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Branching repositories facilitates efficient software development but can also inadvertently propagate vul-
nerabilities. When an original branch is patched, other unfixed branches remain vulnerable unless the patch
is successfully ported. However, due to inherent discrepancies between branches, many patches cannot be
directly applied and require manual intervention, which is time-consuming and leads to delays in patch porting,
increasing vulnerability risks. Existing automated patch porting approaches are prone to errors, as they often
overlook essential semantic and syntactic context of vulnerability and fail to detect or refine faulty patches.

We propose Mystiqe, a novel LLM-based approach to address these limitations. Mystiqe first slices the
semantic-related statements linked to the vulnerability while ensuring syntactic correctness, allowing it to
extract the signatures for both the original patched function and the target vulnerable function. Mystiqe then
utilizes a fine-tuned LLM to generate a fixed function, which is further iteratively checked and refined to ensure
successful porting. Our evaluation shows that Mystiqe achieved a success rate of 0.954 at function level and
of 0.924 at CVE level, outperforming state-of-the-art approaches by at least 13.2% at function level and 12.3%
at CVE level. Our evaluation also demonstrates Mystiqe’s superior generality across various projects, bugs,
and programming languages. Mystiqe successfully ported patches for 34 real-world vulnerable branches.
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1 Introduction
In modern software development, branching within a single repository provides an efficient way to
manage and organize feature development [23, 36, 38]. However, this practice can inadvertently
propagate vulnerabilities. When a branch is created from another, it may inherit existing vulnera-
bilities from the parent branch. Even if the original branch is later fixed with a patch, the target
unfixed branches within the repository remain vulnerable unless the patch is consistently applied
across them [20, 42]. To mitigate these risks, a straightforward and cost-effective approach is to
port security patches from the original branch to target branches. However, due to the inherent
discrepancies between branches [46], many patches cannot be directly applied, resulting in delays
in patch porting and increasing vulnerability exposure [20, 41].

Existing Approaches. Various approaches have been proposed to automatically port patches for
mitigating this problem. Pattern-based approaches, such as FixMorph [41] and TSBPORT [62], rely
on predefined patch patterns to automatically port patches within local code hunks. FixMorph [41]
primarily utilizes syntactic information to port patches. However, its heavy reliance on syntactic
patterns often leads to the neglect of semantic aspects within the local hunks. Additionally, the
patch generation process in FixMorph depends on compilation by Clang/LLVM, which is time-
consuming and lacks generalizability across different repositories. To address these limitations,
TSBPORT [62] introduces a range of semantic hunk types to enhance the porting process but still
suffers from significant limitations, i.e., if any modified hunk falls outside the predefined patterns,
the entire patch may fail, and the lack of function-level semantic information can result in the
introduction of unexpected patch porting errors.

LLM-based approach, exemplified by PPatHF [35], leverages a fine-tuned large language model
(LLM) to automate the porting of patches across forked projects at function level. This approach
benefits from LLM’s ability to comprehend the discrepancies of a function between the original and
target branches. PPatHF attempts to simplify the patching process by removing compound blocks
with no modified lines, thereby focusing on core changes. However, this approach can inadvertently
strip away crucial syntactic and semantic information related to the vulnerability, potentially
resulting in patches that remain vulnerable. Moreover, PPatHF relies heavily on intra-repository
knowledge for LLM fine-tuning, which can lead to misalignments with the actual porting task,
thereby reducing its effectiveness across different projects or languages. Additionally, LLM may
generate incomplete or incorrect patches, as PPatHF often overlooks the diverse reasons for LLM
porting failure, which hinders further patch adaption and leads to unsuccessful patching.

Besides, there are some approaches designed for specialized vulnerability. For example, SkyPort
[43] ports patches to earlier versions by matching portable constraints between modified lines and
sink functions for PHP injection vulnerabilities. However, this approach requires manual curation of
sink functions, limiting its applicability to certain types of vulnerabilities. PatchWeave [42] utilizes
the exploitable test cases to guide patch porting. However, the vulnerability may lack exploitable
test cases, limiting the practical effectiveness.

Challenges. We summarize two main challenges of the existing approaches. (C1) Pattern-based
approaches work at the hunk level, often missing vulnerability-relevant semantic information
outside the modified code segment, and LLM-based approach, though working at a broader function
level, can still overlook vulnerability relevant statements and include irrelevant ones. The underlying
problem is that both approaches struggle to effectively balance porting granularity and capturing
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relevant context. (C2) Pattern-based approaches struggle with unexpected code variations, while
LLM-based approaches often rely too heavily on generated output without thorough verification.
This leads to unresolved porting failures and incomplete patches, as neither approach has a robust
mechanism for detecting and refining these issues.
Our Approach. We propose a novel approach, Mystiqe, for automatically porting patches

across different branches at function level. To address C1, Mystiqe extracts vulnerability-relevant
signatures of the patch function (including pre-patch and post-patch function) from the original
branch and then identifies corresponding signature of the vulnerable function from target branch.
It then uses a fine-tuned LLM to port the patch. Specifically, Mystiqe slices control-flow and data-
dependency related statements with the changed statements, and then further ensures the syntactic
completeness for these sliced statements leveraging Abstract Syntax Tree (AST). Subsequently,
Mystiqe generates the target fixed function using an LLM fine-tuned on the same task.

To address C2, Mystiqe first checks whether the vulnerable function is properly fixed, whether
branch discrepancy is preserved, and whether LLM adheres to the prompt’s constraints, applying
heuristic rules to address these anomalies. Mystiqe then generates prompts with detailed sugges-
tions based on these anomalies to guide LLM in refining the patches. This iterative checking-refining
process ensures continuous improvement and increases the success rate of patch porting.
Evaluation.We assess Mystiqe’s effectiveness by comparing it against two state-of-the-art

pattern-based approaches, one leading LLM-based approach, and four advanced LLMs across 694
CVEs involving 1,359 vulnerable functions. The results demonstrate that Mystiqe successfully
ports 1,297 (0.954) functions and 641 (0.924) CVEs, significantly outperforming the state-of-the-art
approaches by at least 13.2% and 12.3%, respectively. Additionally, we conduct an ablation study and
parameter sensitivity analysis to evaluate the contribution of each critical module and parameter in
Mystiqe. Furthermore, we comprehensively evaluate the generality of Mystiqe across different
projects, bugs, and programming languages (e.g., Java). Mystiqe exhibits superior generality,
outperforming the state-of-the-art approaches by at least 112.5%, 18.6%, and 15.4% at function level
in the three generality tasks. To assess Mystiqe’s practical usefulness, we apply it to successfully
port 34 real-world vulnerable branches, with 29 successfully merged.

