
Speedoo: Prioritizing Performance Optimization Opportunities
Zhifei Chen

State Key Laboratory for Novel
Software Technology

Nanjing University, China

Bihuan Chen
School of Computer Science,

Shanghai Key Laboratory of Data
Science, and Shanghai Institute of
Intelligent Electronics & Systems

Fudan University, China

Lu Xiao
Xiao Wang

School of Systems and Enterprises
Stevens Institute of Technology

United States

Lin Chen∗
State Key Laboratory for Novel

Software Technology
Nanjing University, China

Yang Liu
School of Computer Science and

Engineering
Nanyang Technological University

Singapore

Baowen Xu∗
State Key Laboratory for Novel

Software Technology
Nanjing University, China

ABSTRACT
Performance problems widely exist in modern software systems.
Existing performance optimization techniques, including profiling-
based and pattern-based techniques, usually fail to consider the
architectural impacts among methods that easily slow down the
overall system performance. This paper contributes a new approach,
named Speedoo, to identify groups of methods that should be treated
together and deserve high priorities for performance optimization.
The uniqueness of Speedoo is to measure and rank the perfor-
mance optimization opportunities of a method based on 1) the
architectural impact and 2) the optimization potential. For each
highly ranked method, we locate a respective Optimization Space
based on 5 performance patterns generalized from empirical ob-
servations. The top ranked optimization spaces are suggested to
developers as potential optimization opportunities. Our evaluation
on three real-life projects has demonstrated that 18.52% to 42.86%
of methods in the top ranked optimization spaces indeed undertook
performance optimization in the projects. This outperforms one
of the state-of-the-art profiling tools YourKit by 2 to 3 times. An
important implication of this study is that developers should treat
methods in an optimization space together as a group rather than
as individuals in performance optimization. The proposed approach
can provide guidelines and reduce developers’ manual effort.

CCS CONCEPTS
• Software and its engineering→ Software performance;

KEYWORDS
Performance, Metrics, Architecture

∗Corresponding authors.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ICSE ’18, May 27-June 3, 2018, Gothenburg, Sweden
© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-5638-1/18/05. . . $15.00
https://doi.org/10.1145/3180155.3180229

ACM Reference Format:
Zhifei Chen, BihuanChen, LuXiao, XiaoWang, Lin Chen, Yang Liu, and Baowen
Xu. 2018. Speedoo: Prioritizing Performance Optimization Opportunities.
In ICSE ’18: 40th International Conference on Software Engineering, May
27-June 3, 2018, Gothenburg, Sweden. ACM, New York, NY, USA, 11 pages.
https://doi.org/10.1145/3180155.3180229

1 INTRODUCTION
Performance problems1 widely exist in modern software systems
due to the high complexity of source code [7, 23, 29, 33, 39, 43, 59].
They can slow down production runs, hurt user experience, or
even cause system failures. Therefore, the first task for software
performance optimization is to find performance optimization op-
portunities and then conduct performance refactoring.

There mainly exist two types of techniques for finding perfor-
mance optimization opportunities. Profiling-based techniques lever-
age instrumentation to collect profiles or execution traces. The pur-
pose is to locate the code regions (or hot spots) that consumemost re-
sources (e.g., memory and time) [1, 3], to identify the frequently exe-
cuted program paths (or hot paths) [6, 17, 27], or to fit a performance
function [11, 14, 30, 60]. Such techniques use consumed resources or
execution frequencies as the only performance indicator, and do not
consider the performance impact due to architectural connections
among software elements, e.g. modules, source files, methods, etc.
Thus, they provide a narrow view for identifying performance prob-
lems, and developers have to spend a large amount of manual effort
to locate the root causes that are not even in the ranked list of
profilers [43, 44]. Moreover, the manifestation of the code with per-
formance problems heavily relies on the quality of the test inputs.
Despite advances on producing performance test inputs [21, 41],
important performance problems still remain unrevealed.

Another type of performance problem detection techniques is
pattern-based techniques. Such techniques leverage static and/or
dynamic program analysis to identify code regions that match
specific patterns; e.g., inefficient loops [16, 34, 44], inefficient con-
tainers [28, 53], inefficient synchronizations [36, 57], or redundant
collection traversals [35]. While they are effective at identifying
specific types of performance problems, they fail to be applicable

1Performance problems are sometimes also called performance bugs or performance
issues. For consistency, we use performance problems throughout the paper.

https://doi.org/10.1145/3180155.3180229
https://doi.org/10.1145/3180155.3180229


ICSE ’18, May 27-June 3, 2018, Gothenburg, Sweden Z. Chen et al.

to a wider range of performance problems. Moreover, they are not
designed and thus will not provide any suggestions on the benefited
code regions after the performance optimization.

In this paper, we propose a new approach, named Speedoo2, to pri-
oritize performance optimization opportunities based on their im-
pact on the overall system performance as well as their local po-
tential of being optimized. Thus, the identified optimization op-
portunities have a high chance of being optimized; and once opti-
mized, they can benefit to the overall system performance. A main
insight is that the investigation of performance optimization should
consider the architectural connections among methods, instead of
treating each method in isolation, because the performance of a
method can affect or be affected by the behaviors of other meth-
ods (e.g., the methods that it calls). Hence, each opportunity is
a set of architecturally related methods with respect to both ar-
chitecture and performance (e.g., the performance of a method
is improved by optimizing the methods it calls). Different from
profiling-based techniques, Speedoo further relies on the architec-
tural knowledge to prioritize potential optimization opportunities
more accurately. Different from pattern-based techniques, Speedoo
is more generic, and considers the overall architecture of methods.

Our approach works in three steps to identify the optimization
opportunities that should be given high priorities to improve the
overall performance. First, we compute a set of metrics that measure
the architectural impact and optimization potential of each method.
The metrics include architectural metrics (e.g. the number of meth-
ods called by a method; the larger the number, the more impact
the optimization has), dynamic execution metrics (e.g., the time a
method consumes; the longer the time, the more potentially it can
be optimized), and static complexity metrics (e.g., the complexity of
the method; the more complex the code structure, the more poten-
tially it can be optimized). Then, we compute an optimization prior-
ity score for each method to indicate the priority for optimization
based on the metrics, and rank the methods. Finally, for each highly
ranked method (i.e., candidate), we locate a respective Optimization
Space composed of the methods that contribute to the dynamic per-
formance of the candidate, which is based on five performance pat-
terns summarized from real performance optimization cases. Each
method in optimization space could be optimized to improve the
overall system performance. Such optimization space is suggested
to developers as potential optimization opportunities, which can
provide guidelines and reduce developers’ manual effort.

We have implemented the proposed approach, and conducted an
experimental study on three real-life Java projects to demonstrate
the effectiveness and performance of our approach. The results
show that 18.52% to 34.62% of methods in the top ranked opti-
mization spaces calculated by Speedoo indeed undertook perfor-
mance optimization during software evolution. We also compared
Speedoo with the state-of-the-art profiler YourKit [3] and discov-
ered Speedoo covers 3%-16% more refactored methods. The results
have demonstrated that Speedoo effectively prioritizes potential
performance optimization opportunities, significantly outperforms
YourKit, and scales well to large-scale projects.

In summary, our work makes the following contributions.

2The speed optimization opportunities that we are pursuing with our approach.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

1 bnf.Node (1)

2 io.Pipe (2)

3 ast.Node (3)

4 Filter (4)

5 io.InputPipe Ext (5)

6 io.OutputPipe Ext (6)

7 io.WriterOutputPipe Impl (7)

8 io.MemoryOutputPipe Impl (8)

9 io.ReaderInputPipe Impl (9)

10 io.MemoryInputPipe Impl (10)

11 ast.TreeVisitor (11)

12 Interpreter Impl Impl (12)

13 parse.Parser Impl (13)

14 lex.Lexer Impl (14)

15 parse.Convert Impl (15)

16 ast.Variable Ext (16)

17 ast.Number Ext (17)

18 ast.OperExpr Ext (18)

19 ast.FuncExpr Ext (19)

20 ast.UnaryOperExpr Ext (20)

Figure 1: An Example of DRH

• We proposed a new approach to prioritizing performance opti-
mization opportunities based on their architectural impact on
the overall performance and their potential of being optimized.

• We implemented the proposed approach and conducted experi-
ments on three real-life projects to demonstrate the effectiveness
and performance of our approach.

2 PRELIMINARIES ON ARCHITECTURE
To understand the architectural roles of different elements in a sys-
tem, Design Rule Hierarchy (DRH) algorithm [10, 47] was proposed
to cluster software elements into hierarchical layers. This algorithm
is based on the design rule theory [5], which indicates that a modular
structure is composed of design rules (i.e., architecturally important
elements) and modules (i.e., elements depending on and decoupled
by the design rule elements). The DRH captures the roles of soft-
ware elements as design rules and modules in hierarchical layers
based on the directed dependency graph of the software elements.
Each layer contains a subset of elements. The layers manifest two
key features: (1) the elements in the lower layers depend on the
elements in the upper layers, but not vice versa; and (2) elements
in the same layer are clustered into mutually independent modules.

