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ABSTRACT

Software composition analysis (SCA) tools have beenwidely adopted
to identify vulnerable libraries used in software applications. Such SCA
tools depend on a vulnerability database to know affected libraries of
each vulnerability. However, it is labor-intensive and error prone for
a security team tomanuallymaintain the vulnerability database.While
several approaches adopt extreme multi-label learning to predict
affected libraries for vulnerabilities, they are practically ineffective
due to the limited library labels and the unawareness of ecosystems.

To address these problems, we first conduct an empirical study to
assess the quality of two fields, i.e., affected libraries and their ecosys-
tems, for four vulnerability databases. Our study reveals notable
inconsistency and inaccuracy in these two fields. Then, we propose
Holmes to identify affected libraries and their ecosystems for vul-
nerabilities via a learning-to-rank technique. The key idea of Holmes
is to gather various evidences about affected libraries and their ecosys-
tems from multiple sources, and learn to rank a pool of libraries
based on their relevance to evidences. Our extensive experiments
have shown the effectiveness, efficiency and usefulness of Holmes.

CCS CONCEPTS

• Information systems → Open source software; • Security
and privacy→ Vulnerability management.
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1 INTRODUCTION

Open source libraries introduce security risks as they often con-
tain vulnerabilities [26, 31, 35, 41, 42, 54, 58, 60]. To mitigate such
security risks, software composition analysis (SCA) tools [27] have
been increasingly adopted to notify developers about vulnerable
libraries used in their software applications. Gartner [16] recently
evaluate competitive vendors offering SCA tools, including Syn-
opsys [48], Veracode [51], Snyk [46], Mend.io (formally known as
WhiteSource) [34], GitHub [17] and GitLab [19].

All these vendors maintain their own vulnerability database
that establishes a mapping between each vulnerability and its af-
fected libraries, affected versions, and patches. To enable vendors
provide effective SCA services, the vulnerability database is re-
quired to be up-to-date and accurate. Therefore, a security team
with strong domain knowledge is needed to devote massive man-
ual effort to curate vulnerability data from various sources. One
common source is NIST’s National Vulnerability Database (NVD)
[39]. Each vulnerability in NVD has a CVE (Common Vulnerability
Enumeration) identifier, a description, references (i.e., links to web
resources related to the vulnerability), and CPE (Common Platform
Enumeration) configurations (i.e., affected software configurations).

Problem. As affected libraries may not be explicitly mentioned
in vulnerability description and CPE configurations [24] but hidden
in direct or indirect references, it is labor-intensive and error-prone
for the security team to manually identify the libraries affected by
each vulnerability. To assist the security team in this vulnerability
curation process, several affected library identification approaches
[8, 12, 24, 33] have been recently proposed.

Dong et al. [12] leverage named entity recognition (NER) to rec-
ognize affected libraries from vulnerability description. However,
as vulnerability description may not mention affected libraries [24],
this NER-based approach cannot recognize affected libraries due to
limited knowledge sources. Moreover, as vulnerability description
may not mention the complete library coordinates, this NER-based
approach may recognize affected library names that are not in line
with the library coordinates declared by developers.

To mitigate these issues, Chen et al. [8], Haryono et al. [24] and
Lyu et al. [33] formulate this affected library identification problem
as an extrememulti-label learning (XML) problem. Such XML-based
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approaches use library coordinates as labels, and predict labels for
each vulnerability based on features extracted from vulnerability
description, CPE configurations and direct references. However,
they still suffer limitations in practice. One is the limited size of label
set, which makes them incapable of handling vulnerabilities whose
affected libraries are not in the label set. The other is the unaware-
ness of ecosystems, which causes them fail to distinguish libraries
with the same name but from different language ecosystems.

Empirical Study.To assess the quality of vulnerability databases
curated by security teams, we conduct an empirical study to analyze
the quality of two fields, i.e., affected libraries and their ecosystems,
for four vulnerability databases, i.e., GitHub [17], GitLab [19], Vera-
code [51] and Snyk [46]. On the one hand, we select 18,633 vulnera-
bilities, and conduct a pairwise comparison of the four vulnerability
databases to quantify the inconsistency in these two fields. Notably,
affected libraries and their ecosystems are inconsistent between
each pair of vulnerability databases for an average of 26.9% and 39.7%
of the vulnerabilities, respectively. Specifically, affected libraries
and their ecosystems are disjoint for an average of 15.5% and 29.4%
of the vulnerabilities, respectively. On the other hand, we manually
identify affected libraries and their ecosystems for a sample of 696
vulnerabilities, and quantify the accuracy in these two fields for the
four vulnerability databases. The precision in affected libraries and
their ecosystems ranges from 0.591 to 0.875 and 0.654 to 0.997, re-
spectively, while the recall in affected libraries and their ecosystems
ranges from 0.865 to 0.939 and 0.960 to 0.998, respectively.

Our Approach. To overcome the limitations of XML-based ap-
proaches and enhance the quality of vulnerability databases, we
propose an automated approach, named Holmes, to identify af-
fected libraries and their ecosystems for each vulnerability via a
learning-to-rank technique. Specifically, Holmes takes a CVE iden-
tifier as an input, and works in three steps. The first step of Holmes
is to gather various evidences about affected libraries and their
ecosystems from multiple sources. The second step is to calculate
relevance to the gathered evidences for each library in our library
pool. Our pool currently contains all libraries from Maven, NPM,
PyPI and Go, and is designed to be extensible to include other
ecosystems. The third step is to learn to rank the pool of libraries
according to their relevance to evidences. The output of Holmes is
the highly ranked libraries and their corresponding ecosystems.

Evaluation. To show the effectiveness of Holmes, we compare
it with three state-of-the-art approaches on the 696 vulnerabilities
used in our empirical study. Our evaluation indicates that i)Holmes
can identify affected libraries and their ecosystems with a mean
average precision at 1 (i.e., mAP@1) of at least 0.944 and 0.855,
respectively; and ii)Holmes can outperform the best of the state-of-
the-art in identifying affected libraries by at least 30.1% in mAP@1.
In addition, we also evaluate the efficiency of Holmes. Holmes
takes 3.6 hours to train, and 18.5 seconds to predict.

To demonstrate the practical usefulness of Holmes, we first con-
duct a user study with 20 participants. Our evaluation indicates that
with the assistance of Holmes, participants can identify affected
libraries and ecosystems more accurately. Then, we use Holmes
to detect vulnerabilities that are labeled with incorrect affected
libraries or ecosystems in the four vulnerability databases, and re-
port them to the four vendors. Two vendors have replied. They

respectively fixed the fields for 48 of the 62 reported vulnerabilities
and 62 of the 78 reported vulnerabilities.

Contribution. This work makes the following contributions.
• We conducted an empirical study to understand the quality of af-
fected libraries and ecosystems in four vulnerability databases.

• We proposed Holmes to automatically identify affected libraries
and their ecosystems for open source software vulnerabilities.

• We conducted extensive experiments to demonstrate the effec-
tiveness, efficiency and practical usefulness of Holmes.

2 DEFINITION AND MOTIVATION

We first introduce the definition of affected library and ecosystem,
and then we present two motivating examples.

2.1 Definition

The affected library is referred to as the library that directly con-
tains the vulnerable code. It is the root of the vulnerability where
attackers can exploited the weakness and maintainers would ap-
ply fixing patches. The affected library is available on open-source
software package registries with an identical name. We do not in-
clude downstream libraries transitively/directly depending on the
affected library. The ecosystem is referred to as the open-source
software package registry name hosting the affected library.

2.2 Motivating Examples

We use two vulnerabilities CVE-2021-22118 and CVE-2017-1000163.
CVE-2021-22118 is detected in the Spring framework in the Maven
ecosystem. Its affected library is uniquely identified by its group ID
org.springframework and artifact ID spring-web. CVE-2017-1000163
locates in the Phoenix framework in both NPM and Hex ecosystem.
Its affected library is named phoenix in both ecosystems.

Discrepancy in Vulnerability Schema. Fig. 1 shows part of
the vulnerability information of CVE-2021-22118 in various vul-
nerability databases. Overall, different databases employ different
schema to represent the affected libraries and their ecosystems.
NVD uses the “cpe23uri” field to denote affected software, which
includes the vendor name vmware and the product name spring-
_framework, but does not report the library name spring-web. The
other four databases denote the affected libraries in a format close
to the library coordinate in the Maven ecosystem. For example, Git-
Lab uses the “package_slug” field, which uses “/” as the separator
to join ecosystem, group ID and artifact ID of the affected library;
and GitHub uses the “name” field, which uses “:” as the separator
to join group ID and artifact ID of the affected library. Besides,
NVD does not report ecosystems, while the other four databases
do report ecosystems, e.g., the “ecosystem” field in GitHub, the
“coordinateType” field in Veracode, and the “TYPE” field in Snyk.