Contribution. This work makes the following contributions.

• We propose Mystiqe, a novel LLM-based approach for porting security patches. Mystiqe
extracts semantic and syntactic signatures to drive LLM in generating a fixed function. It then
checks both semantic and syntactic anomalies to guide LLM in refining the fixed function.

• Mystiqe outperforms the state-of-the-art approaches in patch porting success rate by at least
13.2% and 12.3% at both function and CVE levels, while also demonstrating strong generality
across various scenarios, and successfully porting patches for 34 real-world vulnerable branches.

2 Motivation
Our investigation into vulnerability patch porting begins with a thorough analysis of state-of-the-art
approaches. We used two CVEs to highlight their limitations and guide the design of Mystiqe.

2.1 Limitation of Pattern-Based Approaches
CVE-2023-0465 [28] is a vulnerability in OpenSSL [32], caused by the improper handling of the
EXFLAG_INVALID_POLICY flag within the check_policy function. It allows a security bypass due to
incorrect validation in the certificate chain. Fig. 1(a) depicts the original patch in the master branch,
where a sanity check (Lines 14-15) and a new error-handling block (Lines 19-22) were introduced.
As shown in Fig. 1(b), developers manually adapted the patch, incorporating the sanity check (Line
16) and modifying the error-handling logic (Lines 21-24) to the OpenSSL_1_1_1-stable branch.
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(b) Target patch of check_policy Ported by Human Developer
in Commit b013765 of OpenSSL_1_1_1-stable Branch

(a) Original patch of check_policy 
in Commit e4142ec of Master Branch

(c) Porting Patch of check_policy by TSBPORT
of OpenSSL_1_1_1-stable Branch

static int check_policy(X509_STORE_CTX *ctx){
...
if (ret == X509_PCY_TREE_TERNAL) {

  ERR_raise(ERR_LIB_X509, ERR_R_X509_LIB);
  goto memerr;

}
if (ret == X509_PCY_TREE_INVALID) {
  int i;
  int i, cbcalled = 0;
  for (i = 1; i < sk_X509_num(ctx->chain); i++) {
  for (i = 0; i < sk_X509_num(ctx->chain); i++) {
      X509 *x = sk_X509_value(ctx->chain, i);
      if ((x->ex_flags & EXFLAG_INVALID_POLICY) != 0)
        cbcalled = 1;
      CB_FAIL_IF((x->ex_flags & EXFLAG_INVALID_POLICY) != 0,
      ctx, x, i, X509_V_ERR_INVALID_POLICY_EXTENSION);
    }
    if (!cbcalled) {
      ERR_raise(ERR_LIB_X509, ERR_R_INTERNAL_ERROR);
      return 0;
    }
    return 1;
  }

}
...}

static int check_policy(X509_STORE_CTX *ctx){
...
if (ret == X509_PCY_TREE_TERNAL) {
  X509err(X509_F_CHECK_POLICY, ERR_R_MALLOC_FAILURE);
  ctx->error = X509_V_ERR__OF_MEM;
  return 0;

}
if (ret == X509_PCY_TREE_INVALID) {
  int i;
  int i, cbcalled = 0;
  for (i = 1; i < sk_X509_num(ctx->chain); i++) {
  for (i = 0; i < sk_X509_num(ctx->chain); i++) {
      X509 *x = sk_X509_value(ctx->chain, i);
      if (!(x->ex_flags & EXFLAG_INVALID_POLICY))
        continue;
      cbcalled = 1;
      if (!verify_cb_cert(ctx, x, i, 

            X509_V_ERR_INVALID_POLICY_EXTENSION))
        return 0;
    }
    if (!cbcalled) {
      X509err(X509_F_CHECK_POLICY, ERR_R_INTERNAL_ERROR);
      return 0;
    }
    return 1;
  }

}
...}
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static int check_policy(X509_STORE_CTX *ctx){
  ...
  if (ret == X509_PCY_TREE_TERNAL) {
    X509err(X509_F_CHECK_POLICY, ERR_R_MALLOC_FAILURE);
    ctx->error = X509_V_ERR__OF_MEM;
    return 0;

  }
  if (ret == X509_PCY_TREE_VALID) {
      int i;
    int i, cbcalled = 0;
    for (i = 1; i < sk_X509_num(ctx->chain); i++) {
    for (i = 0; i < sk_X509_num(ctx->chain); i++) {
      X509 *x = sk_X509_value(ctx->chain, i);
      if ((x->ex_flags & EXFLAG_VALID_POLICY) != 0) {
        cbcalled = 1;
      }
      if (!(x->ex_flags & EXFLAG_VALID_POLICY)) {
        continue;
      }
      if (!verify_cb_cert(ctx, x, i,  

          X509_V_ERR_VALID_POLICY_EXTENSION)) {
        return 0;
      }
    }

    }
  if (!cbcalled) {
    X509err(X509_F_CHECK_POLICY, ERR_R_TERNAL_ERROR);
    return 0;
    return 1;

  }
  ...}

Fig. 1. An Example of CVE-2023-0465, Porting Patch of master branch to function check_policy by Human

Developers and TSBPORT in OpenSSL_1_1_1-stable Branch

Table 1. Success Rate of Patch Porting When PPatHF is Equipped with Our Key Modules

PPatHF PPatHF w/ Signature PPatHFw/ Tuning PPatHFw/ Refine PPatHF w/ All
Succ. Rate (CVE) 0.385 0.516 (↑ 0.131) 0.641 (↑ 0.256) 0.531 (↑ 0.146) 0.840 (↑ 0.455)
Succ. Rate (Func.) 0.550 0.658 (↑ 0.108) 0.693 (↑ 0.143) 0.668 (↑ 0.118) 0.872 (↑ 0.322)