In general, elements in the upper layers are architecturally more
important than elements in the lower layers, because the latter de-
pend on the former. For example, Fig. 1 illustrates a DRH calculated
from the “extend" and “implement" dependencies in a math calcula-
tor program. The DRH is depicted as a Design Structure Matrix, a
n × n matrix. The rows and columns represent software elements,
i.e. source files in this example. Each cell indicates the dependency
from the file on the row to the file on the column. The internal
rectangles in the DSM represent layers and modules. This DRH
captures the key base classes or interfaces as the higher level design
rules, and captures the concrete classes as two lower layers. Files 1
to 4 form layer 1 on the top, which are the key interfaces and parent
classes. Files 5 to 6 form layer 2 in the middle, whose elements
“Extend” the elements in the top layer. Files 7 to 20 form layer 3 in
the bottom, which contains 5 mutually independent modules. Each
module “extend" or “implement" a design rule element in the upper
layers. For example, files 16 to 20 form a module as they all “Extend”
the design rule: mij.ast.Node, which is a parent class.

To achieve different analysis goals, the elements could be at dif-
ferent granularities, e.g. method level. In this paper, we apply the
DRH algorithm at method level to capture the architectural impor-
tance of each method and to understand the potential benefits of



Speedoo: Prioritizing Performance Optimization Opportunities ICSE ’18, May 27-June 3, 2018, Gothenburg, Sweden

Titan

Understand

YourKit Dynamic Execution Metrics

Static Complexity Metrics

Architectural Metrics

Normalizing 

Metrics

Computing 

Priority 

Score

Ranking 

Methods

Detecting 

Performance 

Patterns

Computing 

Optimization 

Space

Ranking 

Optimization 

Spaces

Performance Optimization Opportunities

Source Code of Target System

Step 1: Metric 

Computation

Step 2: Method 

Prioritization

Step 3: Optimization 

Space Localization

Figure 2: Approach Overview of Speedoo

improving it for the overall system performance. We will introduce
this in details in Section 3.1.

3 METHODOLOGY
Fig. 2 shows the overview of Speedoo. Basically, our approachworks
in three steps: computing metrics for each method in the target sys-
tem (Section 3.1), prioritizing methods based on metric values to
indicate their optimization priorities (Section 3.2), and locating the
optimization space for each highly-rankedmethod (Section 3.3). The
prioritized optimization spaces are reported to developers as poten-
tial optimization opportunities; and every method in an optimiza-
tion space has the potential of being optimized to improve the over-
all system performance. We elaborate each step as follows.

3.1 Metric Computation
In the first step, we compute the values of metrics that measure each
method’s architectural impact and optimization potential. Before
diving into the details, we first explain the rationality of measuring
architectural impact and optimization potential.
Rationality. Given a list of hot spot methods, developers usually
treat them equally by considering whether any optimization could
be applied to improve the system performance. However, the impact
of a performance optimization varies depending on the architecture
role of the optimized method in a system. For example, if a method
is invoked by many methods, the performance optimization of this
method will greatly improve the system performance. It is desired
that suchmethods should be given higher priorities for performance
optimization. Thus we analyze the architectural impact of each
method to estimate the impact scope of performance optimization.

In addition, considering the functionality of each method, not
every method has the same potential to be improved with respect
to its performance. Intuitively, if a method has higher complexity or
consumes more runtime, it has more potential to be optimized. For
example, if a method frequently invokes a time-consuming method
through a loop structure, we can either replace the time-consuming
method or avoid unnecessary invocations. It is desired that such
methods should obtain a higher priority for optimization. Hence,
we analyze the optimization potential of each method to estimate
the potential space of performance optimization.

Based on the previous understanding, we derive a set of metrics,
as shown in Table 1, to represent and estimate the architectural im-
pact and optimization potential of a method.
Architectural Impact. We propose an architectural-role-based
metric and three caller-callee-scope-based metrics, whose values
are computed from the output of Titan [48].

1. Role-based Metric: Layer. As briefly discussed in Section 2, we
apply the DRH algorithm to the method level call graph of a sys-
tem to capture the architectural importance of each method. Each
method resides in a unique layer of the DRH, and the layer number
reflects its architectural role. The top layers usually contain infras-
tructural level methods, which are called by many other methods in
the system; while the bottom layers usually contain main methods
that call many other methods. The methods in the middle layers
gradually transit from the infrastructural roles to control roles. In
addition, the naming conventions of the methods are generally
consistent with the architectural roles suggested by the DRH Layer.
For example, methods in the top layers are likely to be named with
“util” and “commons” etc.. In comparison, methods in the bottom
layers are likely to be named with “execute” and “main” etc..

Hence, we useDRH Layer as ametric to describe the architectural
importance of a method. A method in an upper layer is architec-
turally more important than a method in a lower layer, as the perfor-
mance problems with methods in top layers tend to produce larger
impacts on thewhole system. The higher the DRH Layer, the smaller
the metric value but the higher the architectural importance.

2. Scope-based Metrics: Size, Depth, and Width. We calculate two
scopes related to each method f : 1) the caller-scope containing
the methods directly or transitively calling f ; and 2) the callee-
scope containing the methods directly or transitively called by f .
If f has a performance problem, the methods in the caller-scope
also perform poorly as their execution time contains f ’s execution
time. If f has a performance problem, e.g., an inefficient loop, the
methods called by it may also consume more time due to frequent
invocations by f . The actual impact of f on other methods may
depend on the run-time environment, but the two scopes contain all
the potentially impacted methods if f has a performance problem.

The caller-scope and the callee-scope can be calculated as two
sub-trees by transversing from f through static “call” and “called
by” relations respectively. We extract three metrics from the two
sub-trees of f to measure its importance:

(1) Size: the total number of methods in the caller-scope and the
callee-scope. The larger the value, the larger the impacts of f ,
and thus the more important is f .

(2) Depth: the sum of the depth of the two sub-trees. The larger the
value, the deeper the impact of f , and thus the more important
is f .

(3) Width: the sum of the width of the two sub-trees. The larger the
value, the broader the impact of f , and thus the more important
is f .

Optimization Potential. We measure both the static complex-
ity and dynamic execution of a method to estimate the optimization
potential. For the complexity of a method, we choose five met-
rics based on the internal structure of the method and the external
relationship with other methods, as shown in the sixth to tenth rows
of Table 1. CC captures the Cyclomatic Complexity of a method.



ICSE ’18, May 27-June 3, 2018, Gothenburg, Sweden Z. Chen et al.

Table 1: Metrics Used for Measuring Architectural Impact and Optimization Potential of a Method

Category Metric Description

Architectural Metrics
(Architectural Impact)

Layer The residing DRH layer number of a method
Size The total number of methods in the caller-callee-scope of a method
Depth The sum of the depth of the caller- and callee-scope of a method
Width The sum of the width of the caller- and callee-scope of a method

Static Complexity Metrics
(Optimization Potential)

CC Cyclomatic complexity, i.e., the number of linearly independent paths in a method
SLOC The source lines of code in a method
FanIn The number of methods directly calling a method
FanOut The number of methods directly called by a method.
Loop The number of loops in a method

Dynamic Execution Metrics
(Optimization Potential)

Time The CPU time consumed by a method
OwnTime The CPU time consumed by a method itself without subcalls
Counts The invocation counts of a method

SLOC , FanIn and FanOut characterize the size and complexity of
the functional responsibility of a method. The higher these metrics,
the more opportunities to optimize the structure or refactor the
coupling relationships to improve performance. Loop is selected
because inefficient or redundant loops are common performance
problems [16, 32, 34, 44]. If a method contains many loops, there
are potential optimization opportunities in it. Note that these met-
rics are all widely used in the literature as useful indicators for
quality problems [56]. Here we leverage them to reflect the poten-
tial of performance optimization. We use Understand [2] in our
implementation to compute these metrics.

Moreover, considering the dynamic execution of a method, we
use Time , OwnTime and Counts , as listed in the last three rows of
Table 1, to measure the performance level of a method during con-
crete executions. A higher value of these metrics indicates a severer
performance problem of a method and thus a higher possibility
to improve its performance. These metrics are also widely used in
the existing profiling tools [1, 3] to identify hot spot methods. In
our current implementation, we obtain these metrics by running
profiling tools, i.e., YourKit [3], against the test cases.

As will be discussed in Section 5, our approach can be extended
with additional metrics to prioritize optimization opportunities.

3.2 Method Prioritization
In the second step, based on the metric values, we compute an
optimization priority score for each method f ∈ F (where F is the
set of all methods in a system) to indicate its optimization priority,
and rank all methods in F according to their optimization priority
scores. This step is achieved in the following three sub-steps.
Normalizing Metrics. To allow a unified measurement of these
metrics independent of their units and ranges, we normalize each
metric into a value between 0 and 1 by comparing it with the maxi-
mum and minimum value of the metric, as formulated in Eq. 1 and 2.

m′
f = (mf −mini ∈F mi )/(maxi ∈F mi −mini ∈F mi ) (1)

m′
f = (maxi ∈F mi −mf )/(maxi ∈F mi −mini ∈F mi ) (2)

mf represents the value of a metricm of a method f ; andm′
f is the

normalized value ofmf . Except for Layer , all the metrics are posi-
tive metrics, i.e., the higher the metric value, the higher the opti-
mization priority. Thus, Layer is normalized by Eq. 2, and the other
metrics are normalized by Eq. 1.

Computing Priority Score. Based on the normalized metric val-
ues, we compute an optimization priority scoreOPS for eachmethod
f to estimate the optimization priority, as formulated in Eq. 3.