Quality Issues about Affected Libraries. As shown in Fig. 1,
GitLab, GitHub and Snyk have different affected libraries from the
ground truth for CVE-2021-22118. On the one hand, vulnerability
databases may mark libraries that depend on vulnerable libraries as
the affected libraries. For example, GitLab reports spring-webflux as
an affected library for CVE-2021-22118 because spring-webflux de-
pends on the vulnerable version of spring-web where the vulnerabil-
ity truly locates. Similarly, Snyk marks jenkins as an affected library
for CVE-2021-22118 because jenkins includes the vulnerable version
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NVD

GitLab GitHub

Snyk

Veracode

{"configurations":{
"CVE_data_version": "4.0",
"nodes":[{

"cpe_match":[{"vulnerable": true,
"cpe23Uri":"cpe:2.3:a:vmware:spring_framework:*:*:*:*:*:*:*:*"

,...},]},......}}

{"affected": [
{"package": {

"ecosystem": "Maven",
"name": "org.springframework:spring-core"
},……]

}

{
identifier: "CVE-2021-22118"
package_slug: "maven/org.springframework/spring-webflux"
title: "Improper Privilege Management" 
……

}

{
"languageType":"JAVA",
"coordinateType":"MAVEN",
"coordinate1":"org.springframework", 
"coordinate2":"spring-web",
……}

Figure 1: Affected Libraries and Their Ecosystems of CVE-

2021-22118 in Different Vulnerability Databases

{
"identifier" : "CVE-2017-1000163"
"package_slug" : "npm/phoenix"
"title" : "URL Redirection to Untrusted Site (Open Redirect)"
……

}
GitLab

"affected": [
{

"package": {
"ecosystem": "Hex",
"name": "phoenix"

}……}]
GitHub

Figure 2: Affected Libraries and Their Ecosystems of CVE-

2017-1000163 in GitLab and GitHub Advisory

of spring-web in the OpenShift Container Platform of Red Hat [52].
On the other hand, vulnerability databases can report incorrect af-
fected libraries. For example, GitHub reports spring-core as an af-
fected library. However, after investigation, we confirm that spring-
core does not transitively depend on spring-web, and also does
not share similar vulnerable code fragment [14, 15]. Therefore, we
reported this issue to GitHub, and GitHub fixed it [18].

Quality Issues about Ecosystems. Fig. 2 shows part of the vul-
nerability information of CVE-2017-1000163 in GitLab and GitHub
advisory. GitLab identifies phoenix in the NPM ecosystem as the
affected library, while GitHub identifies phoenix in the Hex ecosys-
tem as the affected library. Actually, CVE-2017-1000163 affects the
phoenix library in both ecosystems. Unfortunately, both GitLab and
GitHub fail to provide the complete ecosystem information.

These examples raise concerns about the quality of vulnerability
databases, and motivate us to systematically assess it (see Sec. 3).

3 EMPIRICAL STUDY

We conduct an empirical study to assess the quality of vulnerability
databases by answering the following two research questions.
• RQ1 Consistency Assessment: How is the consistency in af-
fected libraries and their ecosystems of the same vulnerabilities
across different vulnerability databases?

• RQ2 Accuracy Assessment: How is the accuracy in affected li-
braries and their ecosystems in different vulnerability databases?

3.1 Study Design

Vulnerability Database Selection. We selected vendors that pro-
vided SCA tools and publicly available vulnerability databases from
the list of vendors reviewed byGartner [16]. These vendors included
Veracode [51], Snyk [46], Mend.io [34], GitHub [17] and GitLab [19].

As Mend.io did not provide affected libraries as the required field,
we selected the vulnerability databases of the other four vendors.
Then, we crawled these four vulnerability databases, which took
three months. In total, we obtained 184,981, 11,343, 24,038 and
28,034 vulnerabilities from GitHub, GitLab, Veracode and Snyk. As
GitHub also contained unreviewed vulnerabilities in closed source
software, its size was much larger than GitLab, Veracode and Snyk
which only contained vulnerabilities in open source software. For
the ease of presentation, we referred to GitHub, GitLab, Veracode
and Snyk as 𝑉𝐷𝐴 , 𝑉𝐷𝐵 , 𝑉𝐷𝐶 and 𝑉𝐷𝐷 , respectively.

Vulnerability Selection. As vulnerability databases did not
provide affected libraries or their ecosystems for some vulnerabil-
ities, we removed such vulnerabilities for the ease of assessment.
This resulted in 8,190, 11,343, 24,034 and 28,034 vulnerabilities in
𝑉𝐷𝐴 ,𝑉𝐷𝐵 ,𝑉𝐷𝐶 and𝑉𝐷𝐷 , respectively. To enable a pairwise com-
parison in RQ1, for each of the vulnerabilities from these four
vulnerability databases, we only kept it if it was included in at least
two of the four vulnerability databases. As a result, we obtained
18,633 vulnerabilities.

Consistency Assessment (RQ1) Setup. We conducted a pair-
wise comparison of the four vulnerability databases with respect
to the two fields, i.e., affected libraries and their ecosystems. As
showed in Sec. 2, vulnerability databases had different schema for
the two fields. Therefore, to enable a fair pairwise comparison, we
first extracted these two fields for each vulnerability from the four
vulnerability databases according to their schema, and then aligned
them to a unified schema of affected library names and ecosystem
names. Using such unified vulnerability data, we first measured the
consistency in ecosystems for each pair of vulnerability databases.
Then, we measured the consistency in affected libraries using only
the vulnerabilities where the pair of vulnerability databases shared
the same ecosystem.

As there could be multiple affected libraries and ecosystems for a
vulnerability, we adopted topological relations [13] to represent con-
sistency and inconsistency between a pair of vulnerability databases
⟨𝑉𝐷𝑥 ,𝑉𝐷𝑦⟩. Given a vulnerability whose ecosystems (resp. af-
fected libraries) were respectively 𝐸𝑥 and 𝐸𝑦 (resp. 𝐿𝑥 and 𝐿𝑦 ) in
𝑉𝐷𝑥 and 𝑉𝐷𝑦 , we defined the topological relations as follows.

• Equal. The vulnerability has equal ecosystems (resp. affected li-
braries) in 𝑉𝐷𝑥 and 𝑉𝐷𝑦 , i.e., 𝐸𝑥 = 𝐸𝑦 (resp. 𝐿𝑥 = 𝐿𝑦 ).

• Disjoint. The vulnerability has disjoint ecosystems (resp. affected
libraries) in 𝑉𝐷𝑥 and 𝑉𝐷𝑦 , i.e., 𝐸𝑥 ∩ 𝐸𝑦 = ∅ (resp. 𝐿𝑥 ∩ 𝐿𝑦 = ∅).

• Contain. The ecosystems (resp. affected libraries) of the vulnera-
bility in 𝑉𝐷𝑥 contain the ecosystems (resp. affected libraries) of
the vulnerability in 𝑉𝐷𝑦 , i.e., 𝐸𝑦 ⊆ 𝐸𝑥 (resp. 𝐿𝑦 ⊆ 𝐿𝑥 ).

• Contained. The ecosystems (resp. affected libraries) of the vulner-
ability in 𝐷𝐵𝑦 contain the ecosystems (resp. affected libraries) of
the vulnerability in 𝐷𝐵𝑥 , i.e., 𝐸𝑥 ⊆ 𝐸𝑦 (resp. 𝐿𝑥 ⊆ 𝐿𝑦 ).

• Overlap. The vulnerability has overlap ecosystems (resp. affected
libraries) in 𝑉𝐷𝑥 and 𝑉𝐷𝑦 , i.e., 𝐸𝑥 ∩ 𝐸𝑦 ≠ ∅ ∧ 𝐸𝑥 − 𝐸𝑦 ≠ ∅ ∧
𝐸𝑦 − 𝐸𝑥 ≠ ∅ (resp. 𝐿𝑥 ∩ 𝐿𝑦 = ∅ ∧ 𝐿𝑥 − 𝐿𝑦 ≠ ∅ ∧ 𝐿𝑦 − 𝐿𝑥 ≠ ∅).