However, using git cherry-pick [12] to port the patch led to conflicts due to discrepancies
between the branches, resulting in unresolved porting. Similarly, TSBPORT produced an erroneous
patch, as shown in Fig. 1(c). It initially identified and applied the sanity check to Lines 14-16 in Fig.
1(c) before the redundantly existing sanity check (Lines 17-19). It incorrectly adapted the new error-
handling logic into an invalid conditional block (Lines 25-28 in Fig. 1(c)), leading to a logic error
that the function would never return 1, which disrupted the intended validation flow. FixMorph
failed to handle the compilation process effectively despite we spent approximately 40 human
hours adapting to OpenSSL. Other approaches like SkyPort and PatchWeave, which focus on
injection-type vulnerabilities or test case-available vulnerabilities, also failed to port the patch due
to the different vulnerability type and the absence of a test case for this vulnerability, respectively.
Those failures of pattern-based approaches highlight that the predefined patterns can restrict

effectiveness and generality, limiting further patch adaption. In contrast, LLM-based approach
PPatHF leverages the advanced code understanding capabilities of LLMs to port patches identical
to human developers. Unlike pattern-based approaches, PPatHF can successfully port the patch
while preserving the functional differences between master and OpenSSL_1_1_1-stable branch.

2.2 Limitation of LLM-Based Approach
Despite LLM’s advanced capabilities, LLM-based approach PPatHF also faces critical limitations.
We explored these limitations through CVE-2023-1994 [29], a vulnerability in the dissect_gquic_
frame_type function of Wireshark [55]. Since the patch is identical in both branches and the
surrounding code is nearly the same, we avoid duplicating the porting results and only present the
outcome in the target release-3.6 branch in Fig. 2. If the pointer gquic_info is null, it can lead
to a denial of service when passed to its callee function (Lines 24, 26 and 28 in Fig. 2). The human
developers add a sanity check for gquic_info before its use in master branch of commit ee314ac
and then in release-3.6 branch of commit 8970fc1 (Lines 2-5 in Fig. 2).

The patches for the master branch and release-3.6 branch are identical and simple, which was
successfully ported by git cherry-pick and TSBPORT. However, PPatHF failed. The main reasons
for this failure are three folds: ① Before porting, PPatHF identifies the entire compound block
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dissect_gquic_frame_type(tvbuff_t *tvb, packet_info *pinfo, proto_tree *gquic_tree, guint offset, guint8 len_pkn, gquic_info_data_t *gquic_info){
if (!gquic_info) {

expert_add_info(pinfo, gquic_tree, &ei_gquic_data_invalid);
return offset + tvb_reported_length_remaining(tvb, offset);

}

proto_item *ti, *ti_ft, *ti_ftflags;
proto_tree *ft_tree, *ftflags_tree;
guint8 frame_type;
guint8 num_ranges, num_revived, num_blocks = 0, num_timestamp;
guint32 len_stream = 0, len_offset = 0, len_data = 0, len_largest_observed = 1, len_missing_packet = 1;
ti_ft = proto_tree_add_item(gquic_tree, hf_gquic_frame, tvb, offset, 1, ENC_NA);
ft_tree = proto_item_add_subtree(ti_ft, ett_gquic_ft);
/* Frame type */
ti_ftflags = proto_tree_add_item(ft_tree, hf_gquic_frame_type, tvb, offset, 1, ENC_NA);
frame_type = tvb_get_guint8(tvb, offset);
proto_item_set_text(ti_ft, "%s", rval_to_str(frame_type, frame_type_vals, "Unknown"));

if((frame_type & FTFLAGS_SPECIAL) == 0 && frame_type != FT_CRYPTO){
offset += 1;
switch(frame_type){

case FT_PADDING:{......}
break;
case FT_RST_STREAM:{

...
proto_tree_add_item_ret_uint(ft_tree, hf_gquic_frame_type_rsts_stream_id, tvb, offset, 4, gquic_info->encoding, &stream_id);
...
proto_tree_add_item(ft_tree, hf_gquic_frame_type_rsts_byte_offset, tvb, offset, 8, gquic_info->encoding);
...
proto_tree_add_item_ret_uint(ft_tree, hf_gquic_frame_type_rsts_error_code, tvb, offset, 4, gquic_info->encoding, &error_code);
...}

break;
case FT_CONNECTION_CLOSE:{...}
break;

...}}
else {...}

return offset;
}

Replace
with Placeholder

Move
Placeholder

Recover
from Placeholder

Fig. 2. An Example of CVE-2023-1994, Porting Patch to function dissect_gquic_frame_type by Human

Developers (Green Hunk) and PPatHF (Red Hunk) in release-3.6 Branch

without modified lines in the original master branch and maps it to the target release-3.6 branch
(Lines 17-34), replacing the block with a placeholder. However, this replacement also removes
essential information, including critical function calls that attackers could exploit (e.g., Lines 24,
26, and 28), while leaving irrelevant statements intact (e.g., Lines 6-16), hindering accurate patch
porting. ② During porting, PPatHF mistakenly moves the placeholder between Line 1 and Line 6
(Lines 2-5 are ported by human developers but are missing from the patch generated by PPatHF).
This error arises because PPatHF relies heavily on the repository’s history commits and their
commit messages (i.e., intra-repository knowledge) for LLM fine-tuning, leading to misalignments
with actual porting tasks and reduced effectiveness, particularly in unseen repositories. In this case,
because LLM had not seen the placeholder during fine-tuning, the placeholder, which should
remain in place, is incorrectly moved. ③ After porting, PPatHF recovers the previously moved
code segment into the function, resulting in obvious syntactic errors (e.g., use before definition)
and semantic errors (e.g., the dangerous use of the null pointer gquic_info remains unresolved
after recovering). These issues leave the functionality broken and the vulnerability unfixed.
To address the limitation outlined in ①, we introduce a novel function slicing and completion

technique that extracts signatures of semantically and syntactically relevant statements to accurately
represent both the original patch function and the target vulnerable function. To mitigate ②, we
construct the largest dataset of original-target patch function pairs across 33 popular repositories,
designed to fine-tune an LLM with the same task of patch porting. To tackle the limitation described
in ③, we design semantic and syntactic checks that guide LLM in refining patches more accurately.
We also enhance PPatHF by integrating Mystiqe’s signature extraction module, fine-tuning

strategy, and checking-refining module. As shown in Table 2, the original success rate of porting
for 694 CVEs and 1,359 CVEs’ functions are 0.385 and 0.550. Comparatively, Mystiqe can increase
the performance by 34% to 66% at CVE level and by 20% to 26% at function level by integrating each
module of Mystiqe. When integrating all the three critical modules to PPatHF, it has a significant
increase of success rate at CVE and function level by 118% and 59%, respectively. The increment of
PPatHF underscores the importance of how to drive LLM to generate high quality ported patches.
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Table 2. Success Rate of Patch Porting When PPatHF is Equipped with Our Key Modules