OPSf = AIf ×OPf (3)

The first term AIf (see Eq. 4) represents the architectural impact of
a method, and the second term OPf (see Eq. 5) indicates the opti-
mization potential of a method. The multiplication represents the
global potential performance improvement on the overall system
by optimizing the method f .

AIf = (Layer ′f + Size
′
f + Depth

′
f +Width′f )/4 (4)

OPf = (SCf + DEf )/2 (5)

Notice thatOPf considers both the static complexity (see Eq. 6) and
the dynamic execution (see Eq. 7) of a method.

SCf = (CC ′
f + SLOC

′
f + FanIn

′
f + FanOut

′
f + Loop

′
f )/5 (6)

DEf = (Time ′f +OwnTime ′f +Counts
′
f )/3 (7)

Here we assign equal weights to the architectural metrics in
Eq 4, to the static complexity and dynamic execution in Eq. 5, to the
static complexity metrics in Eq. 6, and to the dynamic execution
metrics in Eq. 7, because we consider different factors to be equally
important.
Ranking Methods. Once the priority scores of all the methods
are computed, we rank these methods in decreasing order of their
scores. Thus, the larger the optimization priority score of a method,
the higher priority it should be given for performance optimization.

3.3 Optimization Space Localization
If a highly ranked method manifests performance problems, the
optimization opportunities reside not only in the method itself, but
also in the methods that contribute to its dynamic performance (e.g.,
its callees). However, such contributing methods may not rank high,
even if they are potentially important for solving the performance
problem. Hence, we locate a respective Optimization Space for each
highly ranked method (i.e., candidate) by finding its contributing
methods. Each method in the space could be an optimization op-
portunity to improve the performance of the candidate.

Based on our empirical analysis of performance problems fixed
by developers, we find that the optimization space of a candidate
is often determined by the performance patterns of the candidate.



Speedoo: Prioritizing Performance Optimization Opportunities ICSE ’18, May 27-June 3, 2018, Gothenburg, Sweden

Table 2: Summarized Performance Patterns from Four Apache Systems

Performance Pattern Symptom Description Optimization Strategies # Issues

Cyclic Invocation a slow or frequently executed method
is in an invocation cycle

improve any method in the cycle 1
change dependency relations to break the circle 2

Expensive Recursion a slow method calls itself repeatedly improve the method 2
avoid or reduce the calls in its callers 3

Frequent Invocation a method is frequently executed

improve the method 3
cache the returned values to reduce calls 10
add or update the call conditions in its callers 10
avoid unnecessary or duplicated calls in the callers 4

Inefficient Method a method is slow in executing its own code
improve the method 15
reduce its calls in its callers 5
replace its calls with cheaper callees in its callers 6

Expensive Callee a method is slow in executing its callees’ code
improve the expensive callees 15
reduce the calls to expensive callees 5
replace the calls to expensive callees with cheaper callees 6

Others all the issues not belonging to the above – 14

Commit: PDFBox 7929477d
Candidate: PDFStreamParser.parseNextToken()

private Object parseNextToken() throws IOException {
    ...
    while((nextToken = parseNextToken()) instanceof COSName ) {
        Object value = parseNextToken();  ...
    }
}

Optimization: improve this method by using per-image color conversion

Commit: PDFBox 54037862
Candidate: COSDictionary.getDictionaryObject(COSName)

public Map<String, PDFont> getFonts() throws IOException {
   COSBase font = fontsDictionary.getDictionaryObject(fontName);  ...

}
public Map<String, PDColorSpace> getColorSpaces() {
    ...  COSDictionary csDictionary = (COSDictionary) 

resources.getDictionaryObject(COSName.COLORSPACE);  ...
}

Optimization: reduce the calls to getDictionaryObject(COSName) in getFonts() and 
getColorSpaces() through caching

Commit: Avro e0966a1e
Candidate: GenericData.deepCopy(Schema, T)

public <T> T deepCopy(Schema schema, T value) {
    ...
    case FLOAT:
        return (T)new Float((Float)value);
    case INT:
        return (T)new Integer((Integer)value);
    case LONG:
        return (T)new Long((Long)value);
    ...
}

Optimization: improve this method by avoiding creating new instances

Commit: PDFBox 4746da78
Candidate: PreflightParser.parseObjectDynamically(long, int, boolean)

protected COSBase parseObjectDynamically(long objNr, int objGenNr, 
boolean requireExistingNotCompressedObj) throws IOException {

    ...  final Set<Long> refObjNrs = 
xrefTrailerResolver.getContainedObjectNumbers(objstmObjNr); ...

}

Optimization: replace xrefTrailerResolver.getContainedObjectNumbers(int) with 
xrefTrailerResolver.getXrefTable()

Commit: Ivy 6f8302fe
Candidate: XmlSettingsParser.startElement(String,String,String,Attributes)

private void includeStarted(Map attributes) throws IOException, 
ParseException {

    ...  new XmlSettingsParser(ivy).parse(configurator, settingsURL);  ...
}
private void parse(Configurator configurator, URL configuration) throws 

IOException, ParseException {
    ...  doParse(configuration);   
}
...
public void startElement(String uri, String localName, String qName, 

Attributes att) throws SAXException {
    ...  includeStarted(attributes);   
}

Optimization: improve includeStarted(Map) by removing unnecessary cast

Figure 3: A Case for Cyclic Invocation

Thus, we first present the performance patterns we summarized,
and then introduce the steps to locate optimization spaces.
Performance Patterns. We manually analyzed real performance
problems from fourApache systems (i.e., CXF, Avro, Ivy and PDFBox),
which are all mature and industrial scale software projects. We
searched the issue databases using a set of performance-related
keywords, as was similarly done in the literature [23, 39, 59]. Finally,
we randomly sampled 75 fixed performance issues, and analyzed
how the problems were fixed (i.e., optimization strategies). Table 2
describes the summarized performance patterns with their symp-
tom description, optimization strategies and the number of corre-
sponding issues. These performance patterns appear nearly in all
the systems. Notice that although performance patterns were also
summarized in the literature (e.g., [23, 34]), their patterns focus on
root causes of performance problems and are local to a method,
and thus are often specific. Our patterns emphasize the optimiza-
tion locations of performance problems from the perspective of
symptoms and influence, and are hence global and generic. In the
following, we illustrate each performance pattern.

1. Cyclic Invocation. The invocation of a set of methods forms a
cycle. Any inefficient or frequently executed method in the circle
would slow down the execution of all involved methods. For ex-
ample, in Fig. 3, the method startElement was reported to be slow,
because it’s in an invocation circle containing a slow method, in-
cludeStarted. This issue was solved by improving includeStarted.
Note that the performance problem would worsen if the calling

Commit: PDFBox 7929477d
Candidate: PDFStreamParser.parseNextToken()

private Object parseNextToken() throws IOException {
    ...
    while((nextToken = parseNextToken()) instanceof COSName ) {
        Object value = parseNextToken();  ...
    }
}

Optimization: improve this method by using per-image color conversion

Commit: PDFBox 54037862
Candidate: COSDictionary.getDictionaryObject(COSName)

public Map<String, PDFont> getFonts() throws IOException {
       COSBase font = fontsDictionary.getDictionaryObject(fontName);  ...
}
public Map<String, PDColorSpace> getColorSpaces() {
    ...  COSDictionary csDictionary = (COSDictionary) 

resources.getDictionaryObject(COSName.COLORSPACE);  ...
}

Optimization: reduce the calls to getDictionaryObject(COSName) in getFonts() and 
getColorSpaces() through caching

Commit: Avro e0966a1e
Candidate: GenericData.deepCopy(Schema, T)

public <T> T deepCopy(Schema schema, T value) {
    ...
    case FLOAT:
        return (T)new Float((Float)value);
    case INT:
        return (T)new Integer((Integer)value);
    case LONG:
        return (T)new Long((Long)value);
    ...
}

Optimization: improve this method by avoiding creating new instances

Commit: PDFBox 4746da78
Candidate: PreflightParser.parseObjectDynamically(long, int, boolean)

protected COSBase parseObjectDynamically(long objNr, int objGenNr, 
boolean requireExistingNotCompressedObj) throws IOException {

    ...  final Set<Long> refObjNrs = 
xrefTrailerResolver.getContainedObjectNumbers(objstmObjNr); ...