Accuracy Assessment (RQ2) Setup. To assess the accuracy in
affected libraries and their ecosystems for each vulnerability data-
base, we need to construct a ground truth dataset of vulnerabilities.
To this end, we first randomly sampled 15% of the 18,633 vulnerabil-
ities, i.e., 2,795 vulnerabilities. Then, two of the authors manually
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Table 1: Consistency Results of Ecosystem

Relation ⟨𝑉𝐷𝐴 ,
𝑉𝐷𝐵 ⟩

⟨𝑉𝐷𝐴 ,
𝑉𝐷𝐶 ⟩

⟨𝑉𝐷𝐴 ,
𝑉𝐷𝐷 ⟩

⟨𝑉𝐷𝐵 ,
𝑉𝐷𝐶 ⟩

⟨𝑉𝐷𝐵 ,
𝑉𝐷𝐷 ⟩

⟨𝑉𝐷𝐶 ,
𝑉𝐷𝐷 ⟩ Total

Equal 7,135
(98.2%)

3,713
(70.9%)

1,405
(63.2%)

4,622
(70.3%)

1,370
(50.3%)

972
(8.7%) 8,577

Disjoint 25
(0.3%)

263
(5.0%)

658
(29.6%)

579
(8.8%)

1,189
(43.6%)

10,025
(89.3%) 10,751

Contain 0
(0.0%)

7
(0.1%)

2
(0.1%)

42
(0.6%)

9
(0.3%)

141
(1.3%) 188

Contained 107
(1.5%)

1,253
(23.9%)

159
(7.1%)

1,285
(19.6%)

150
(5.5%)

50
(0.4%) 1,572

Overlap 0
(0.0%)

1
(0.0%)

0
(0.0%)

43
(0.7%)

8
(0.3%)

31
(0.3%) 74

Total 7,267 5,237 2,224 6,571 2,726 11,219 18,633

identified the affected libraries and their ecosystems for these vul-
nerabilities by confirming whether the affected libraries and their
ecosystems reported in the four vulnerability databases were cor-
rect and whether any affected libraries and their ecosystems were
missed. The specific labeling process is illustrated as follows.

• Step 1: Collecting package names from NVD’s description, reposi-
tory or package registry URLs fromNVD’s reference, and product
names from NVD’s CPE.

• Step 2: Filtering deleted vulnerabilities marked as “REJECT” on
NVD and deleted libraries whose URLs for repositories or pack-
ages are unreachable (e.g., unpublished due to maliciousness).

• Step 3: Searching repositories on GitHub and official websites.
• Step 4: Labeling ecosystems via identifying package registries
and key elements from repository Readme or product guides, e.g.,
setup commands (e.g., apt install), example snippet, etc.

• Step 5: Collecting patch commits from NVD’s reference, patch
commits in issue reports of NVD’s reference, and patch commits
whose commit message contains the CVE identifier in searched
repositories in Step 1&3. Verifying the correctness of patch com-
mits by confirming patched project and patch commits with
description and NVD’s CWE (e.g., the code is patched on an
infinite loop which will lead to a DoS attack).

• Step 6: Labeling affected libraries. If the patch commits are col-
lected, we identify library declaration files (e.g., Maven’s POM
file) from the paths of patched files. Otherwise, we obtain vul-
nerable versions and patched versions, and obtain code-level
differences in repositories found in Step 1&3. In that way, the
affected library is concluded by confirming the repository from
existence of vulnerable elements in code differences.

Finally, we built a ground truth dataset of 696 vulnerabilities. It in-
cluded 183, 250, 184 and 79 vulnerabilities from Maven, NPM, PyPI
and Go, respectively. We used Cohen’s Kappa coefficient to measure
agreement, and it reached 0.952 for inspecting affected libraries
and 0.986 for inspecting ecosystems. A third author was involved
to solve disagreement. Our labeling process took 400 man-hours.

We used precision and recall as the indicators of accuracy. Specif-
ically, given a vulnerability whose affected libraries are 𝐿 in a vul-
nerability database and whose ground truth is 𝐿𝐺𝑇 , we respectively
defined the precision and recall in affected libraries for this vulnera-
bility as |𝐿∩𝐿𝐺𝑇 |/|𝐿 | and |𝐿∩𝐿𝐺𝑇 |/|𝐿𝐺𝑇 |. The precision and recall
in ecosystems can be defined in the same way. Then, the precision
and recall for the vulnerability database is the average precision and
recall over all the vulnerabilities in the vulnerability database.

Table 2: Consistency Results of Affected Library

Relation ⟨𝑉𝐷𝐴 ,
𝑉𝐷𝐵 ⟩

⟨𝑉𝐷𝐴 ,
𝑉𝐷𝐶 ⟩

⟨𝑉𝐷𝐴 ,
𝑉𝐷𝐷 ⟩

⟨𝑉𝐷𝐵 ,
𝑉𝐷𝐶 ⟩

⟨𝑉𝐷𝐵 ,
𝑉𝐷𝐷 ⟩

⟨𝑉𝐷𝐶 ,
𝑉𝐷𝐷 ⟩ Total

Equal 6,275
(87.9%)

2,503
(67.4%)

1,096
(78.0%)

2,988
(64.6%)

981
(71.6%)

671
(69.0%) 7,465

Disjoint 85
(1.2%)

692
(18.6%)

261
(18.6%)

651
(14.1%)

261
(19.1%)

210
(21.6%) 1,104

Contain 16
(0.2%)

89
(2.4%)

17
(1.2%)

391
(8.5%)

96
(7.0%)

27
(2.8%) 482

Contained 755
(10.6%)

287
(7.7%)

28
(2.0%)

412
(8.9%)

19
(1.4%)

26
(2.7%) 1,219

Overlap 4
(0.1%)

142
(3.8%)

3
(0.2%)

180
(3.9%)

13
(0.9%)

38
(3.9%) 207

Total 7,135 3,713 1,405 4,622 1,370 972 8,577

3.2 Consistency Assessment (RQ1)

Table 1 reports the consistency assessment results for each pair of
vulnerability databases with respect to ecosystems. The last row
lists the total number of vulnerabilities that are both included in the
two compared vulnerability databases. On the one hand, 39.7% of
the vulnerabilities have inconsistent ecosystems of affected libraries
in each vulnerability database pair, which is moderately large. The
largest inconsistency resides in ⟨𝑉𝐷𝐶 ,𝑉𝐷𝐷 ⟩, where 10,247 (91.3%)
of the 11,219 vulnerabilities have inconsistent ecosystems. On the
other hand, disjoint surprisingly accounts for the most common
inconsistency relation, which involves 10,751 (57.7%) of the 18,633
vulnerabilities across the six vulnerability database pairs, followed
by the contained relation which involves 1,572 vulnerabilities. On
average, 29.4% of the vulnerabilities have disjoint (totally different)
ecosystems in each vulnerability database pair.

Table 2 shows the consistency assessment results for each pair
of vulnerability databases with respect to affected libraries. The last
row gives the total number of vulnerabilities whose ecosystems
are equal in the two compared vulnerability databases. On the one
hand, a moderately large proportion (i.e., 26.9%) of the vulnera-
bilities have inconsistent affected libraries in each vulnerability
database pair. The largest inconsistency resides in ⟨𝑉𝐷𝐵,𝑉𝐷𝐶 ⟩,
where 1,634 (35.4%) of the 4,622 vulnerabilities have inconsistent
affected libraries. On the other hand, contained and disjoint account
for the most common inconsistency relations, respectively involv-
ing 1,219 (14.2%) and 1,104 (12.9%) of the 8,577 vulnerabilities across
the six vulnerability database pairs. On average, 15.5% of the vul-
nerabilities have disjoint (totally different) affected libraries in each
vulnerability database pair.

Summary: A moderate proportion of vulnerabilities (i.e., re-
spectively 39.7% and 26.9%) incur inconsistent ecosystems
and affected libraries in each pair of vulnerability databases.
disjoint accounts for the most common inconsistency relation;
i.e., 29.4% and 15.5% of the vulnerabilities have totally different
ecosystems and affected libraries in each pair of vulnerability
databases. These results indicate the severity of inconsistency
issues across vulnerability databases.

3.3 Accuracy Assessment (RQ2)

Table 3 presents the accuracy assessment results for each vulnera-
bility database with respect to ecosystems (E.) and affected libraries
(L.).We also separately report the results for the four covered ecosys-
tems in our ground truth dataset. The number of vulnerabilities (#V.)



Identifying Affected Libraries and Their Ecosystems for Open Source Software Vulnerabilities ICSE ’24, April 14–20, 2024, Lisbon, Portugal

Table 3: Accuracy Results of Ecosystem and Affected Library (V. = Vulnerability, Met. = Metric, E. = Ecosystem, L. = Library)

Group 𝑉𝐷𝐴 𝑉𝐷𝐵 𝑉𝐷𝐶 𝑉𝐷𝐷

#V. Met. E. L. E.+L. #V. Met. E. L. E.+L. #V. Met. E. L. E.+L. #V. Met. E. L. E.+L.