PPatHF PPatHF w/ Signature PPatHFw/ Tuning PPatHFw/ Refine PPatHF w/ All
Succ. Rate (CVE) 0.385 0.516 (↑ 0.131) 0.641 (↑ 0.256) 0.531 (↑ 0.146) 0.840 (↑ 0.455)
Succ. Rate (Func.) 0.550 0.658 (↑ 0.108) 0.693 (↑ 0.143) 0.668 (↑ 0.118) 0.872 (↑ 0.322)
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Fig. 3. Approach Overview of Mystique

3 Approach
The key idea of Mystiqe is to extract the semantic and syntactic vulnerable and fixed signatures
of the patch from the original branch at function level, then extract the corresponding vulnerable
function signature of the vulnerable function from the target branch at function level, guiding the
fine-tuned large language model (LLM) to generate a fixed function. Since LLM may not always
produce accurate results, Mystiqe incorporates an iterative checking and refining process, which
enhances the success rate of patch porting. Finally, Mystiqe outputs the final fixed function. An
overview of Mystiqe is shown in Fig. 3, which consists of five key modules.
• Patch Function Semantic & Syntactic Signature Extraction. Given a patch function from the original
branch, Mystiqe extracts two vulnerability-relevant signatures, the pre-patch signature 𝑆𝑖𝑔pre
for pre-patch function 𝑓pre and the post-patch signature 𝑆𝑖𝑔post for post-patch function 𝑓post.

• Vulnerable Function Semantic & Syntactic Signature Extraction. Given the vulnerable function 𝑓vul
from the target vulnerable branch, Mystiqe extracts the vulnerable function signature 𝑆𝑖𝑔vul.

• Patch Porting Prompt Generation. Mystiqe applies the pre-patch signature 𝑆𝑖𝑔pre, post-patch
signature 𝑆𝑖𝑔post and vulnerable function signature 𝑆𝑖𝑔vul with a prompt template to generate the
patch porting prompt, requiring LLM to satisfy essential constraints for the patch porting task.

• LLM Fine-Tuning. Mystiqe fine-tunes LLM by constructing original-target patch function pairs
from two different branches. It extracts patch signatures (𝑆𝑖𝑔opre, 𝑆𝑖𝑔opost) from the earlier orig-
inal patched function and (𝑆𝑖𝑔tpre, 𝑆𝑖𝑔tpost) from the later target patched function, using these
signatures with the prompt template to generate the fine-tuning prompt to fine-tune LLM.

• Fixed Function Generation.Mystiqe generates an initial fixed signature 𝑆𝑖𝑔0fix using the generated
prompt and fine-tuned LLM. This initial fixed signature is then iteratively refined after heuristic-
based checking to address the potentially inaccurate patch generated by LLM. After this process,
Mystiqe outputs the final fixed function 𝑓fix.

3.1 Patch Function Semantic & Syntactic Signature Extraction
3.1.1 Function Semantic Slicing. Given the pre-patch function 𝑓pre and the post-patch function 𝑓post,
Mystiqe first normalizes each statement in 𝑓pre and 𝑓post by removing all comments, tabs, and
white spaces. This normalization step ensures that the patching process is tolerant of discrepancies
in code formatting or comments. Next, Mystiqe uses the git diff command between 𝑓pre and
𝑓post to identify the set of deleted statements (denoted as Sdel) and the set of added statements
(denoted as Sadd). Mystiqe then generates Code Property Graph (CPG) for both 𝑓pre (denote as
𝐶𝑃𝐺pre) and 𝑓post (denote as 𝐶𝑃𝐺post) using Joern [44]. The slicing process based on the generated
CPGs is performed in two parts, i.e., data-dependency slicing and control-flow slicing.
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Data-Dependency Slicing. Mystiqe iterates over each statement 𝑠 ∈ Sdel (resp. 𝑠 ∈ Sadd) to
perform data-dependency forward and backward slicing. This slicing traces the data dependencies of
𝑠 forward and backward to the statements in𝐶𝑃𝐺pre (resp.𝐶𝑃𝐺post) that 𝑠 depends on or is depended
on. The slicing depth is set to 𝑠𝑙𝑖𝑑𝑝 . This slicing captures how statements influence variable values
and how those variables impact other statements. The resulting set of data-dependent statements
is denoted as Spre_data (and Spost_data).
Control-Flow Slicing.Mystiqe performs control-flow slicing by iterating over each statement

𝑠 ∈ Sdel (resp. 𝑠 ∈ Sadd) to extract the immediate dominate statements and the immediate post-
dominates statement of 𝑠 in 𝐶𝑃𝐺pre (resp. 𝐶𝑃𝐺post). This slicing helps to understand the execution
flow of vulnerable and fixed statements. The resulting set is denoted as Spre_ctrl (resp. Spost_ctrl).
The sliced set of 𝑓pre is Spre_ctrl ∪ Spre_data, denoted as Spre. Similarly, the sliced set of 𝑓post is

Spost_ctrl ∪ Spost_data, denoted as Spost.

3.1.2 Patch Statement Syntax Completion. Maintaining correct syntax in these sliced code frag-
ments is crucial for LLM’s accurate understanding and processing while the data-dependency
and control-flow slicing can lead to incomplete code fragments. Therefore, Mystiqe leverages
Tree-sitter [49] to construct Abstract Syntax Tree (AST) that automatically recovers the syntactic
integrity of the sliced code and provides a hierarchical representation of the code structure. Given
a statement 𝑠 ∈ Spre (resp. ∈ Spost), Mystiqe performs syntax completion and denotes these
statements as Spre_ast (resp. Spost_ast). This process involves the following three steps.
Control Clause Completion. For a given statement 𝑠 ∈ Spre (resp. ∈ Spost), Mystiqe traverses

the AST’s parent nodes of 𝑠 , extracts the control statements (e.g., if, else, switch, while), and
extracts the control sub-statements (e.g., the case statements corresponding to switch).
Exit Point and Jump Point Completion. For the extracted control statements and their sub-

statements, Mystiqe extracts occurrences of break, return and goto in those control blocks, as
these program exit points may contain important variable exit states.