}

Optimization: replace xrefTrailerResolver.getContainedObjectNumbers(int) with 
xrefTrailerResolver.getXrefTable()

Commit: Ivy 6f8302fe
Candidate: XmlSettingsParser.startElement(String,String,String,Attributes)

private void includeStarted(Map attributes) throws IOException, 
ParseException {

    ...  new XmlSettingsParser(ivy).parse(configurator, settingsURL);  ...
}
private void parse(Configurator configurator, URL configuration) throws 

IOException, ParseException {
    ...  doParse(configuration);   
}
...
public void startElement(String uri, String localName, String qName, 

Attributes att) throws SAXException {
    ...  includeStarted(attributes);   
}

Optimization: improve includeStarted(Map) by removing unnecessary cast

Figure 4: A Case for Expensive Recursion

Commit: PDFBox 7929477d
Candidate: PDFStreamParser.parseNextToken()

private Object parseNextToken() throws IOException {
    ...
    while((nextToken = parseNextToken()) instanceof COSName ) {
        Object value = parseNextToken();  ...
    }
}

Optimization: improve this method by using per-image color conversion

Commit: PDFBox 54037862
Candidate: COSDictionary.getDictionaryObject(COSName)

public Map<String, PDFont> getFonts() throws IOException {
       COSBase font = fontsDictionary.getDictionaryObject(fontName);  ...
}
public Map<String, PDColorSpace> getColorSpaces() {
    ...  COSDictionary csDictionary = (COSDictionary) 

resources.getDictionaryObject(COSName.COLORSPACE);  ...
}

Optimization: reduce the calls to getDictionaryObject(COSName) in getFonts() and 
getColorSpaces() through caching

Commit: Avro e0966a1e
Candidate: GenericData.deepCopy(Schema, T)

public <T> T deepCopy(Schema schema, T value) {
    ...
    case FLOAT:
        return (T)new Float((Float)value);
    case INT:
        return (T)new Integer((Integer)value);
    case LONG:
        return (T)new Long((Long)value);
    ...
}

Optimization: improve this method by avoiding creating new instances

Commit: PDFBox 4746da78
Candidate: PreflightParser.parseObjectDynamically(long, int, boolean)

protected COSBase parseObjectDynamically(long objNr, int objGenNr, 
boolean requireExistingNotCompressedObj) throws IOException {

    ...  final Set<Long> refObjNrs = 
xrefTrailerResolver.getContainedObjectNumbers(objstmObjNr); ...

}

Optimization: replace xrefTrailerResolver.getContainedObjectNumbers(int) with 
xrefTrailerResolver.getXrefTable()

Commit: Ivy 6f8302fe
Candidate: XmlSettingsParser.startElement(String,String,String,Attributes)

private void includeStarted(Map attributes) throws IOException, 
ParseException {

    ...  new XmlSettingsParser(ivy).parse(configurator, settingsURL);  ...
}
private void parse(Configurator configurator, URL configuration) throws 

IOException, ParseException {
    ...  doParse(configuration);   
}
...
public void startElement(String uri, String localName, String qName, 

Attributes att) throws SAXException {
    ...  includeStarted(attributes);   
}

Optimization: improve includeStarted(Map) by removing unnecessary cast

Figure 5: A Case for Frequent Invocation

circle is repeatedly executed. An alternative solution is to break the
cycle evidenced by 2 real performance issues.

2. Expensive Recursion. Recursion allows a method to repeatedly
call itself. If the method is expensive, the performance problem will
be dramatically amplified. For example, the method parseNextToken
in Fig. 4 repeatedly calls itself by recursion. The reason was that the
PDF parser converted the color spaces of images for every pixel.
Finally, developers improved this method by performing color con-
version in one operation for each image. Performance problems due
to expensive recursion can be optimized by improving the recursion
method itself or by reducing calling such methods.

3. Frequent Invocation. Frequently executed methods, especially
the most influential methods in low DRH layers, can be optimized
to produce a significant improvement of system performance, even
with minor optimization. For example, in Fig. 5, the method getDic-
tionaryObject is called frequently by PDResource for obtaining re-
sources. In commit 54037862, PDResources was refactored to reduce
the invocations of getDictionaryObject. This is the most common
pattern in the studied issues. It can also be reduced by updating the
call conditions, or avoiding unnecessary/duplicated invocations.

4. Inefficient Method. A method manifests poor performance due
to the inefficiency in itself. Fig. 6 shows an example in Avro. The



ICSE ’18, May 27-June 3, 2018, Gothenburg, Sweden Z. Chen et al.

Table 3: Detection Conditions and Optimization Spaces of Performance Patterns

Performance Pattern Detection Condition Optimization Space

Cyclic Invocation isCallCycle and isHigh(Time) and isHigh(Counts) OS(f) = all the methods in the invocation cycle
Expensive Recursion isRecursion and isHigh(Time) and isHigh(Counts) OS(f) = f + OS(each method in getCallers(f) that satisfies isHigh(Time))
Frequent Invocation isHigh(Counts) OS(f) = f + OS(each method in getCallers(f) that satisfies isHigh(Invocations))
Inefficient Method isHigh(Time) and isHigh(OwnTime) OS(f) = f + OS(each method in getCallers(f) that satisfies isHigh(Time))
Expensive Callee isHigh(Time) and Not isHigh(OwnTime) OS(f) = f + OS(each method in getCallees(f) that satisfies isHigh(Time))
Others all the conditions not belonging to the above OS(f) = f

Commit: PDFBox 7929477d
Candidate: PDFStreamParser.parseNextToken()

private Object parseNextToken() throws IOException {
    ...
    while((nextToken = parseNextToken()) instanceof COSName ) {
        Object value = parseNextToken();  ...
    }
}

Optimization: improve this method by using per-image color conversion

Commit: PDFBox 54037862
Candidate: COSDictionary.getDictionaryObject(COSName)

public Map<String, PDFont> getFonts() throws IOException {
       COSBase font = fontsDictionary.getDictionaryObject(fontName);  ...
}
public Map<String, PDColorSpace> getColorSpaces() {
    ...  COSDictionary csDictionary = (COSDictionary) 

resources.getDictionaryObject(COSName.COLORSPACE);  ...
}

Optimization: reduce the calls to getDictionaryObject(COSName) in getFonts() and 
getColorSpaces() through caching

Commit: Avro e0966a1e
Candidate: GenericData.deepCopy(Schema, T)

public <T> T deepCopy(Schema schema, T value) {
    ...
    case FLOAT:
        return (T)new Float((Float)value);
    case INT:
        return (T)new Integer((Integer)value);
    case LONG:
        return (T)new Long((Long)value);
    ...
}

Optimization: improve this method by avoiding creating new instances

Commit: PDFBox 4746da78
Candidate: PreflightParser.parseObjectDynamically(long, int, boolean)

protected COSBase parseObjectDynamically(long objNr, int objGenNr, 
boolean requireExistingNotCompressedObj) throws IOException {

    ...  final Set<Long> refObjNrs = 
xrefTrailerResolver.getContainedObjectNumbers(objstmObjNr); ...

}

Optimization: replace xrefTrailerResolver.getContainedObjectNumbers(int) with 
xrefTrailerResolver.getXrefTable()

Commit: Ivy 6f8302fe
Candidate: XmlSettingsParser.startElement(String,String,String,Attributes)

private void includeStarted(Map attributes) throws IOException, 
ParseException {

    ...  new XmlSettingsParser(ivy).parse(configurator, settingsURL);  ...
}
private void parse(Configurator configurator, URL configuration) throws 

IOException, ParseException {
    ...  doParse(configuration);   
}
...
public void startElement(String uri, String localName, String qName, 

Attributes att) throws SAXException {
    ...  includeStarted(attributes);   
}

Optimization: improve includeStarted(Map) by removing unnecessary cast

Figure 6: A Case for Inefficient Method

Commit: PDFBox 7929477d
Candidate: PDFStreamParser.parseNextToken()

private Object parseNextToken() throws IOException {
    ...
    while((nextToken = parseNextToken()) instanceof COSName ) {
        Object value = parseNextToken();  ...
    }
}

Optimization: improve this method by using per-image color conversion

Commit: PDFBox 54037862
Candidate: COSDictionary.getDictionaryObject(COSName)

public Map<String, PDFont> getFonts() throws IOException {
       COSBase font = fontsDictionary.getDictionaryObject(fontName);  ...
}
public Map<String, PDColorSpace> getColorSpaces() {
    ...  COSDictionary csDictionary = (COSDictionary) 

resources.getDictionaryObject(COSName.COLORSPACE);  ...
}

Optimization: reduce the calls to getDictionaryObject(COSName) in getFonts() and 
getColorSpaces() through caching

Commit: Avro e0966a1e
Candidate: GenericData.deepCopy(Schema, T)

public <T> T deepCopy(Schema schema, T value) {
    ...
    case FLOAT:
        return (T)new Float((Float)value);
    case INT:
        return (T)new Integer((Integer)value);
    case LONG:
        return (T)new Long((Long)value);
    ...
}

Optimization: improve this method by avoiding creating new instances

Commit: PDFBox 4746da78
Candidate: PreflightParser.parseObjectDynamically(long, int, boolean)

protected COSBase parseObjectDynamically(long objNr, int objGenNr, 
boolean requireExistingNotCompressedObj) throws IOException {

    ...  final Set<Long> refObjNrs = 
xrefTrailerResolver.getContainedObjectNumbers(objstmObjNr); ...

}

Optimization: replace xrefTrailerResolver.getContainedObjectNumbers(int) with 
xrefTrailerResolver.getXrefTable()

Commit: Ivy 6f8302fe
Candidate: XmlSettingsParser.startElement(String,String,String,Attributes)

private void includeStarted(Map attributes) throws IOException, 
ParseException {

    ...  new XmlSettingsParser(ivy).parse(configurator, settingsURL);  ...
}
private void parse(Configurator configurator, URL configuration) throws 

IOException, ParseException {
    ...  doParse(configuration);   
}
...
public void startElement(String uri, String localName, String qName, 

Attributes att) throws SAXException {
    ...  includeStarted(attributes);   
}

Optimization: improve includeStarted(Map) by removing unnecessary cast

Figure 7: A Case for Expensive Callee

method deepCopy createdmany new instances for primitives, which
is unnecessary. This method was optimized in commit e0966a1e by
removing unnecessary instance creations. If an inefficient method
can hardly be optimized, the overall performance of a system can
still be improved by reducing the invocations of this method.