Maven 168 Pre. 0.994 0.631 0.631 169 Pre. 0.985 0.636 0.636 144 Pre. 0.758 0.503 0.503 182 Pre. 0.666 0.459 0.449
Rec. 0.994 0.625 0.625 Rec. 0.994 0.722 0.722 Rec. 0.903 0.766 0.766 Rec. 0.995 0.845 0.845

NPM 240 Pre. 0.996 0.981 0.981 246 Pre. 0.978 0.957 0.954 228 Pre. 0.786 0.791 0.747 247 Pre. 0.756 0.719 0.712
Rec. 1.000 0.992 0.992 Rec. 0.996 0.988 0.988 Rec. 0.987 0.978 0.974 Rec. 0.996 0.988 0.988

PyPI 157 Pre. 1.000 0.969 0.969 178 Pre. 0.997 0.967 0.967 127 Pre. 0.808 0.583 0.569 184 Pre. 0.511 0.583 0.464
Rec. 1.000 0.981 0.981 Rec. 1.000 0.994 0.994 Rec. 0.969 0.843 0.835 Rec. 0.978 0.989 0.973

Go 61 Pre. 1.000 0.885 0.885 72 Pre. 1.000 0.866 0.866 70 Pre. 0.875 0.649 0.649 78 Pre. 0.643 0.514 0.505
Rec. 1.000 0.885 0.885 Rec. 1.000 0.889 0.889 Rec. 0.971 0.743 0.743 Rec. 0.949 0.885 0.885

Total 626 Pre. 0.997 0.875 0.875 665 Pre. 0.987 0.868 0.867 569 Pre. 0.795 0.654 0.634 691 Pre. 0.654 0.591 0.553
Rec. 0.998 0.880 0.880 Rec. 0.997 0.911 0.911 Rec. 0.960 0.865 0.862 Rec. 0.986 0.939 0.935

because some vulnerabilities are not included in the other vulnera-
bility databases. In terms of accuracy in providing correct ecosys-
tems of affected libraries (E.), none of the vulnerability databases
achieve a perfect accuracy. The lowest precision is observed in𝑉𝐷𝐷

(i.e., 0.654), while the lowest recall is found in𝑉𝐷𝐶 (i.e., 0.960). Three
of the four vulnerability databases achieve the lowest precision and
recall for the vulnerabilities in the Maven ecosystem.

In terms of accuracy in providing correct affected libraries (L.), the
accuracy is relatively lower than that of affected libraries’ ecosys-
tems.𝑉𝐷𝐷 shows the lowest precision (i.e, 0.591), followed by𝑉𝐷𝐶

(i.e, 0.654). At the same time,𝑉𝐷𝐶 exhibits the lowest recall of 0.865.
Besides, all the four vulnerability databases achieve the lowest pre-
cision and recall for the vulnerabilities in the Maven ecosystem, i.e.,
0.631 and 0.625 in 𝑉𝐷𝐴 , 0.636 and 0.722 in 𝑉𝐷𝐵 , 0.503 and 0.766 in
𝑉𝐷𝐶 , and 0.459 and 0.845 in 𝑉𝐷𝐷 .

Moreover, the accuracy regarding both affected libraries and their
ecosystems (E.+L.) remains relatively consistent to the accuracy con-
cerning only the affected libraries (L.). The lowest precision is found
in 𝑉𝐷𝐷 (i.e., 0.553), caused by inaccuracies in both ecosystems (i.e.,
0.654) and affected libraries (i.e., 0.591). The lowest recall occurs in
𝑉𝐷𝐶 (i.e., 0.862), caused by inaccuracies in both ecosystems (i.e.,
0.960) and affected libraries (i.e., 0.865).

Summary: The precision in affected libraries and their ecosys-
tems ranges from 0.591 to 0.875 and 0.654 to 0.997, respectively,
and the recall ranges from 0.865 to 0.939 and 0.960 to 0.998, re-
spectively.The four vulnerability databases achieve the lowest
accuracy for vulnerabilities in Maven. These results indicate
the severity of accuracy issues across vulnerability databases.

4 APPROACH

To improve the quality of vulnerability databases, we proposeHolmes.
It takes a CVE identifier as an input, and returns its affected libraries
and their ecosystems. Fig. 3 shows an overview of Holmes, includ-
ing evidence gathering, relevance calculation, and library ranking.

4.1 Evidence Gathering

Vulnerability disclosure process results scattered evidences about
vulnerable libraries across multiple sources. Here, we utilize two
sources, i.e., NVD, where vulnerability description, CPE configura-
tions, and references of a vulnerability can be obtained, and GitHub,
where code repository of the affected libraries can be obtained. We
summarize six types of evidences that can potentially pinpoint the
affected libraries and their ecosystems of a vulnerability.

• Vendor and Product Name (vpn): Vendor names and product
names from CPE configurations may directly reveal the affected
libraries or hint the belonging product of the affected libraries.

• Product Version (ver): Semantic versions of products from CPE
configurations can narrow down the scope of affected libraries
as a product and its libraries usually share the same version.

• Library Coordinate (lc): Library coordinates from URLs of
package registries in references or configuration files of package
managers in code repository can pinpoint the affected libraries.

• File Path (fp): Paths of source code files mentioned in references
or involved in fixing commits in code repository can hint the
affected libraries that may contain these paths.

• Class Name (cn): Names of classes mentioned in references
or involved in fixing commits in code repository can hint the
affected libraries that may contain these classes.

• Language (lang): Language information from code repository
can indicate the potential ecosystems of affected libraries.

We use the following sub-steps to gather potential evidences.
Collecting CVE Raw Data. Given a CVE identifier, we request

its advisory in JSON format from NVD. We then parse the advisory
to extract the vulnerability description, CPE configurations, and
references. Then, we parse CPE configurations based on CPE speci-
fication to gather vpn and ver evidences. Next, we iterate URLs of
the references. If a URL points to a package registry (e.g., Maven
central repository) of the four ecosystems, we directly parse the
URL to gather lc evidence.

Otherwise, we crawl theweb page of the referenced URL, and pro-
cess referenced URLs in the crawled web page in the same way ex-
cept that we do not further process their referenced URLs to strike
a balance of enriching evidence source and avoiding evidence noise.
We distinguish web pages into two types, i.e., commit pages, de-
noted as𝑊𝑐 , and other online resource pages (reporting discussions
or resolutions about the vulnerability), denoted as𝑊𝑜 , by matching
the URL against a regular expression of commits.

Discarding Irrelevant Web Pages from𝑊𝑜 . The crawled web
pages, especially those of transitive references, may include some
irrelevant web pages, which may introduce noise in gathered evi-
dences. To this end, we use vpn to determine the relevance of each
page in𝑊𝑜 and discard irrelevant ones from𝑊𝑜 . Specifically, we first
apply tokenization to vpn. Then, for each page in𝑊𝑜 , we parse it into
a DOM (Document ObjectModel) tree using BeautifulSoup [30], and
check whether any of the tokens of vpn appear in text nodes of the
DOM tree. If not, we consider the page as irrelevant and discard it.

Pruning Distracting CVEs from𝑊𝑜 . The crawled web pages
may contain descriptions about other irrelevant CVEs (i.e., referred
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Figure 4: DOM Tree of Jenkins Security Advisory Page [28]

to as distracting CVEs). For example, the reference of CVE-2022-
30956 links to Jenkins Security Advisory page [28] which describes
all vulnerabilities in Jenkins. To avoid such noise, we need to prune
descriptions about distracting CVEs from the pages in𝑊𝑜 .

To tackle this, we prune nodes related to distracting CVEs from
the DOM tree of each page in𝑊𝑜 . Specifically, we first iterate each
node in the DOM tree to mark the node. If a node contains the
given CVE identifier, but does not contain more than two other
CVE identifiers, we mark it as relevant. This means there is a high
chance that the description in this node may mainly talk about
the given CVE identifier. If a node contains the given CVE iden-
tifier, but also contains more than two other CVE identifiers, we
mark it as distracting. This means there is a high chance that the
description in this node may not mainly talk about the given CVE
identifier. If a node only contains other CVE identifier, we also mark
it as distracting. If a node does not contain any CVE identifier, we
mark it as unknown.

After node marking, we start to prune distracting nodes. Specifi-
cally, for each distracting node, we prune it from its parent node in
the DOM tree, and continue to prune its sibling nodes in the right
position until we encounter a relevant node. For example, Fig. 4
shows part of the DOM tree of Jenkins Security Advisory page [28],
where the relevant, distracting and unknown nodes are highlighted
in green, red and white. Nodes 𝑑2 to 𝑑5 are pruned, nodes from 𝑑13
are pruned, and nodes 𝑑6 to 𝑑12 are kept. 𝑑5 is actually relevant but
is pruned, while 𝑑12 is actually distracting but is kept. This is the
price to ensure the generality of our pruning strategy.

