Harrand, M. Monperrus, and B. Baudry, “A compre-
hensive study of bloated dependencies in the maven ecosystem,” CoRR,
vol. abs/2001.07808, 2020.

[48] R. Vallée-Rai, P. Co, E. Gagnon, L. Hendren, P. Lam, and V. Sundaresan,
“Soot: A java bytecode optimization framework,” in CASCON, 1999, pp.
13–.

[49] C. Wang, B. Chen, Y. Liu, and H. Wu, “Layered object-oriented
programming: Advanced vtable reuse attacks on binary-level defense,”
IEEE Transactions on Information Forensics and Security, vol. 14, no. 3,
pp. 693–708, 2019.

[50] Y. Wang, M. Wen, Z. Liu, R. Wu, R. Wang, B. Yang, H. Yu, Z. Zhu,
and S.-C. Cheung, “Do the dependency conflicts in my project matter?”
in ESEC/FSE, 2018, pp. 319–330.

[51] E. Wittern, P. Suter, and S. Rajagopalan, “A look at the dynamics of the
javascript package ecosystem,” in MSR, 2016, pp. 351–361.

[52] G. Xu, N. Mitchell, M. Arnold, A. Rountev, and G. Sevitsky, “Software
bloat analysis: Finding, removing, and preventing performance problems
in modern large-scale object-oriented applications,” in FoSER, 2010, pp.
421–426.

[53] A. Zaimi, A. Ampatzoglou, N. Triantafyllidou, A. Chatzigeorgiou,
A. Mavridis, T. Chaikalis, I. Deligiannis, P. Sfetsos, and I. Stamelos,
“An empirical study on the reuse of third-party libraries in open-source
software development,” in BCIC, 2015, pp. 4:1–4:8.

[54] R. E. Zapata, R. G. Kula, B. Chinthanet, T. Ishio, K. Matsumoto, and
A. Ihara, “Towards smoother library migrations: A look at vulnerable
dependency migrations at function level for npm javascript packages,”
in ICSME, 2018, pp. 559–563.

[55] A. Zerouali, E. Constantinou, T. Mens, G. Robles, and J. González-
Barahona, “An empirical analysis of technical lag in npm package
dependencies,” in ICSR, 2018, pp. 95–110.

[56] Y. Zhang, J. Dai, X. Zhang, S. Huang, Z. Yang, M. Yang, and H. Chen,
“Detecting third-party libraries in android applications with high precision
and recall,” in SANER, 2018, pp. 141–152.

[57] M. Zimmermann, C.-A. Staicu, C. Tenny, and M. Pradel, “Small world
with high risks: A study of security threats in the npm ecosystem,” in
USENIX Security, 2019, pp. 995–1010.