5. Expensive Callee. The performance of a method is also deter-
mined by the performance of its callees. Expensive callee is a perfor-
mance pattern where a method is slow in executing its callees’ code.
The optimization strategies include improving the expensive callees,
and reducing or avoiding the invocations of expensive callees. The
example in Fig. 7 illustrates the performance optimization of the
method parseObjectDynamically. As reported, themethod took quite
some time which was mostly spent in getContainedObjectNumbers.
The reason was that many full scans were performed in getContaine-
dObjectNumbers. Developers fixed this issue by replacing the calls
to getContainedObjectNumbers with the calls to getXrefTable.

Note that the optimization of an inefficient method can be treated
either as the Inefficient Method pattern (i.e., to improve the ineffi-
cient method) or as the Expensive Callee pattern (i.e., to improve the
caller of the inefficient method). Thus, we counted the number
of corresponding issues equally for these two patterns. We sepa-
rately define these two patterns for locating individual optimization
opportunities for each target method. There were 14 issues that
exhibit no specific patterns, e.g., moving a generic method from
other classes to a target class, avoiding using type parameters, and
package reorganization. Current patterns are defined among archi-
tecturally connected methods, which can be extended to support
high-level structures like packages and modules.

Detecting Performance Patterns.As shown above, the optimiza-
tion opportunities of a method reside in all the methods that con-
tribute to its performance, and the scope is determined by the per-
formance patterns it belongs to. Therefore, before computing the
optimization space of each candidate, we first detect its performance
patterns, using the dynamic execution metrics (Time , OwnTime
and Counts) as well as its call relations with other methods.

Generally, the methods in different DRH layers are expected to
exhibit different level of performance. The dynamic execution met-
rics of methods are influenced by the architectural roles suggested
by the DRH layer. Intuitively, since the infrastructural methods
provide basic functions to support other methods, they usually
have lower method execution time but higher invocation counts.
The control methods often provide higher level functions by call-
ing many other methods, thus they usually have lower invocation
counts but higher execution time. In that sense, the performance of
a method is only comparable to the methods within the same DRH
layer. Hence, our general idea of detecting performance patterns is
to check whether the dynamic performance of a method acts as a
outlier among all the methods in the same DRH layer.

Specifically, the conditions for detecting performance patterns of
a candidate f are defined in the second column of Table 3 based on
their symptoms in Table 2. Here isHigh returns whether the metric
value of f is a statistical outlier among themethods in the sameDRH
layer. For call relations, isCallCycle returns whether f is involved in
a cyclic invocation and isRecursion returns whether f invokes itself.

Following the detection conditions, a method can be matched in
more than one performance patterns. For example, amethodmatches
both Frequent Invocation and Expensive Callee, which means that the
optimization opportunities reside in the two optimization spaces.
Computing Optimization Space. Based on the performance pat-
terns of a candidate f , we compute the optimization space OS(f )
to locate the potential optimization opportunities. Guided by the
optimization strategies in Table 2, we locate the optimization space
for each pattern in the third column of Table 3. getCallers returns
the list of callers of f , and getCallees returns the list of callees.
Ranking Optimization Spaces. The optimization space consists
of all the contributing methods to a certain performance problem,
and should be investigated by the developers as a whole. Thus we
compute the optimization priority score of an optimization space
as the average priority score of all the methods in the space to
represent its optimization priority. Finally, the optimization spaces
are ranked based on their priority scores. Only those highly-ranked
optimization spaces are recommended to the developers as potential
optimization opportunities.



Speedoo: Prioritizing Performance Optimization Opportunities ICSE ’18, May 27-June 3, 2018, Gothenburg, Sweden

Table 4: Subject Projects

Project Analyzed Release Refactored Release

Ver. Date LOC (#) Meth. (#) Ver. Date

Avro 1.3.0 2010-05-10 10,637 1,238 1.8.1 2016-05-14
Ivy 2.0.0 2009-01-18 41,939 4,673 2.4.0 2014-12-13

PDFBox 1.8.4 2014-01-27 88,435 8,352 2.0.4 2016-12-12

4 EVALUATION
To evaluate the effectiveness and performance of our approach, we
conducted an experimental study on three real-life Java projects.

4.1 Evaluation Setup
Subject Projects. Table 4 describes the subject projects used in our
evaluation. Three well-known Apache projects are selected: Avro is
a data serialization system; Ivy is a popular dependency manager;
and PDFBox is a tool for working with PDF documents. They are
selected due to the following reasons. First, we can collect sufficient
performance problems from the formal issue reports documented
in JIRA and the entire commits history traced through GitHub (see
below). Second, they are non-trivial projects that contain thousands
of methods. Third, these projects belong to different domains, and
have high performance requirements. Notice that CXF, used in Sec-
tion 3.3, is not used in the evaluation as we failed to run its original
tests. Two releases are selected from each project, namely analyzed
release (column 2-5) and refactored release (column 6-7). We apply
Speedoo on the analyzed release, and evaluate whether the methods
in highly-ranked optimization spaces are actually optimized in the
refactored release. Generally, the studied time frame should be long
enough to allow plenty of performance problems reported and fixed.
Considering the projects’ update frequencies, the studied interval
is approximately five years in Avro and Ivy, and three years in
PDFBox. Then two releases in Table 4 were selected to cover most
performance problems within this time frame.
Ranked Methods to Optimize. We apply our approach on the
analyzed release of each project to identify highly-ranked optimiza-
tion spaces. The methods in these optimization spaces are suggested
for optimization to developers. The suggested methods all suffer
from performance problems (running slowly or frequently called).

Table 5 reports the distribution of performance patterns aggre-
gating the identified methods. For each pattern, we list the num-
ber of pattern instances detected in the project under column Count
as well as the average size (i.e. number of methods) in the optimiza-
tion spaces under column Avg. Size. We can observe that:
• Frequent Invocation and Expensive Callee are the most prevalent
performance patterns, implying developers should pay specific
attention to frequently executed and slow methods.

• The impact scope of Cyclic Invocation and Frequent Invocation is
larger than other performance patterns, with the average size of
optimization spaces ranging from 4 to 19. Therefore, it may take
more time for developers to solve these performance problems.

Actually Optimized Methods.We collect the performance prob-
lems fixed during the two selected releases as the ground truth.

For each project, we first identified all the performance issues doc-
umented in JIRA by matching performance-related keywords (e.g.,
“performance” and “optimization”) in the issue descriptions, as was
similarly done in the literature [23, 39, 59]. Second, we scanned the

commits between the analyzed and refactored releases to extract the
matched commits that mention performance issue IDs in the com-
mitmessages. Further, to avoidmissing undocumented performance
issues, we also scanned those unmatched commits to extract the
commits that mention performance-related keywords in the com-
mit messages. Finally, the resulting performance issues and the
corresponding linked commits were manually analyzed to filter out
non-performance optimization, and the methods participating in
performance optimization were identified as the ground truth.
Research Questions.We designed the experiments to answer the
following three research questions.

• RQ1:How is the effectiveness of our approach in prioritizing per-
formance optimization opportunities?

• RQ2: How is the sensitivity of the metrics on the effectiveness of
our approach?

• RQ3: How is the performance overhead of our approach?

4.2 Effectiveness Evaluation (RQ1)
To evaluate the effectiveness of the proposed approach, we further
breakdown the evaluation into 2 sub-questions below:

• RQ1-1: How many of the ranked methods to optimize from the
analyzed release are actually optimized in the refactored release?
How does our approach compare to random search (assuming
developers have no knowledge what to do) and YourKit? This
question evaluates whether Speedoo can truly identify worth-
while optimization opportunities.
To answer this question, we use the density, i.e., the percentage
of actually optimized methods in highly-ranked optimization
spaces to evaluate the effectiveness of Speedoo. As comparison,
we also calculate the density of actually optimized methods in the
whole system, which approximates the effectiveness of a random
search; and the density of actually optimized methods in the hot
spots reported by YourKit. We do not compare Speedoo with
pattern-based techniques because each pattern-based technique
often detects only one kind of performance problems and most
of them are not publicly available.

• RQ1-2: How the before/after optimization priority of the actually
optimized method and of the actually optimized optimization
space change? Presumably, after performance optimization, the
performance of the method and/or methods in its optimization
space should improve. Consequently, the optimization priority
score offered by our approach should capture such improvement
to show its effectiveness. Otherwise, it implies that the proposed
optimization priority score may not be effective (the another
possibility is that the optimization is not successful).
To answer this question, we use Wilcoxon test [46] to compare
the optimization priority scores of the actually optimized meth-
ods and of the actually optimized optimization spaces in two
releases. Wilcoxon test is a non-parametric statistical hypothesis
test, which is used to compare two groups of independent samples
to assess whether their population mean ranks differ. Without
assuming that the data has a normal distribution, we test at the
significance level of 0.001 to investigate whether the optimization



ICSE ’18, May 27-June 3, 2018, Gothenburg, Sweden Z. Chen et al.