Gathering Evidences from𝑊𝑜 . For each page in𝑊𝑜 , we lever-
age regular expression matching to gather evidences of file paths fp
and class names cn. For example, the string of file paths contains the
path separator “/”, and the string of class names follows camel case
naming convention. Besides, bug trackers or vendor advisories may
assign a bug identifier to a vulnerability. For example, as shown in
node 𝑑6 in Fig. 4, SECURITY-2600 is a bug identifier that is an alias

to CVE-2022-30956. Hence, for each page in𝑊𝑜 , we use a regular
expression to extract bug identifiers, which are used in next step.

Locating Code Repository and Fixing Commits. Code repos-
itory can provide valuable evidences about affected libraries. There-
fore, we first attempt to locate code repository related to the vulner-
ability. Specifically, we parse URLs of the commit pages in𝑊𝑐 to ex-
tract repository names. To further validate them, we compare each
repository name 𝑟 with each vendor and product name 𝑣𝑝 in vpn
using word-level Levenshtein distance. For the repository with the
least Levenshtein distance 𝑒𝑑 , only if 𝑒𝑑 is less than 70% of the maxi-
mum word length of 𝑟 and 𝑣𝑝 , we regard it as a potential repository.
In case there is no such a match or𝑊𝑐 is empty, we query GitHub us-
ing each vendor and product name in vpn to obtain a list of returned
repositories, and choose one returned repository with the least Lev-
enshtein distance in the same way above.

If a code repository can be located, for each commit page in𝑊𝑐 , if
it does not belong to the located code repository, we discard it
from𝑊𝑐 . Further, we iterate all the commits in the located code
repository, and identify commits whose commit message contains
the given CVE identifier or its corresponding bug identifiers. We
regard these as fixing commits that potentially fix the vulnerability,
and we crawl their web pages and add them into𝑊𝑐 . Moreover, we
gather language evidence 𝑙𝑎𝑛𝑔 from the located code repository by
extracting composing languages and their percentages.

Gathering Evidences from𝑊𝑐 . For each commit page in𝑊𝑐 , we
use the same regular expression matching to gather evidences of
file paths fp and class names cn as in gathering evidences from
𝑊𝑜 . In addition, for each changed file in each commit page, we
locate the package manager’s configuration file that is closest to the
changed file in the file directory. Here, we target configuration files
of Maven, NPM, PyPI and Go via matching file names (i.e., pom.xml,
package.json, setup.py and go.mod). Then, we parse configuration
files to gather library coordinate evidence lc.

4.2 Relevance Calculation

We generate indexes for our library pool to facilitate searching, and
calculate the relevance of each library to our gathered evidences.

Indexing Library Pool.We prepare our library pool to facilitate
relevance calculation and library ranking, which is a one-time job.
Specifically, we first crawl library names and artifacts from Maven
central repository, NPM, PyPI and Go packages. In total, our pool
contains 4.0 million libraries with 54.7 million library versions.

Then, for each library, we prepare four documents that respec-
tively store library names, all library version numbers, all file paths,
and all class names. In detail, to prepare the library name document,
we first split the library name into tokens based on punctuation such
as period (“.”), hyphen (“-”) and underscore (“_”) as well as camel case
naming convention. Then, we remove duplicated tokens as duplica-
tion does not convey the importance of this token in our scenario;
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we remove suffix digits that are often irrelevant to the library name
but may reduce the relevance to our evidences; and we remove com-
monly used domain names such as “org”, “edu” and “com” that may
also reduce the relevance to our evidences. Finally, we convert all
tokens to lowercase, and store them to the library name document.

To prepare the library version document, we extract the version
numbers of all versions of the library, leverage packaging [5] to con-
vert these version numbers into the same format, and store them
to the library version document. To prepare the file path docu-
ment, we unzip the artifacts of all library versions, obtain the path
of each file, and store non-duplicated file paths to the file path
document. To prepare the class name document, we parse the code
files of all library versions using tree-sitter [50], obtain class names
from each code file, and store non-duplicated class names to the
class name document.

Finally, after analyzing all libraries, we obtain four collections of
the above four kinds of documents, respectively denoted as 𝐿𝑙𝑛 , 𝐿𝑣 ,
𝐿𝑓 𝑝 and 𝐿𝑐𝑛 . We leverage Lucene [2] to index our library pool.

Calculating Relevance Score. Using our library pool, we calcu-
late the relevance of each library to our gathered evidences. On the
one hand, for evidences vpn, ver, fp and cn, we use them to construct
queries to our Lucene backend. Specifically, for vpn, we prepare the
query by applying the same processing steps to vpn as in preparing
the library name document, and perform the query search over 𝐿𝑙𝑛 .
For ver, we prepare the query by formatting 𝑣𝑒𝑟 by the same format
in preparing the library version document, and perform the query
search over 𝐿𝑣 . For fp and cn, we directly use them as the query, and
perform query search over 𝐿𝑓 𝑝 and 𝐿𝑐𝑛 , respectively.

For each query search, our Lucene backend returns the relevance
scores of all libraries in our pool to one of our evidences, denoted
as a 𝑁 × 1 vector, where 𝑁 is the number of libraries in our pool,
and the value of the 𝑖𝑡ℎ cell corresponds to the relevance score of
the 𝑖𝑡ℎ library computed by BM25 [43]. In particular, the relevance
score between a query 𝑞 and a document 𝑙 (i.e., 𝑙 ∈ 𝐿𝑙𝑛 , 𝐿𝑣 , 𝐿𝑓 𝑝 or
𝐿𝑐𝑛 depending on the query 𝑞) is calculated by Eq. 1,

𝑠𝑐𝑜𝑟𝑒 (𝑞, 𝑙) =
𝑛∑︁
𝑖=1

𝐼𝐷𝐹 (𝑞𝑖 ) ·
𝑓 (𝑞𝑖 , 𝑙) · (𝑘1 + 1)

𝑓 (𝑞𝑖 , 𝑙) + 𝑘1 · (1 − 𝑏 + 𝑏 · |𝑙 |
𝑎𝑣𝑔𝑑𝑙

)
(1)

where 𝑞𝑖 denotes each individual token in 𝑞; 𝐼𝐷𝐹 (𝑞𝑖 ) denotes the
inverse document frequency weight of 𝑞𝑖 ; |𝑙 | denotes the number
of tokens in 𝑙 ; avgdl denotes the average number of tokens in each
document of the document collection; and 𝑘1 and 𝑏 denotes free
parameters, which are set to default value 1.2 and 0.75, respectively.

In the original implementation of BM25, 𝑓 (𝑞𝑖 , 𝑙) denotes the num-
ber of times 𝑞𝑖 occurs in 𝑙 , because BM25 was initially designed for
searching in long documents, considering token occurrences and
document length for relevance computation. However, in our sce-
nario, the frequency of a token plays a less significant role. To
address this issue, we modify BM25 by deactivating the impor-
tance counting based on token frequency. Instead, we use a gating
function in Eq. 2, i.e., setting 𝑓 (𝑞𝑖 , 𝑙) to 1 if 𝑞𝑖 occurs in 𝑙 .

𝑓 (𝑞𝑖 , 𝑙) =
{
1, if 𝑞𝑖 occurs in 𝑙
0, otherwise

(2)

On the other hand, for evidence lc, we create a 𝑁 ×1 vector of ze-
ros. For each library name in lc, we locate its position 𝑖 in the vector,
and set the value of the 𝑖𝑡ℎ cell to 1. In other words, due to the high

confidence of this evidence, we directly use it to locate the potential
affected libraries. For evidence lang, we also create a 𝑁 ×1 vector of
zeros. For each composing language in lang, we locate the positions
of all the libraries within this language ecosystem in the vector, and
set their cell value to the percentage of this composing language.

Finally, we obtain a relevance matrix 𝑋 whose size is 𝑁 × 6 by
merging the six 𝑁 × 1 vectors generated from each evidence.

4.3 Library Ranking

Based on the relevance matrix, we need to rank our pool of libraries.
To this end, we leverage LambdaMART [6], one of the most popular
and effective learning-to-rank algorithms. In offline training, we
construct a training dataset of vulnerabilities. For each vulnerability,
we compute its relevancematrix𝑋 , and prepare its𝑁×1 label vector
𝑌 by assigning “1” to the cells that correspond to the ground truth
of affected libraries and ecosystems and “0” to the others. Given
such ⟨𝑋,𝑌 ⟩ pairs, we use LambdaMART to train a ranking model.
In online prediction, for a vulnerability, we compute its relevance
matrix 𝑋 , and use the ranking model to predict 𝑌 . From 𝑌 , we use
the top 𝑘 ranked libraries and their corresponding ecosystems as
the affected libraries and ecosystems.