Control Statement Bracket Completion. Mystiqe completes corresponding curly brackets for the
extracted control statements and their sub-statements to maintain syntactic integrity.
Mystiqe treats all the extracted statements from AST as Spre_ast (resp. Spost_ast). Then the

complete signature of 𝑓pre (resp. 𝑓post). is obtained, denoted as 𝑆𝑖𝑔pre (resp. 𝑆𝑖𝑔post), where, 𝑆𝑖𝑔pre =
Spre ∪Spre_ast (resp. 𝑆𝑖𝑔post = Spost ∪Spost_ast). All the other statements in 𝑓pre (resp. 𝑓post) are consid-
ered as removable statements. Following PPatHF [34], Mystiqe replaces them with placeholders,
denoted as Ppre (resp. Ppost).

3.2 Vulnerable Function Semantic & Syntactic Signature Extraction
3.2.1 Vulnerable Statement Mapping & Slicing. Mystiqe first generates a Code Property Graph
(CPG) for 𝑓vul (denote as 𝐶𝑃𝐺vul) using Joern [44] and then maps the deleted statements Sdel in 𝑓pre
to their corresponding vulnerable statements in 𝑓vul, resulting in a set of mapped statements, which
is then used for slicing. The mapping process involves the following three steps.

(1) Given a deleted statement 𝑠 ∈ Sdel, Mystiqe first calculates the syntactic similarity with each
statement in 𝑓vul using the Levenshtein distance [54]. If the similarity exceeds a predefined
threshold 𝑡ℎ𝑙𝑑 , a mapping between 𝑠 and the statement in 𝑓vul is established. The default threshold
is set to 0.55, following previous work [7]. Since there may be multiple candidate mapped
statements, Mystiqe denotes the candidate statements in 𝑓vul as Scand.

(2) Mystiqe then performs forward and backward data-dependency and control-dependency
slicing for 𝑠 and its mapped statement in Scand to extract the statement set that has data or
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control dependencies with them in𝐶𝑃𝐺pre and𝐶𝑃𝐺vul. It calculates similarity between the data-
dependency and control-dependency statements of 𝑠 and each candidate statement in Scand.
The candidate statement with the highest similarity score is selected as the mapped statement.

(3) If no statement meets the mapping criteria in (1), Mystiqe iteratively repeats Steps 1 and 2 for
the dominate and post-dominate statements of 𝑠 until it reaches the entry and exit points of
the function. The statements between mapped dominate and post-dominate are selected as the
mapped statement hunk.

The resulting mapped statements, along with the statement hunks between the mapped dominate
and post-dominate, are denoted as Smap. If the patch has no deleted statements, Mystiqe regards
𝑆𝑖𝑔post \ Sadd as the vulnerable statement, and then conducts the same mapping process. Next,
similar to Section 3.1, Mystiqe performs function slicing (see Sec. 3.1.1) on Smap. The final sliced
set of 𝑓vul is Svul_data ∪ Svul_ctrl, denoted as Svul.

3.2.2 Vulnerable Statement Syntax Completion. The syntax completion for vulnerable statements
follows the same process as described in Sec. 3.1.2 for patch statement syntax completion. The final
signature of 𝑓vul, denoted as 𝑆𝑖𝑔vul, is obtained, i.e., 𝑆𝑖𝑔vul = Svul ∪ Svul_ast.

3.3 Patch Porting Prompt Generation
Fig. 4 shows the prompt template for patch porting and fine-tuning. It consists of three components,
i.e., task description, constraint instruction, and input. The patch porting prompt is denoted as 𝑃port.
• Task Description defines the description of the porting task. %Language% specifies the pro-
gramming language (e.g., C, Java) of the task. The description informs LLM that it must adapt a
patch to fix a vulnerable function while adhering to the language-specific characteristics.

• Constraint Instruction outlines a set of constraints that guide LLM during the patch porting
process. Specifically,C1 instructs LLM to focus on adapting the patch as necessary, acknowledging
that the patch may not directly apply to the vulnerable function. C2 ensures that LLM only makes
changes necessary to apply the patch without introducing additional fixes or improvements, and
it maintains the original functionality to the greatest extent possible. C3 instructs LLM to retain
the special annotation (placeholders) untouched, preserving their integrity. C4 advises LLM not
to fill in any missing parts of the code, as this could introduce potential syntactic errors. LLM
should output only the fixed code, even if incomplete portions are present.

• Input defines the format for the provided patch and vulnerable function. The patch signature
(𝑆𝑖𝑔pre, 𝑆𝑖𝑔post) and the vulnerable function signature 𝑆𝑖𝑔vul are given as inputs. To reduce token
consumption and highlight discrepancies, Mystiqe converts the patch signature to a diff format,
denoted as %diff(𝑆𝑖𝑔pre, 𝑆𝑖𝑔post)%. Mystiqe fills %𝑆𝑖𝑔vul% with the vulnerable signature 𝑆𝑖𝑔vul
to indicate the target vulnerable function that requires patch porting.

3.4 LLM Fine-Tuning
To enhance LLM’s capability in performing patch porting, we employ a fine-tuning process specifi-
cally tailored to this task. Unlike PPatHF, where the fine-tuning task is not aligned with the patch
poring task, Mystiqe ensures that the fine-tuning task is fully aligned with the patch porting task,
leading to more accurate and effective results.

3.4.1 Patch Pair Signature Generation. We first construct the dataset of original-target patch func-
tion pairs (see Sec. 4.1) and split each pair into the original patch function (denoted as 𝑓opre and
𝑓opost) and the target patch function (denoted as 𝑓tpre and 𝑓tpost). Given 𝑓opre, 𝑓opost and 𝑓tpre (serving
a similar role as 𝑓pre, 𝑓post and 𝑓vul in patch porting task), we generate the signatures denoted
as 𝑆𝑖𝑔opre, 𝑆𝑖𝑔opost and 𝑆𝑖𝑔tpre (serving a similar role as 𝑆𝑖𝑔pre, 𝑆𝑖𝑔post and 𝑆𝑖𝑔vul in patch porting
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You are a professional and cautious %Language% programmer.
I will give you a patch and a vulnerable function.
Your task is to refer to the patch to fix the vulnerable function, and output the fixed function.