Table 5: Distribution of Detected Performance Patterns

Project Cyclic Invocation Expensive Recursion Frequent Invocation Inefficient Method Expensive Callee Others

Count Avg. Size Count Avg. Size Count Avg. Size Count Avg. Size Count Avg. Size Count

Avro 5 4 2 2 76 4 3 2 22 2 555
Ivy 32 19 2 3 270 5 12 2 118 2 1759

PDFBox 7 7 2 3 460 16 68 1 40 2 3584

Table 6: Effectiveness of Optimization Space Ranks

Project Whole System Top 25 Spaces Top 50 Spaces Top 100 Spaces YourKit Hot Spots

Opt. Total Den. Opt. Total Den. Opt. Total Den. Opt. Total Den. Opt. Total Den.

Avro 43 1,238 3.47% 5 26 19.23% 7 60 11.67% 12 110 10.91% 4 110 3.63%
Ivy 61 4,673 1.31% 5 27 18.52% 8 72 11.11% 14 166 8.43% 9 166 5.42%

PDFBox 621 8,352 7.44% 12 28 42.86% 24 61 39.34% 48 126 38.10% 16 96 16.67%

Table 7: Change of Optimization Priority Scores after Performance Optimization

Project Optimized Methods Methods in Optimized Optimization Spaces

Total Higher Rank Lower Rank p-value d Total Higher Rank Lower Rank p-value d

Avro 36 18 18 0.7462 - 48 14 34 0.0878 -
Ivy 40 8 32 0.0035 - 176 17 159 3.431e-21 0.1288

PDFBox 428 250 178 0.9999 - 539 169 370 1.940e-05 0.1031

0

5

10

15

20

0 50 100 150 200
# of Methods in Top Optimization Spaces

# 
of

 A
ct

ua
lly

 O
pt

im
iz

ed
 M

et
ho

ds

Our Approach
Our Approach w/o SC
Our Approach w/o DE
Our Approach w/o AI
Our Approach w/o Gen. Tests

(a) Avro

0

5

10

15

20

0 50 100 150 200
# of Methods in Top Optimization Spaces

# 
of

 A
ct

ua
lly

 O
pt

im
iz

ed
 M

et
ho

ds

Our Approach
Our Approach w/o SC
Our Approach w/o DE
Our Approach w/o AI
Our Approach w/o Gen. Tests

(b) Ivy

0

20

40

60

0 50 100 150 200
# of Methods in Top Optimization Spaces

# 
of

 A
ct

ua
lly

 O
pt

im
iz

ed
 M

et
ho

ds

Our Approach
Our Approach w/o SC
Our Approach w/o DE
Our Approach w/o AI
Our Approach w/o Gen. Tests

(c) PDFBox

Figure 8: Metric Sensitivity in Subject Projects

priority scores of the methods and the optimization spaces signif-
icantly become lower after performance optimization. Further-
more, we use Cliff’s Delta effect size [13] to measure the magni-
tude of the difference ifWilcoxon test indicates a significant differ-
ence. Cliff’s Delta (i.e., d) measures how often the values in a dis-
tribution are larger than the values in another distribution. The ef-
fect size is negligible for |d | < 0.147, small for 0.147 ≤ |d | < 0.33,
medium for 0.33 ≤ |d | < 0.474, and large for |d | ≥ 0.474.

Answer RQ1-1. Table 6 compares five groups of methods: the
whole methods in a system (column 2-4), the methods in top 25
(column 5-7), 50 (column 8-10) and 100 (column 11-13) optimization
spaces, and the hot spots reported by YourKit (column 14-16). For
each group of methods, we report the number of actually optimized
methods (column Opt.), the total number of methods (column Total),
and the density (i.e., Opt./Total) in this group (column Den.).

The table shows 19% to 43% of methods in top 25 spaces are
actually optimized. When the investigated optimization spaces
adjust from top 25 to top 100 ones, the number of methods increases
drastically and the density of actually optimized methods decreases
slightly. It suggests developers to focus on the top few optimization
spaces to narrow down the methods as candidates to optimize.

In comparison, the density of actually optimized methods in
the whole system ranges from 1.31% to 7.44%. The density by our

approach is several orders of magnitude higher than random search
(when developers have no clue). YourKit reports a list of hot spots
and suggests each one as a potential optimization opportunity. In
order to compare Speedoo with YourKit, we selected the same num-
ber of hot spots (excluding library methods) with the number of
methods in top 100 optimization spaces. Noting that YourKit only
reported 96 hot spots in PDFBox. The density shown in column 13
and column 16 indicate that our approach outperforms YourKit by
2-3 times. We can conclude that our approach provides a signifi-
cantly more effective prioritization of optimization opportunities,
compared with random search and YourKit, and thus is worthwhile.
Answer RQ1-2. Table 7 reports the change of optimization pri-
ority scores in the actually optimized methods and the methods
in optimized optimization spaces. For each group of methods, it
reports the total number of target methods (column Total), the
number of methods whose priority scores increase (column Higher
Rank), the number of methods whose priority scores decrease (col-
umn Lower Rank), the p-value of Wilcoxon test, and Cliff’s Delta d
if Wilcoxon test shows significant lower values (p-value < 0.001).

The table reveals that the optimization priorities of actually
optimized methods are not significantly lower after performance
optimization; in contrast, the optimization priorities of the methods
in actually optimized optimization spaces are significantly lower.



Speedoo: Prioritizing Performance Optimization Opportunities ICSE ’18, May 27-June 3, 2018, Gothenburg, Sweden

Table 8: Performance Overhead of Speedoo

Project Metric Computation Method Prioritization Optimization Space Localization
Architectural Metrics Static Complexity Metrics Dynamic Execution Metrics

Avro 0.4 s 2.8 s 1.5 h + 2.5 h 0.3 s 3.0 s
Ivy 2.2 s 22.0 s 1.0 h + 4.5 h 3.1 s 79.7 s

PDFBox 3.7 s 30.6 s 3.0 h + 5.5 h 10.3 s 195.8 s

Wilcoxon test does not indicate a significant difference in Avro, be-
cause the number of target methods is small (i.e., only 48 methods),
but most of the methods in actually optimized optimization spaces
(i.e., 34 out of 48 methods) are ranked lower in the refactored release.
These results indicate that even if the performance of optimized
methods does not show significant improvements, the performance
of the methods in their spaces would benefit from the optimization.
This also demonstrates the rationality of our prioritization on the
level of optimization spaces but not on the level of methods.

The small effect sizes in Table 7 indicate that the performance im-
provements are limited in most cases. In fact, we find performance
optimization performed by developers is usually minor, e.g., remov-
ing an unnecessary type cast. We also find some highly-ranked
methods were optimized many times in history. It implies that
performance optimization is a long way in software evolution.
Summary. Speedoo is effective in prioritizing potential perfor-
mance optimization opportunities, and outperforms a state-of-the-
art profiling tool YourKit; and the prioritization is advisable as the
priorities of the methods in actually optimized optimization spaces
become significantly lower after performance optimization.

4.3 Sensitivity Evaluation (RQ2)
Three groups of metrics are used in our approach (i.e., architec-
tural impact metrics, static complexity metrics and dynamic execu-
tion metrics), the question is: what is the sensitivity of these metrics
on the effectiveness of our approach? To answer it, we remove each
group of metrics from our approach, and then estimate the metric
sensitivity by comparing the effectiveness of different approaches.
AnswerRQ2.The results are visually illustrated in Fig. 8, where the
x-axis represents the number of methods in top optimization spaces,
and they-axis represents the number of actually optimized methods.
Generally, the curves of our approach without architectural impact
metrics (AI), static complexity metrics (SC) and dynamic execution
metrics (DE) are lower than the curve of our approach with all the
metrics, especially significant for Avro and Ivy. The results indicate
that each group of metrics contributes to the effectiveness of our
approach, and thus a combination of them is reasonable.

Similarly, we also evaluate the sensitivity of each metric. After
removing any metric in Table 1 from our approach, the density in
top 25 spaces decreases to 14.81%-19.23%, 10.34%-18.52%, and 36.36%-
44.44% for three projects respectively. The density is lower than or
samewith Speedoo, with only one exception coming from removing
CC for PDFBox. It indicates that each used metric is vital to Speedoo.
Besides, we tried to assign different weights to these metrics and
found that, using the same weights performed best in general.

In order to cover more methods when collecting dynamic execu-
tion metrics, we run both the original tests in systems as well as the
tests automatically generated by the unit testing tool EvoSuite [19].

In comparison, we show the effectiveness of our approach with-
out generated tests in Fig. 8 (Our Approach w/o Gen. Tests). The
approach without generated tests turns out to be as effective as
the whole approach. This is because the execution behaviors in
automatically generated tests are different from the real behaviors
in manually written tests. This suggests that the effectiveness of
approach is also affected by whether the collected dynamic metrics
can reflect real executions that manifest performance problems.
Summary. All the metrics used in this study have contribution to
the effectiveness of Speedoo. Besides, dynamic execution metrics
should be obtained through real execution behaviors.

4.4 Performance Evaluation (RQ3)
This research question addresses how the performance overhead
of Speedoo is. To answer this question, we collect the time spent in
each step over the three projects, consisting of metric computation,
method prioritization, and optimization space localization.
Answer RQ3. Table 8 presents the time consumed in each step of
the proposed approach. We can see that computing dynamic execu-
tionmetrics takes themost time. Note that this step includes the time
for running original tests with YourKit, as well as the time for gen-
erating tests by EvoSuite and running them with YourKit, which are
respectively reported in Table 8. As the result of RQ2 indicates that
our approach without generated tests is as effective as our approach
with generated tests, the performance overhead would be signifi-
cantly improved when applying Speedoo without generated tests.
Generally, our approach scales to large-scale project like PDFBox.
Summary. Speedoo scales to large-scale projects; and computing
dynamic metrics takes most of the time as it needs to run tests.