5 EVALUATION

We design the following five research questions to evaluateHolmes.
We run the experiments on a machine with an Intel Core i7 CPU, a
NVIDIA GeForce RTX 2080Ti GPU, 256 GB memory.
• RQ3 Effectiveness Evaluation: What is the effectiveness of
Holmes in finding affected libraries and ecosystems?

• RQ4 Ablation Study: What is the contribution of each type of
evidences to the achieved effectiveness of Holmes?

• RQ5 Efficiency Evaluation: What is the time overhead of
Holmes in finding affected libraries and ecosystems?

• RQ6 Generality Evaluation:What is the generality of Holmes
to vulnerabilities beyond our ground truth dataset?

• RQ7 Usefulness Evaluation:What is the usefulness of Holmes
in real-world practice?

5.1 Evaluation Setup

RQ3 Setup.We compare Holmes to three state-of-the-art methods,
i.e., Chronos [33], LightXML [24] and FastXML [8]. We consider
two usage scenarios. The first is random-order (RO) scenario, where
training and testing datasets are randomly split. LightXML and
FastXML are designed for this scenario. The second is chronological-
order (CO) scenario, where training and testing datasets are chrono-
logically split. It trains the model on chronologically older vulner-
abilities while testing the model on chronologically newer ones.
Chronos is designed for this scenario. In both scenarios, we split
our ground truth (see Sec. 3) into training and testing datasets by
9:1. For the RO scenario, we employ 10-fold cross-validation.

RQ4, RQ5 and RQ6 Setup. For RQ4, we first create six ab-
lated versions of Holmes by removing each of the six types of evi-
dences from Holmes, and then measure the effectiveness changes
of Holmes in both RO and CO scenarios with the same setup in
RQ3. For RQ5, we measure the average time taken by Holmes and
three state-of-the-art methods for training and predicting. For RQ6,
we randomly pick another 464 vulnerabilities which at least exist
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Table 4: Results of Our Effectiveness Evaluation Compared to the State-of-the-Art

Group Top 𝑘
Random-Order (RO) Scenario Chronological-Order (CO) Scenario

Holmes Chronos LightXML FastXML Holmes Chronos LightXML FastXML

mAP𝐸. mAP𝐿. mAP𝐸.+𝐿. mAP𝐿. mAP𝐿. mAP𝐿. mAP𝐸. mAP𝐿. mAP𝐸.+𝐿. mAP𝐿. mAP𝐿. mAP𝐿.

Maven
1 0.870 0.677 0.677 0.616 0.175 0.219 1 0.824 0.824 0.615 0.000 0.000
2 0.935 0.718 0.718 0.678 0.197 0.240 1 0.853 0.853 0.712 0.029 0.000
3 0.945 0.737 0.737 0.698 0.197 0.242 1 0.873 0.873 0.750 0.049 0.000

NPM
1 0.982 0.920 0.920 0.671 0.044 0.080 1 1 1 0.417 0.133 0.000
2 0.990 0.943 0.943 0.727 0.052 0.086 1 1 1 0.562 0.133 0.033
3 0.990 0.943 0.943 0.742 0.056 0.089 1 1 1 0.604 0.133 0.033

PyPI
1 0.989 0.962 0.957 0.686 0.543 0.565 1 1 1 0.500 0.565 0.522
2 0.992 0.970 0.967 0.750 0.552 0.573 1 1 1 0.583 0.565 0.522
3 0.992 0.972 0.969 0.755 0.555 0.575 1 1 1 0.583 0.565 0.522

Go
1 0.886 0.810 0.810 0.689 0.177 0.228 0.800 0.733 0.733 0.636 0.000 0.133
2 0.918 0.816 0.816 0.733 0.203 0.272 0.867 0.733 0.733 0.773 0.033 0.133
3 0.918 0.816 0.816 0.748 0.211 0.281 0.867 0.733 0.733 0.773 0.033 0.133

Total
1 0.944 0.855 0.853 0.657 0.226 0.261 0.957 0.900 0.900 0.553 0.214 0.200
2 0.968 0.877 0.876 0.715 0.239 0.277 0.971 0.907 0.907 0.651 0.229 0.207
3 0.970 0.882 0.881 0.730 0.243 0.279 0.971 0.912 0.912 0.678 0.233 0.207

in one of the four vulnerability databases, establish their ground
truth in the same way as in Sec. 3, and feed them to the models
trained in RQ3 for Holmes and the state-of-the-arts to measure
their effectiveness.

RQ7 Setup. On the one hand, We design a user study with 20
participants who are required to find affected libraries and their
ecosystems for 12 CVEs with the help of Holmes, with the help of
Chronos, and without the help of any tools. We recruit 20 par-
ticipants from security laboratories in multiple universities. They
are Postdocs, PhD students and master researchers having at least
two years’ experience in software security. We randomly select 12
CVEs from our ground truth dataset as tasks. To have a fair compar-
ison, we divide participants into four groups to apply a crossover
study [56]. We measure the effectiveness achieved and time taken
by participants. On the other hand, we select from our ground
truth datasets in RQ3 and RQ6 the CVEs whose affected libraries
or ecosystems are not correctly labeled in the four vulnerability
databases but Holmes correctly identifies them in its top-3 ranking
results. We report them to the four vendors via issues or emails to
obtain their feedback.

EffectivenessMetric.Weadoptmean average precision at𝑘 (i.e.,
mAP@𝑘) [32, 57], a widely used metric for ranking evaluation, to
measure the effectiveness of Holmes and state-of-the-arts in RQ3,
RQ4 andRQ6. Besides, we use precision and recall defined in Sec. 3
to measure the effectiveness achieved by participants in RQ7.

5.2 Effectiveness Evaluation (RQ3)

Table 4 reports the results of our effectiveness evaluation by com-
paringHolmeswith the state-of-the-art approaches. In terms of the
effectiveness in predicting affected libraries correctly (i.e., mAP𝐿.),
Holmes achieves a mAP𝐿. of 0.855, 0.877 and 0.882 at the top 1,
2 and 3 results in the RO scenario, and a mAP𝐿. of 0.900, 0.907
and 0.912 at the top 1, 2 and 3 results in the CO scenario. Holmes
outperforms all the state-of-the-arts across all the four ecosystems
in both RO and CO scenarios. In particular, Chronos is the best of
the state-of-the-arts, and Holmes outperforms it by 30.1%, 22.7%
and 20.8% in mAP𝐿. at the top 1, 2 and 3 results in the RO scenario,
and by 62.7%, 39.3% and 34.5% in mAP𝐿. at the top 1, 2 and 3 results
in the CO scenario. Holmes outperforms LightXML and FastXML

by at least 216.1% in mAP𝐿. at the top 1, 2 and 3 results in both RO
and CO scenarios.

In terms of the effectiveness in predicting ecosystems correctly
(i.e., mAP𝐸.), Holmes achieves a mAP𝐸. of 0.944, 0.968 and 0.970
at the top 1, 2 and 3 results in the RO scenario, and a mAP𝐸. of
0.957, 0.971 and 0.971 at the top 1, 2 and 3 results in the CO sce-
nario. In terms of the effectiveness in predicting both ecosystems
and affected libraries correctly (i.e., mAP𝐸.+𝐿.), the mAP𝐸.+𝐿. of
Holmes is relatively consistent with its mAP𝐿. because we use
the corresponding ecosystems of our predicted affected libraries as
the predicted ecosystems. As the state-of-the-art approaches are
designed to only identify affected libraries, we are not able to report
their mAP𝐸. and mAP𝐸.+𝐿. .

We summarize four reasons of inaccuracies in Holmes. First,
CPE configurations could be totally different from the affected li-
brary names, leading to false positives and false negatives. Second,
fixing commits may contain changes to unaffected libraries, leading
to false positives. Third, some file paths and class names can be
shared by multiple libraries due to code reuse, leading to false posi-
tives. Fourth, the language information could be misleading when
the vulnerability locates in code written with low-percentage lan-
guages as we assign a high relevance to libraries in high-percentage
languages, leading to both false positives and false negatives.

Summary: Holmes outperforms all the state-of-the-art ap-
proaches across all the four ecosystems in both RO and CO
scenarios. Specifically, Holmes outperforms the best of the
state-of-the-arts in identifying affected libraries by 30.1% and
62.7% in mAP@1 in the RO and CO scenarios, respectively.
Overall, Holmes demonstrates its effectiveness in identifying
both affected libraries and their ecosystems for a vulnerability.