Here are the constraints for your output:
C1. Need to make adaptation for the patch I gave you. It may not be directly applicable to the vulnerable function.
C2. Do not make any other fixes or improvements, you only need to adapt and fix patch parts.
C3. Do not delete or add any placeholders in the code.
C4. Do not fill in the missing parts, which will cause potential syntactic error issues. You may notice that there are
      some missing parts in the code I gave you, but it's okay. You just need to output the fixed code.

### Original Function Patch: %diff(Sigpre, Sigpost)%
### Vulnerable Function: %Sigvul%

Task Description

Constraint Instruction

Input

Fig. 4. Overview of Prompt Template

Table 3. Mapping of Constraints, Anomalies and Prompts

Constraints Anomalies Prompts

C1
A1 Semantic Fixing Anomalies Pa Your patch porting result don’t meet %Cn%, please refine 

your fixed function.C2
C3 A2 Placeholder Anomalies

C4 A3 Syntactic Fixing Anomalies Pb Your patch porting result obeys % syntactic error %, 
please refine your fixed function.

task) for fine-tuning LLM. Mystiqe fine-tunes LLM in a supervised way. Therefore, following
Sec. 3.2, Mystiqe maps the added statements in 𝑓opost to their corresponding fixed statements in
𝑓tpost, resulting in a set of mapped statements, and then further generates 𝑆𝑖𝑔tpost after slicing and
completion, which serves as the expected output for the supervised fine-tuning task.

3.4.2 Fine-Tuning Prompt Generation. Mystiqe generates the fine-tuning prompt with the same
prompt template of the porting task using 𝑆𝑖𝑔opre, 𝑆𝑖𝑔opost and 𝑆𝑖𝑔tpre, denoted as 𝑃ft.

3.4.3 Open-Source LLM Fine-Tuning. For each function pair, Mystiqe defines 𝑆𝑖𝑔tpost as the ex-
pected𝑂𝑢𝑡𝑝𝑢𝑡 , and constructs (𝑃ft,𝑂𝑢𝑡𝑝𝑢𝑡 ) for LoRA fine-tuning [14].We select a pre-trainedmodel,
and apply low-rank decomposition to model weights𝑊 ≈ 𝐴 × 𝐵. This enables efficient adaptation
using smaller matrices 𝐴 ∈ R𝑑×𝑟 and 𝐵 ∈ R𝑟×𝑑 . During fine-tuning, the model generates 𝑆𝑖𝑔′tpost,
and the loss L(𝑆𝑖𝑔tpost, 𝑆𝑖𝑔′tpost) is computed and minimized using the AdamW optimizer [22]. This
process iterates until the loss stabilizes, yielding the fine-tuned LLM M.

3.5 Fixed Function Generation
The process of generating the fixed function relies on the prompt 𝑃port from Sec. 3.3 and the fine-
tuned LLMM from Sec. 3.4. Mystiqe first generates an initial fixed signature and then iteratively
checks and refines it. This iterative process continues until the desired conditions are met and then
Mystiqe outputs the final fixed function 𝑓fix.

3.5.1 Initial Signature Generation. Given a porting prompt 𝑃port and a fine-tuned LLMM, Mys-
tiqe generates an initial output 𝑆𝑖𝑔0fix, where 𝑆𝑖𝑔

0
fix = M

(
𝑃port

)
.
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3.5.2 Heuristic-Based Checking. Based on the constraints of 𝑃port (i.e., C1-4), Mystiqe identifies
three types of anomalies that prevent LLM from correctly generating the fixed function, as shown
in Table 3. The constraints C1-4 are designed to guide LLM in porting patch successfully, without
breaking the functionality or introducing anomalies. We design three types of anomalies that
violate the constraints, which leads to the semantic error or syntactic error of the fixed function.
The three main anomalies are designed and detected as follows.

Semantic Anomalies (A1). C1 of the prompt template specifies that the ported patch should make
necessary adjustments, while C2 emphasizes that the patch must preserve the functionality of the
target branch. Failing to strike the right balance can result in semantical failure after patch porting:
under-fixing violates C1 by not applying sufficient changes, while over-fixing violates C2 by altering
the intended functionality. Mystiqe first calculates the edit distance [54] between 𝑆𝑖𝑔pre and
𝑆𝑖𝑔vul, denoted as 𝑆𝑖𝑚(𝑆𝑖𝑔pre, 𝑆𝑖𝑔vul). It then calculates the edit distance between 𝑆𝑖𝑔post and 𝑆𝑖𝑔fix,
denoted as 𝑆𝑖𝑚(𝑆𝑖𝑔post, 𝑆𝑖𝑔fix). If 𝑆𝑖𝑚(𝑆𝑖𝑔pre, 𝑆𝑖𝑔vul) is significantly greater than 𝑆𝑖𝑚(𝑆𝑖𝑔post, 𝑆𝑖𝑔fix),
we consider the patch porting as over-fixed. For example, if the pre-patch function and the vulnerable
function are the same, but ported patch is significantly different from the post-patch function,
this indicates that LLM has over-fixed, potentially breaking the functionality of the target branch.
Conversely, if 𝑆𝑖𝑚(𝑆𝑖𝑔post, 𝑆𝑖𝑔fix) is significantly greater than 𝑆𝑖𝑚(𝑆𝑖𝑔pre, 𝑆𝑖𝑔vul), we consider the
patch porting as under-fixed. For example, if the pre-patch function and the vulnerable function
are significantly different, but the ported patch remains unchanged with the post-patch function,
this indicates that LLM has under-fixed and failed to adapt the patch properly. We set thresholds
for over-fixing as 𝑡ℎ𝑜𝑣 and under-fixing as 𝑡ℎ𝑢𝑑 . If 𝑆𝑖𝑚(𝑆𝑖𝑔post, 𝑆𝑖𝑔fix) - 𝑆𝑖𝑚(𝑆𝑖𝑔pre, 𝑆𝑖𝑔vul) > 𝑡ℎ𝑜𝑣 or
𝑆𝑖𝑚(𝑆𝑖𝑔pre, 𝑆𝑖𝑔vul) - 𝑆𝑖𝑚(𝑆𝑖𝑔post, 𝑆𝑖𝑔fix) > 𝑡ℎ𝑢𝑑 , anomaly A1 is detected.