5 DISCUSSION
Threats to Validity. First, the values of dynamic execution metrics
are affected by the tests that produce them. Basically, Speedoo can
be improved through the tests that cover more suspect methods and
reflect real execution behaviors. Hence, in this study, the dynamic
execution metrics were obtained by executing not only the original
tests but also the automatically generated tests, although it turns
out that automatically generated tests are not very helpful as shown
in Section 4.3. In the future, we plan to further investigate how to
generate advanced tests [21, 41], and integrate it into our approach.

Second, the ground truth was collected from the documented per-
formance issues and commit logs of subject projects. In some cases,
developers did not document optimization operations in issue re-
ports when committing changes. We mitigated this problem by also
matching performance keywords in commit messages in case of
lacking issue records. The second problem is the informal descrip-
tion of performance problems in issues and commit logs. Tomitigate
it, we adopted a list of performance keywords that is widely used in
literature, and manually checked the matched commits and issues.



ICSE ’18, May 27-June 3, 2018, Gothenburg, Sweden Z. Chen et al.

Analysis of Top Optimization Spaces. We manually checked
some really optimized methods in top optimization spaces. We find
that performance optimization tends to be conducted on the meth-
ods in higher DRH layers. For example, getDictionaryObject in Fig. 5
is in the highest DRH layer and its optimization space is ranked
2. We also find that the methods were optimized mostly by minor
changes. This indicates that time is not everything in motivating
performance optimization, and architectural considerations are also
important. This also explains why Speedoo outperforms YourKit.

We also checked those highly-ranked methods which were not
optimized. We can discover that, some methods were not opti-
mized, although users reported a performance issue, because it
would incur high maintenance cost (e.g., issue AVRO-1809) or the
code is kept remained for future extensions (e.g., issue AVRO-464);
and some methods have been optimized before the analyzed re-
lease, but the previous optimization only reduces the performance
problem and cannot totally fix it (e.g., issue AVRO-911).
Extensions. Speedoo provides a ranked list of optimization op-
portunities to developers. One potential extension is to integrate
pattern-based techniques into Speedoo. Once pattern-based tech-
niques locate a pattern in the system, we can extend Speedoo to
determine optimization spaces of the methods in the pattern, which
indicates the impact of the pattern on other methods as well as the
potential improvement that can be achieved by performance opti-
mization. Another possible extension is to integrate more metrics
into Speedoo to better reveal performance problems. For example,
we can give higher priorities to the methods with more expensive
API calls. Furthermore, this study assigns equal weights to the fac-
tors in Eq. 5, Eq. 6, and Eq. 7. If additional metrics are integrated
into our approach, the factors can be assigned individual weights
which are tuned with different combinations of weights.

6 RELATEDWORK
PerformanceUnderstanding. Several empirical studies have been
conducted to understand the characteristics of performance prob-
lems from different perspectives [7, 23, 29, 33, 39, 43, 59]. They in-
vestigated root causes of performance problems as well as how per-
formance problems are introduced, discovered, reported, and fixed,
which provides valuable insights and guidances for designing per-
formance profiling and performance problem detection approaches.
Profiling-Based PerformanceAnalysis. Profiling tools [1, 3] are
widely used to locate hot spotmethods that consumemost resources
(e.g., memory and time). Besides, several path-sensitive profiling
techniques (e.g., [6, 17, 27]) have been proposed to analyze execu-
tion traces of an instrumented program for predicting execution
frequency of program paths and identifying hot paths. Further, there
has been some recent work on input-sensitive profiling techniques
(e.g., [14, 20, 60]). They execute an instrumented program with a set
of different input sizes, measure the performance of each basic block,
and fit a performance function with respect to input sizes. Moreover,
Mudduluru and Ramanathan [30] proposed an efficient flow profil-
ing technique for detecting memory-related performance problems.
Chen et al. [11] applied probabilistic symbolic execution to generate
performance distributions, while Brünink and Rosenblum [9] used
in-field data to extract performance specifications. These profiling
techniques are more helpful to comprehend performance than to

pinpoint performance problems, because they use resources or exe-
cution frequencies as the only performance indicator and do not
consider the performance impact among architecturally connected
code. Thus, developers have to waste many manual effort to locate
root causes. Differently, our approach tries to relieve such burden
from developers by prioritizing optimization opportunities.

Besides, several advances [4, 21, 22, 41, 58] have beenmade to fur-
ther analyze the profiles or execution traces for performance prob-
lem detection. Specifically, Ammons et al. [4] find expensive call
sequences in call-tree profiles, and the call sequences that are signif-
icantly more expensive in one call-tree profile than in another call-
tree profile. Han et al. [22] and Yu et al. [58] mine performance
behavioral patterns from stack traces and execution traces. These
approaches heavily rely on the test inputs that generate the profiles;
i.e., performance problems might stay unrevealed as they are not
manifested by those test inputs. Instead, our approach also con-
siders architectural impact and static complexity to avoid solely
depending on dynamic executions.
Pattern-Based Performance Problem Detection. A large body
ofwork has been done on the detection of specific performance prob-
lems. One line of work focuses on loop-related performance prob-
lems; e.g., inefficient loops [16, 34], redundant loops [32, 34] and re-
dundant collection traversals [35]. Another line of work focuses on
memory-related performance problems; e.g., under-utilized or over-
utilized containers [25, 28, 40, 53], inefficient usage of temporary
structures or objects [18, 51, 52, 55] and reusable or cacheable data [8,
15, 31, 50, 54]. Besides these twomain lines of work, researchers have
also investigated performance problems caused by inefficient or in-
correct synchronization [36, 57], slow responsiveness of user inter-
faces [24, 37], heavy input workloads [49], inefficient order of eval-
uating subexpressions [38] and anomalous executions [26]. In addi-
tion, performance anti-patterns [42] are used to detect performance
problems satisfying the anti-patterns [12, 45]. While they are effec-
tive at detecting specific types of performance problems, they fail
to be applicable to a wider range of performance problem types,
as these patterns focus on the root causes of specific performance
problems. Differently, the patterns in this study consider the opti-
mization locations from execution symptoms, and are more generic.

7 CONCLUSIONS
We proposed and implemented a novel approach, named Speedoo,
to identify the optimization opportunities that should be given
high priorities to performance-critical methods to improve the
overall system performance. Our evaluation on real-life projects
has indicated that our approach effectively prioritizes potential
performance optimization opportunities to reduce the manual effort
of developers, and significantly outperforms random search and a
state-of-the-art profiling tool YourKit.

ACKNOWLEDGMENTS
The work is supported by the National Key Basic Research and De-
velopment Program of China (2014CB340702), the National Natural
Science Foundation of China (61472175, 61472178, 61772263), the
Natural Science Foundation of Jiangsu Province of China (BK20140611),
and the program B for Outstanding PhD candidate of Nanjing Uni-
versity.



Speedoo: Prioritizing Performance Optimization Opportunities ICSE ’18, May 27-June 3, 2018, Gothenburg, Sweden

REFERENCES
[1] 2017. JPROFILER. https://www.ej-technologies.com/products/jprofiler/overview.

html. (2017).
[2] 2017. Understand. https://scitools.com/. (2017).
[3] 2017. YourKit. https://www.yourkit.com/. (2017).
[4] GlennAmmons, Jong-DeokChoi,ManishGupta, andNikhil Swamy. 2004. Finding

and Removing Performance Bottlenecks in Large Systems. In ECOOP. 172–196.
[5] Carliss Y. Baldwin and Kim B. Clark. 1999. Design Rules: The Power of Modularity

Volume 1. MIT Press, Cambridge, MA, USA.
[6] Thomas Ball and James R. Larus. 1996. Efficient Path Profiling. InMICRO. 46–57.
[7] S. Baltes, O. Moseler, F. Beck, and S. Diehl. 2015. Navigate, Understand, Commu-

nicate: How Developers Locate Performance Bugs. In ESEM. 1–10.
[8] Suparna Bhattacharya, Mangala Gowri Nanda, K. Gopinath, and Manish Gupta.

2011. Reuse, Recycle to De-bloat Software. In ECOOP. 408–432.
[9] Marc Brünink and David S. Rosenblum. 2016. Mining Performance Specifications.

In FSE. 39–49.
[10] Yuanfang Cai and Kevin J. Sullivan. 2006. Modularity Analysis of Logical Design

Models. In ASE. 91–102.
[11] Bihuan Chen, Yang Liu, and Wei Le. 2016. Generating Performance Distributions

via Probabilistic Symbolic Execution. In ICSE. 49–60.
[12] Tse-Hsun Chen, Weiyi Shang, Zhen Ming Jiang, Ahmed E. Hassan, Mohamed

Nasser, and Parminder Flora. 2014. Detecting Performance Anti-patterns for
Applications Developed Using Object-relational Mapping. In ICSE. 1001–1012.

[13] Norman Cliff. 1993. Dominance statistics: Ordinal analyses to answer ordinal
questions. Psychological Bulletin 114, 3 (1993), 494.

[14] Emilio Coppa, Camil Demetrescu, and Irene Finocchi. 2012. Input-sensitive
Profiling. In PLDI. 89–98.