5.3 Ablation Study (RQ4)

Table 5 presents the results of our ablation study in the RO scenario.
We use mAP@1 with respect to ecosystems (E.), affected libraries
(L.), and both of them (E.+L.). Overall, removing any of the six
types of evidences from Holmes leads to a drop (↓) in mAP@1.
Occasionally, the ablated version of Holmes achieves an increase



Identifying Affected Libraries and Their Ecosystems for Open Source Software Vulnerabilities ICSE ’24, April 14–20, 2024, Lisbon, Portugal

Table 5: Results of Our Ablation Study

Removed
Evidence Group mAP𝐸. mAP𝐿. mAP𝐸.+𝐿.

vpn

Maven 0.922 (↑0.052) 0.651 (↓0.026) 0.651 (↓0.026)
NPM 0.958 (↓0.024) 0.744 (↓0.176) 0.740 (↓0.018)
PyPI 0.951 (↓0.035) 0.837 (↓0.125) 0.826 (↓0.131)
Go 0.759 (↓0.127) 0.696 (↓0.114) 0.696 (↓0.114)
Total 0.924 (↓0.020) 0.739 (↓0.116) 0.734 (↓0.119)

ver

Maven 0.792 (↓0.078) 0.631 (↓0.046) 0.631 (↓0.046)
NPM 0.978 (↓0.004) 0.860 (↓0.060) 0.856 (↓0.064)
PyPI 0.984 (↓0.005) 0.924 (↓0.038) 0.913 (↓0.044)
Go 0.911 (↑0.025) 0.785 (↓0.025) 0.785 (↓0.025)
Total 0.923 (↓0.021) 0.808 (↓0.047) 0.804 (↓0.049)

lc

Maven 0.856 (↓0.014) 0.526 (↓0.151) 0.526 (↓0.151)
NPM 0.982 (–) 0.894 (↓0.026) 0.894 (↓0.026)
PyPI 0.995 (↑0.006) 0.962 (–) 0.957 (–)
Go 0.873 (↓0.013) 0.342 (↓0.468) 0.342 (↓0.468)
Total 0.940 (↓0.004) 0.753 (↓0.102) 0.751 (↓0.102)

fp

Maven 0.867 (↓0.003) 0.613 (↓0.064) 0.613 (↓0.064)
NPM 0.982 (–) 0.912 (↓0.008) 0.912 (↓0.008)
PyPI 0.989 (–) 0.967 (↑0.005) 0.957 (–)
Go 0.886 (–) 0.785 (↓0.025) 0.785 (↓0.025)
Total 0.943 (↓0.001) 0.834 (↓0.021) 0.831 (↓0.022)

cn

Maven 0.859 (↓0.011) 0.625 (↓0.052) 0.625 (↓0.052)
NPM 0.986 (↑0.004) 0.916 (↓0.004) 0.916 (↓0.004)
PyPI 0.984 (↓0.005) 0.957 (↓0.005) 0.946 (↓0.011)
Go 0.886 (–) 0.797 (↓0.013) 0.797 (↓0.013)
Total 0.941 (↓0.003) 0.837 (↓0.018) 0.834 (↓0.019)

lang

Maven 0.777 (↓0.093) 0.642 (↓0.035) 0.642 (↓0.035)
NPM 0.946 (↓0.036) 0.912 (↓0.008) 0.892 (↓0.028)
PyPI 0.973 (↓0.016) 0.957 (↓0.005) 0.940 (↓0.017)
Go 0.734 (↓0.152) 0.709 (↓0.101) 0.709 (↓0.101)
Total 0.885 (↓0.059) 0.830 (↓0.025) 0.818 (↓0.035)

(↑) in mAP@1 only on the vulnerabilities in some ecosystems. The
average mAP@1 drop is 0.055 (i.e., 6.4%) when any of the evidences
is removed. The removal of vpn results in the most significant drop
in mAP@1 of 0.116 (i.e., 13.6%). Concerning mAP@1 in ecosystems
of the affected libraries, the average mAP@1 drop is 0.018 (i.e., 1.9%)
when any of the evidences is removed. The removal of lang leads to
the largest mAP@1 drop of 0.059 (i.e., 6.3%) among all the evidences.

Summary: Removing any of the six types of evidences from
Holmes causes the mAP@1 to drop by 6.4% and 1.9% with
respect to affected libraries and ecosystems respectively.

5.4 Efficiency Evaluation (RQ5)

Table 6 presents the results of our efficiency evaluation. Specifically,
Holmes takes a total of 3.6 hours to train a ranking model, while
Holmes consumes an average of 18.5 seconds to identify affected li-
braries and their ecosystems for a vulnerability. In terms of the time
overhead of each step, in the training phase, Holmes consumes 2.4
hours in the evidence gathering step, accounting for 66.7% of the to-
tal training time. In the predicting phase, Holmes also spends most
of the time in the evidence gathering step, taking 11.7 seconds on
average, which accounts for 63.2% of the total predicting time. We
also show the performance of FastXML, LightXML and Chronos.

Summary: It takes 3.6 hours for Holmes to train a ranking
model and 18.5 seconds to predict for a vulnerability.

Table 6: Results of Our Efficiency Evaluation (EG, RC and LR

Are the Three Steps of Holmes)

Holmes
FastXML LightXM

L Chronos
EG RC LR Total

Training 2.4h 1.1h 0.1h 3.6h 2.9h 4.4h 4.7h
Predicting 11.7s 6.0s 0.8s 18.5s 7.7s 27.1s 40.6s

Table 7: Results of Our Generality Evaluation

Group Top Holmes Chronos LightXML FastXML

𝑘 mAP𝐸. mAP𝐿. mAP𝐸.+𝐿. mAP𝐿. mAP𝐿. mAP𝐿.

Maven
1 0.933 0.658 0.658 0.233 0.199 0.158
2 0.946 0.675 0.675 0.242 0.284 0.163
3 0.949 0.678 0.678 0.247 0.295 0.163

NPM
1 0.985 0.904 0.892 0.117 0.029 0.035
2 0.994 0.909 0.904 0.135 0.029 0.038
3 0.994 0.913 0.907 0.136 0.031 0.038

PyPI
1 0.918 0.918 0.877 0.369 0.410 0.385
2 0.943 0.93 0.898 0.410 0.414 0.385
3 0.951 0.939 0.911 0.421 0.417 0.388

Go
1 0.892 0.716 0.716 0.235 0.265 0.069
2 0.892 0.716 0.716 0.235 0.265 0.069
3 0.899 0.729 0.729 0.248 0.278 0.075

Total
1 0.943 0.822 0.807 0.222 0.196 0.162
2 0.957 0.833 0.822 0.246 0.222 0.165
3 0.960 0.839 0.829 0.252 0.228 0.166

5.5 Generality Evaluation (RQ6)

Table 7 shows the results of our generality evaluation. The used 464
vulnerabilities include 120, 171, 122 and 51 vulnerabilities in Maven,
NPM, PyPI and Go, and have no overlap with the dataset in RQ3.
As they are randomly selected and thus are not in chronological
order with the training data in RQ3, we use the trained models in
the RO scenario in RQ3. In terms of the generality in predicting
affected libraries correctly (i.e., mAP𝐿.), Holmes achieves a mAP𝐿.
of 0.822, 0.833 and 0.839 at the top 1, 2 and 3 results, a slight drop
of 3.9%, 5.0% and 4.9% compared with the mAP𝐿. in RQ3. How-
ever, Chronos, LightXML and FastXML suffer a significant drop,
ranging from 6.2% to 66.2%. The reason is that the affected libraries
of 288 vulnerabilities in the dataset are not in the scope of the
label set of the dataset in RQ3. The three state-of-the-arts are con-
strained by this limited label set, while Holmes does not due to our
library pool. Thus, in this practical scenario, Holmes outperforms
Chronos, LightXML and FastXML by at least 233.0% in mAP𝐿. at
the top 1, 2 and 3 results. Furthermore, in terms of the generality in
predicting ecosystems correctly (i.e., mAP𝐸.) and predicting both
ecosystems and affected libraries correctly (i.e., mAP𝐸.+𝐿.), Holmes
achieves relatively consistent results with those in RQ3.

Summary: When used in practical scenario, Holmes outper-
forms the best of the state-of-the-arts in identifying affected
libraries by at least 233.0% in mAP at the top 1, 2 and 3 results.
Overall, Holmes demonstrates its generality in identifying
both affected libraries and their ecosystems for a vulnerability.

5.6 Usefulness Evaluation (RQ7)

User Study. Table 8 presents the results of our user study. With
the help of Holmes, participants finish the tasks with an average
time of 4.36 minutes for each CVE, an increase of 1.11 (34.2%) and
1.23 (39.3%) minutes compared to participants with the help of
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Table 8: Results of Our User Study

Group Time (min) Pre𝐸.+𝐿. Rec𝐸.+𝐿.
w/ Holmes 4.36 0.842 0.850
w/Chronos 3.25 0.650 0.683
w/o Tools 0.313 0.675 0.683

Chronos and without the help of any tools. In return, they respec-
tively achieve a 29.5% and 24.5% higher precision (i.e., Pre𝐸.+𝐿.) and
recall (i.e., Rec𝐸.+𝐿.) than participants with the help of Chronos
and a 24.7% and 24.5% higher precision and recall than partici-
pants without the help of any tools. This is reasonable because
Holmes predicts more affected libraries that would be missed by
participants, and thus participants spend more time in verifying
them while enhancing precision and recall. Both the increased time
consumption and the improved precision and recall are significant
for the 12 tasks.