Placeholder Anomalies (A2). After slicing, there are special placeholders that LLM should not
add, delete or change place. However, we observe that LLM often struggles to handle placeholders,
leading to anomalies, which violates C3. Given 𝑆𝑖𝑔vul, Mystiqe anchors each placeholder with its
left sibling (parent node) and right sibling (child node) in its AST. If both siblings exist in 𝑆𝑖𝑔0fix but
the placeholder is added, deleted or changed place, anomaly A2 is detected.

Syntactic Anomalies (A3). Certain anomalies cannot be detected by relying solely on code signa-
tures. They require a comprehensive understanding of the entire fixed function, as mentioned in
Sec. 2.2. These anomalies, introduced by function signatures, can disrupt C4 and lead to syntactic
failures after patch porting. To address this, Mystiqe first recovers the code hunks corresponding
to each placeholder. After restoring all placeholders along with their related statements, Mystiqe
first generates the initial fixed function 𝑓 0fix. Next, Mystiqe uses Clang-tidy [5], a powerful tool
for identifying syntactic anomalies in 𝑓 0fix, to detect syntactic errors. To minimize false positives,
Mystiqe ignores the syntactic errors identified in both the vulnerable function 𝑓vul and the initial
fixed function 𝑓 0fix and if Clang-tidy detects any other syntactic errors, anomaly A3 is flagged.

3.5.3 Refining. Mystiqe usesM to refine its most recent output. As shown in Table 3, if A1 or
A2 is detected, Mystiqe uses the prompt 𝑃𝑎 to guide LLM in generating a refined result. Here,
%Cn% corresponds to the specific constraint being addressed, C1 for under-fixing in A1, C2 for
over-fixing in A1, and C3 for A2. If anomaly A3 is detected, Mystiqe uses the prompt 𝑃𝑏 to guide
LLM in generating the refined result. Here, %syntactic error% represents the potential syntactic
errors identified by Clang-tidy.

3.5.4 Iterating Checking and Refining. Mystiqe iteratively applies the process of checking and
refining. To maintain context, the history of previous checks and refinements is appended to the
prompt. Initially, it detects A1 and A2 anomalies before recovering placeholders, and conducts the
corresponding refining as shown in Eq. 1. If no A1 or A2 anomalies are found or the prompt token
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limit 𝑡𝑘𝑛𝑢𝑚 is achieved, Mystiqe outputs the fixed signature 𝑆𝑖𝑔fix. Mystiqe then proceeds to
recover the placeholders along with their code hunks in 𝑆𝑖𝑔fix to generate intermediate 𝑓fix. As
shown in Eq. 2, if the prompt does not exceed the token limit and anomaly A3 is detected, Mystiqe
includes A3 in the prompt for refining until no A3 is found or the prompt token limit 𝑡𝑘𝑛𝑢𝑚 is
achieved. The final output 𝑓fix is the completed fixed function for the target branch.

𝑆𝑖𝑔𝑡+1fix = M
(
𝑆𝑖𝑔𝑡fix, 𝑃𝑎

)
(1)

𝑓 𝑡+1fix = M
(
𝑓 𝑡fix, 𝑃𝑏

)
(2)

4 Evaluation
We implement Mystiqe with 7K lines of Python code and design the following research questions.

• RQ1: Effectiveness Evaluation. How effective is Mystiqe in porting patches?
• RQ2: Ablation Study. How does each component contribute to Mystiqe?
• RQ3: Parameter Sensitivity. How do the parameters affect the effectiveness of Mystiqe?
• RQ4: Generality Evaluation. How is the generality of Mystiqe in different scenarios?
• RQ5: Efficiency Evaluation. How is the efficiency of Mystiqe?
• RQ6: Usefulness Evaluation. How is the practical usefulness of Mystiqe?

4.1 Evaluation Setup
Ground Truth. Following TSBPORT [62], we choose C projects to construct the ground truth. The
ground truth is established through a rigorous four-step examination process.

(1) Collecting Vulnerabilities and Patches.We collected vulnerabilities from CVE/NVD [27], along
with their corresponding repository patch references (i.e., GitHub commits) between January
2014 and May 2024. Then, we filtered those vulnerabilities whose corresponding repositories
are not written in C. As a result, we gathered 7,514 CVEs with their patches.

(2) Expanding Vulnerabilities and Patches. To expand the vulnerabilities, we incorporated the vul-
nerability dataset used by TSBPORT [62]. To expand patches of each vulnerability, we leveraged
the collected patches to identify additional potential patches. Specifically, for each collected
commit, we scanned all commits in the corresponding repository, and expanded the patch set if
they met one of the following four criteria, (a) The patch code is identical to one of the collected
commits. (b) The edit distance similarity score exceeds 0.5 with at least one of the collected
commits, and the commit messages are identical. (c) The commit message references the SHA
value of a collected commit. (d) The commit message references a collected CVE ID. Following
this augmentation, we collected a total of 7,532 CVEs with their 15,478 patches.

(3) Selecting CVE Patch Pairs. Following PPatHF [35], we manually filtered commits unrelated to the
vulnerability, and further refined the commits that involved files unrelated to C or modifications
outside functions. After filtering, we sorted all commits by timestamp, and selected the earliest
and latest commit for each vulnerability to form a CVE patch pair. The earliest commits are
regarded as the original patch and the latest commits are regarded as the target patch. If the
vulnerability only contains one single patch, we also excluded it. After this process, we finalized
CVEs with their corresponding patch pairs.