[15] Luca Della Toffola, Michael Pradel, and Thomas R. Gross. 2015. Performance
Problems You Can Fix: A Dynamic Analysis of Memoization Opportunities. In
OOPSLA. 607–622.

[16] Monika Dhok and Murali Krishna Ramanathan. 2016. Directed Test Generation
to Detect Loop Inefficiencies. In FSE. 895–907.

[17] Evelyn Duesterwald and Vasanth Bala. 2000. Software Profiling for Hot Path
Prediction: Less is More. In ASPLOS. 202–211.

[18] Bruno Dufour, Barbara G. Ryder, and Gary Sevitsky. 2008. A Scalable Tech-
nique for Characterizing the Usage of Temporaries in Framework-intensive Java
Applications. In FSE. 59–70.

[19] Gordon Fraser and Andrea Arcuri. 2011. EvoSuite: Automatic Test Suite Genera-
tion for Object-Oriented Software. In ESEC/FSE. 416–419.

[20] Simon F. Goldsmith, Alex S. Aiken, and Daniel S. Wilkerson. 2007. Measuring
Empirical Computational Complexity. In ESEC-FSE. 395–404.

[21] Mark Grechanik, Chen Fu, and Qing Xie. 2012. Automatically Finding Perfor-
mance Problems with Feedback-directed Learning Software Testing. In ICSE.
156–166.

[22] Shi Han, Yingnong Dang, Song Ge, Dongmei Zhang, and Tao Xie. 2012. Per-
formance Debugging in the Large via Mining Millions of Stack Traces. In ICSE.
145–155.

[23] Guoliang Jin, Linhai Song, Xiaoming Shi, Joel Scherpelz, and Shan Lu. 2012.
Understanding and Detecting Real-world Performance Bugs. In PLDI. 77–88.

[24] Milan Jovic, Andrea Adamoli, and Matthias Hauswirth. 2011. Catch Me if You
Can: Performance Bug Detection in the Wild. In OOPSLA. 155–170.

[25] Changhee Jung, Silvius Rus, Brian P. Railing, Nathan Clark, and Santosh Pande.
2011. Brainy: Effective Selection of Data Structures. In PLDI. 86–97.

[26] Charles Killian, Karthik Nagaraj, Salman Pervez, Ryan Braud, James W. An-
derson, and Ranjit Jhala. 2010. Finding Latent Performance Bugs in Systems
Implementations. In FSE. 17–26.

[27] James R. Larus. 1999. Whole Program Paths. In PLDI. 259–269.
[28] Lixia Liu and Silvius Rus. 2009. Perflint: A Context Sensitive Performance Advisor

for C++ Programs. 265–274.
[29] Yepang Liu, Chang Xu, and Shing-Chi Cheung. 2014. Characterizing and Detect-

ing Performance Bugs for Smartphone Applications. In ICSE. 1013–1024.
[30] Rashmi Mudduluru and Murali Krishna Ramanathan. 2016. Efficient Flow Profil-

ing for Detecting Performance Bugs. In ISSTA. 413–424.
[31] Khanh Nguyen and Guoqing Xu. 2013. Cachetor: Detecting Cacheable Data to

Remove Bloat. In ESEC/FSE. 268–278.
[32] Adrian Nistor, Po-Chun Chang, Cosmin Radoi, and Shan Lu. 2015. CARAMEL:

Detecting and Fixing Performance Problems That Have Non-Intrusive Fixes. In

ICSE. 902–912.
[33] Adrian Nistor, Tian Jiang, and Lin Tan. 2013. Discovering, Reporting, and Fixing

Performance Bugs. In MSR. 237–246.
[34] Adrian Nistor, Linhai Song, DarkoMarinov, and Shan Lu. 2013. Toddler: Detecting

Performance Problems via Similar Memory-access Patterns. In ICSE. 562–571.
[35] Oswaldo Olivo, Isil Dillig, and Calvin Lin. 2015. Static Detection of Asymptotic

Performance Bugs in Collection Traversals. In PLDI. 369–378.
[36] Michael Pradel, Markus Huggler, and Thomas R. Gross. 2014. Performance

Regression Testing of Concurrent Classes. In ISSTA. 13–25.
[37] Michael Pradel, Parker Schuh, George Necula, and Koushik Sen. 2014. EventBreak:

Analyzing the Responsiveness of User Interfaces Through Performance-guided
Test Generation. In OOPSLA. 33–47.

[38] Marija Selakovic, Thomas Glaser, and Michael Pradel. 2017. An Actionable
Performance Profiler for Optimizing the Order of Evaluations. In ISSTA. 170–180.

[39] Marija Selakovic andMichael Pradel. 2016. Performance Issues and Optimizations
in JavaScript: An Empirical Study. In ICSE. 61–72.

[40] Ohad Shacham, Martin Vechev, and Eran Yahav. 2009. Chameleon: Adaptive
Selection of Collections. In PLDI. 408–418.

[41] Du Shen, Qi Luo, Denys Poshyvanyk, and Mark Grechanik. 2015. Automating
Performance Bottleneck Detection Using Search-based Application Profiling. In
ISSTA. 270–281.

[42] Connie Smith and Lloyd G. Williams. 2002. New Software Performance AntiPat-
terns: More Ways to Shoot Yourself in the Foot. In CMG. 667–674.

[43] Linhai Song and Shan Lu. 2014. Statistical Debugging for Real-world Performance
Problems. In OOPSLA. 561–578.

[44] Linhai Song and Shan Lu. 2017. Performance Diagnosis for Inefficient Loops. In
ICSE. 370–380.

[45] Alexander Wert, Jens Happe, and Lucia Happe. 2013. Supporting Swift Reaction:
Automatically Uncovering Performance Problems by Systematic Experiments. In
ICSE. 552–561.

[46] Frank Wilcoxon. 1992. Individual Comparisons by Ranking Methods", bookTi-
tle="Breakthroughs in Statistics: Methodology and Distribution. 196–202.

[47] Sunny Wong, Yuanfang Cai, Giuseppe Valetto, Georgi Simeonov, and Kan-
warpreet Sethi. 2009. Design Rule Hierarchies and Parallelism in Software
Development Tasks. In ASE. 197–208.

[48] Lu Xiao, Yuanfang Cai, and Rick Kazman. 2014. Titan: A Toolset That Connects
Software Architecture With Quality Analysis. In FSE. 763–766.

[49] Xusheng Xiao, Shi Han, Dongmei Zhang, and Tao Xie. 2013. Context-sensitive
Delta Inference for Identifying Workload-dependent Performance Bottlenecks.
In ISSTA. 90–100.

[50] Guoqing Xu. 2012. Finding Reusable Data Structures. In OOPSLA. 1017–1034.
[51] Guoqing Xu, Matthew Arnold, Nick Mitchell, Atanas Rountev, and Gary Sevitsky.

2009. Go with the Flow: Profiling Copies to Find Runtime Bloat. In PLDI. 419–430.
[52] Guoqing Xu, Nick Mitchell, Matthew Arnold, Atanas Rountev, Edith Schonberg,

and Gary Sevitsky. 2010. Finding Low-utility Data Structures. In PLDI. 174–186.
[53] Guoqing Xu and Atanas Rountev. 2010. Detecting Inefficiently-used Containers

to Avoid Bloat. In PLDI. 160–173.
[54] Guoqing Xu, Dacong Yan, and Atanas Rountev. 2012. Static Detection of Loop-

invariant Data Structures. In ECOOP. 738–763.
[55] Dacong Yan, Guoqing Xu, and Atanas Rountev. 2012. Uncovering Performance

Problems in Java Applications with Reference Propagation Profiling. In ICSE.
134–144.

[56] Yibiao Yang, Mark Harman, Jens Krinke, Syed Islam, David Binkley, Yuming
Zhou, and Baowen Xu. 2016. An Empirical Study on Dependence Clusters for
Effort-Aware Fault-Proneness Prediction. In ASE. 296–307.

[57] Tingting Yu and Michael Pradel. 2016. SyncProf: Detecting, Localizing, and
Optimizing Synchronization Bottlenecks. In ISSTA. 389–400.

[58] Xiao Yu, Shi Han, Dongmei Zhang, and Tao Xie. 2014. Comprehending Per-
formance from Real-world Execution Traces: A Device-driver Case. In ASPLOS.
193–206.

[59] Shahed Zaman, Bram Adams, and Ahmed E. Hassan. 2012. A Qualitative Study
on Performance Bugs. In MSR. 199–208.

[60] Dmitrijs Zaparanuks and Matthias Hauswirth. 2012. Algorithmic Profiling. In
PLDI. 67–76.

https://www.ej-technologies.com/products/jprofiler/overview.html
https://www.ej-technologies.com/products/jprofiler/overview.html
https://scitools.com/
https://www.yourkit.com/

	Abstract
	1 Introduction
	2 Preliminaries on Architecture
	3 Methodology
	3.1 Metric Computation
	3.2 Method Prioritization
	3.3 Optimization Space Localization

	4 Evaluation
	4.1 Evaluation Setup
	4.2 Effectiveness Evaluation (RQ1)
	4.3 Sensitivity Evaluation (RQ2)
	4.4 Performance Evaluation (RQ3)

	5 Discussion
	6 Related Work
	7 Conclusions
	Acknowledgments
	References