Vendor Reporting. We report 81 and 40 incorrectly labeled
CVEs to Veracode and Snyk by sending emails, and 78 and 62 incor-
rectly labeled CVEs to GitHub and GitLab by submitting issues. At
the time of writing, Veracode and Synk have not replied yet, while
GitLab has replied and assigned three maintainers to review these
CVEs in their vulnerability database, and GitHub has fixed some of
them. Specifically, GitLab has fixed incorrect affected libraries for
48 CVEs based on our suggested ones, and refused to fix for one
CVE because the affected library versions have been deleted from
Maven central repository. The other 13 CVEs are still waiting for
review by GitLab. GitHub has fixed 62 CVEs based on our suggested
ones, refused to fix for two CVE, and the other 14 CVEs are still
waiting for review by GitLab. It is worth mentioning that GitLab is
also interested in the tool that helps find these issues.

Summary: Holmes helps participants to improve the pre-
cision and recall in identifying affected libraries and their
ecosystems by 24.7% and 24.5% at an additional time price of
1.23 minutes. Holmes helps to find quality issues in 62 and 78
CVEs from GitLab’s and GitHub’s vulnerability database. 48
and 62 of them have been fixed by GitLab and GitHub. The
results indicate the practical usefulness of Holmes.

6 DISCUSSION

Threats. One primary threat to our evaluation is the construction
of ground truth. First, the dataset is sampled from the scope of vul-
nerabilities included in at least two databases rather than from the
entire space of vulnerabilities, which can bring the sampling bias
to the evaluation. Consequently, the accuracy assessment may rep-
resent an estimated upper bound of actual accuracy because there
are excluded vulnerabilities in the wild. Second, the dataset is built
manually which may be exposed to human error. This threat is mit-
igated by involving three of the authors who follow an open coding
procedure to construct the ground truth. Third, the manual pro-
cess finds direct vulnerable libraries as the affected libraries to
build the ground truth, leading to a lower precision because transi-
tively/directly depending libraries are regarded as incorrect. The
precision of four vulnerability databases is measured on the direct
vulnerable libraries in the reported affected libraries, which may be
lower than the actual value where transitively/directly depending
libraries are considered in the ground truth. Fourth, the evaluated

results are threatened by the size of the dataset. We manage to build
a dataset with 1,160 vulnerabilities, taking 600 man-hours.

Another threat is that Holmes has empirically-set configurable
parameters, potentially affecting the generality of Holmes. To ad-
dress it, we perform a generality evaluation to investigate the robust-
ness of empirically-set configurable parameters on a new dataset,
which shows consistent results. Nevertheless, the effectiveness of
Holmes might vary for different parameter configurations.

Limitations. First, Holmes relies on a local library pool, which
may become outdated due to changes in library repositories. To mit-
igate this, we implement a pipeline to achieve incremental up-
date regularly to synchronize with the library repositories. Besides,
Holmes supports four ecosystems, and we plan to extend to in-
clude more ecosystems. Second, Holmes lacks explanation for the
predicted results. We plan to identify chain of evidences to further
help security teams to quickly confirm the results. Third, Holmes
identifies direct vulnerable libraries. We plan to integrate software
component analysis to support the detection of transitively/directly
depending libraries.

7 RELATEDWORK

Vulnerability disclosures contain unstructured, inconsistent and in-
complete information, impeding the practical usability for down-
stream users. In light of these limitations, we undertake a literature
review of approaches that address these drawbacks.

Unstructured Information. Some key aspects (e.g., affected
library names and versions) of vulnerabilities are provided in un-
structured natural language descriptions. While it is easy to manu-
ally comprehend them, it is not feasible to directly utilize them in
an automated pipeline (e.g., vulnerability propagation analysis). To
address this problem, several approaches have been proposed.

With respect to affected library names, Dong et al. [12] leverage
named entity recognition and relation extraction to recognize af-
fected library names. However, the recognized library names may
not in line with the library coordinates used in package managers.
To solve this issue, Chen et al. [8] use library coordinates as la-
bels, and employ extreme multi-label learning (XML) to identify
affected library names. As they use the labels of training data as
the label set, their approach fails to work on testing data whose
label is out of the scope of the label set. To mitigate this issue,
Lyu et al. [33] use zero-shot XML to identify previously unseen
library names (i.e., they do not appear in training data). They use
the labels of training and testing data as the label set. However,
their approach does not work in production because the practical
label set is too large to be pre-defined. Besides, Haryono et al. [24]
evaluate the effectiveness of different XML techniques on this af-
fected library name identification problem. In summary, the first
major shortcoming of these XML-based approaches is that they are
inevitably limited by the small label set, hindering their practical
usability, and they also fail to distinguish libraries with the same
name but from different ecosystems. To address this shortcoming,
we take a different perspective by feeding the entire label space of li-
brary pool to Holmes, making it “know” all libraries in the package
registries, and adopting learning-to-rank instead of classification
algorithms. The cost is to continuously update the library pool.
The second major shortcoming is that they use limited knowledge
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source to extract limited features. To address this shortcoming, we
additionally incorporate the source of knowledge in both direct and
indirect webpages from references and source code, apart from CVE
descriptions, CPE and text in URLs. We set the depth of crawler
to two so as to extract more valuable information that might miss
in the directly referenced URLs. We also extract valuable elements
(i.e., library names, all library version numbers, all file paths, and
all class names) to serve as diverse evidences. This motivates the
design of our evidence gathering and relevance calculation.

With respect to affected library versions, Nguyen et al. [38] re-
veal a significant error rate of affected library versions of Chrome
vulnerabilities. Static analysis [3, 11, 25, 37, 45] and dynamic analy-
sis [10] are often employed to precisely determine affected library
versions. Besides, several approaches have been proposed to au-
tomatically extract vulnerability concepts (i.e., root cause, attack
vector, and impact) [61], assign Part-of-Speech (POS) tags [62], and
extract vulnerability events (i.e., cause, attacker, consequence, op-
eration, location and version) [55] from vulnerability descriptions.
Our work differs from them in identifying affected library names.

Inconsistent Information. Vulnerability disclosures from mul-
tiple sources contain inconsistent information which conflicts with
each other. Dong et al. [12] quantify the inconsistency in affected
library versions between NVD and CVE databases at a massive
scale. Jo et al. [29] identify semantic inconsistencies within the
cybersecurity domain. Anwar et al. [1] reveal inconsistencies in
standardized non-free-form fields, i.e., publication date, CWE class,
CVSS rating and affected CPE, in NVD database. Roland et al. [9]
report inconsistencies in software vulnerability severity across mul-
tiple data sources. To the best of our knowledge, our work is the
first to measure the inconsistency in affected library names and
ecosystems.

Incomplete Information. Vulnerability disclosures contain in-
complete fields. Mu et al.[36] uncover the prevalence of missing re-
production information in vulnerability reports; and Chaparro et
al. [7] propose an automated approach to detect the absence of repro-
duction steps and expected behavior in vulnerability descriptions.
Han et al. [23] and Gong et al. [20] adopt machine learning to pre-
dict the missed CVSS score. Tan et al. [49], Xu et al. [59], and Wang
et al. [53] identify vulnerability patches, which are often missing in
most of the vulnerability disclosures. Guo et al. [21, 22] first quan-
tify howmany CVEs miss the key aspects of vulnerability type, root
cause, attack vector and attacker type in vulnerability descriptions,
and propose a neural-network-based approach to augment these
missing aspects. Bozorgi et al. [4], Sabottke et al. [44] and Suciu et
al. [47] predict the exploitability of vulnerabilities, which is often
an optional field in vulnerability databases. Pan et al. [40] predict
vulnerability type by hierarchical multi-label classification. They fo-
cus on augmenting missing information, but affected library names
are not missing but hidden in vulnerability descriptions.

8 CONCLUSIONS

In this paper, we first conduct an empirical study to assess the qual-
ity of affected libraries and their ecosystems in four vulnerability
databases. Then, we propose Holmes, an automated tool for identi-
fying affected libraries and their ecosystems with a learning-to-rank
technique. Finally, our extensive experiments have demonstrated

the effectiveness, efficiency and practical usefulness of Holmes. We
plan to extend Holmes to support more ecosystems.
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