(4) Splitting CVE Patch Pairs. We used patch pairs dated after the release of CodeLLama on August
23, 2023 for patch porting task, and patch pairs dated before this release date for fine-tuning
task, ensuring no data leakage between fine-tuning set and patch porting set. We then split
each patch into function quadruples (𝑓pre, 𝑓post, 𝑓vul, 𝑓human-fix) (resp., (𝑓opre, 𝑓opost, 𝑓tpre, 𝑓tpost))
for each function for the patch porting task (resp., then fine-tuning task).
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Two of the authors were involved in filtering commits unrelated to the vulnerability when
Selecting CVE Patch Pairs. Each author had over 5 years of experience in software security. We
measured their agreement using Cohen’s Kappa coefficient, which reached 0.981 for inspecting
vulnerability-unrelated commits. A third author was involved in resolving disagreements. As a
result, we collected 3,536 CVEs with their 5,977 patch pairs at function level across 33 different
repositories, 694 CVEs with their 1,359 patch pairs at function level for the patch porting task and
2,842 CVEs with their 4,618 patch pairs at function level for the fine-tuning task.
Fine-Tuned LLM Selection.We use CodeLlama [26], a recent and powerful foundation large

model designed for general code synthesis and understanding, to implement the porting module
of Mystiqe. We download the public accessible pretrained weights (with 13B parameters and
instruct-tuned) from the Hugging Face Transformer library to initialize our model.
During the fine-tuning stage, we adopt LoRA (Low-Rank Adaptation) [14] to tune LLM. We

set lora_r to 16 and lora_alpha to 32 for reducing memory requirement according to Raschka’s
work [37], with less time consumption and better performance. In addition, we set batch size to
8, epochs to 10 and learning rate to 3e-4, following PPatHF [35].

During the patch porting stage, we configure the maximum context tokens to 4,096. This extended
token limit accommodates the longer function and more round of refining, ensuring that input and
output will not be truncated. Besides, temperature and top_p affect the consistency of outputs of
the fine-tuned LLM. We choose to change temperature instead of changing both of them, following
the practice in prior work [60]. Here, we set temperature to 0.5, ensuring that the model maintains
consistency in patch porting while giving creative inferences.
Evaluation Metrics. The metrics of Exactly Match (E-M) and Success (Succ) are used in TSB-

PORT [62] to evaluate patch porting quality. E-M refers to the automatically ported patches that
are identical to the manually ported patch, while Succ refers to automatically ported patches that
are semantically equivalent to the manually ported patches. Both metrics are shown in the form of
x (y), where x is the number of patches that are E-M or Succ, and y is the E-M rate or Succ rate. We
apply both E-M and Succ to evaluate patch porting performance at the function and CVE level,
providing a comprehensive assessment of porting quality. Additionally, patches that do not meet
the semantically equivalence are categorized as failures (Fail), denoted in the same form of x (y),
where x represents the number of failed patches and y indicates the failure rate. In addition, we
introduce Code BLEU (C-B) [39] as an additional metric to quantify the difference between failed
patches and the human ported patches with similarity values ranging from 0 to 1, where a higher
value indicates greater similarity. We choose Code BLEU because, unlike binary metrics like E-M
or Succ, it captures the degree of similarity in partially correct patches, offering a more nuanced
view of how close failed patches are to the correct ones.

Baselines.We include seven state-of-the-art approaches, including pattern-based approaches
(FixMorph [41] and TSBPORT [62]), LLM-based approach (PPatHF [35]), the most recently closed-
source LLMs, i.e., GPT-3.5 [30] and GPT-4o [31], and open-source LLMs, i.e., CodeLlama with
13 billion parameters and instruct-tuned, and StarCoder with 15.5 billion parameters used in
PPatHF [35]. According to PPatHF [34], FixMorph only successfully ports about 4% of patches in
the repositories other than Linux, highlighting its limited performance. Additionally, compiling
data from diverse C repositories requires substantial effort. Given these constraints, we restrict
our evaluation of FixMorph within fine-tuning sub-dataset from Linux repositories, referred to as
FixMorph (L.). Similarly, we extract results of Mystiqe from Linux, denoted as Mystiqe (L.).

4.2 Effectiveness Evaluation (RQ1)
RQ1 Setup.We assessed Mystiqe using the ground truth, and compared its performance with
baseline approaches. We first fine-tuned Mystiqe with the fine-tuning dataset of our ground
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Table 4. Results of Our Effectiveness Evaluation Compared to the State-of-the-Art

Tool # CVE # Func. Success (CVE Level) Success (Func. Level) Failure (Func. Level)

E-M Succ E-M Succ Fail C-B
FixMorph (L.) 513 1,037 97 (0.189) 145 (0.283) 96 (0.093) 151 (0.146) 886 (0.652) 0.858
Mystiqe (L.) 479 (0.934) 484 (0.943) 999 (0.963) 1,004 (0.968) 33 (0.032) 0.921
TSBPORT

694 1,359

557 (0.803) 571 (0.823) 1,127 (0.829) 1,145 (0.843) 214 (0.157) 0.919
PPatHF 253 (0.365) 267 (0.385) 727 (0.535) 747 (0.550) 612 (0.450) 0.876
GPT-3.5 205 (0.295) 219 (0.316) 560 (0.412) 595 (0.438) 764 (0.562) 0.783
GPT-4o 488 (0.703) 497 (0.716) 1,082 (0.796) 1,094 (0.805) 265 (0.195) 0.859
StarCoder 229 (0.330) 242 (0.349) 656 (0.483) 676 (0.497) 683 (0.503) 0.874
CodeLlama 338 (0.487) 342 (0.492) 858 (0.631) 869 (0.639) 490 (0.361) 0.878
Mystiqe 628 (0.905) 641 (0.924) 1,283 (0.944) 1,297 (0.954) 62 (0.046) 0.921

truth. PPatHF, however, was fine-tuned with the given commit message and its patch. Given the
millions of commits across the 33 collected popular repositories, we sampled 5% of commits from
the Linux repositories and 10% from the other 32 repositories. We then formatted the project history
commits to include single-function changes between January 2014 and May 2024, aligning with
our fine-tuning dataset selection. We further filtered the commits to include only those before the
release time of StarCoder (i.e., July 1, 2022) to prevent data leakage. As a result, the fine-tuning
dataset for PPatHF was composed of 23,561 commits from Linux and 7,913 commits from the other
repositories, which was four times larger than the original dataset used for PPatHF.
Overall Result. Table 4 shows the overall effectiveness results on the patch porting dataset.

Mystiqe has shown superior performance across all metrics, leading in both CVE and function
level. Specifically, it achieves 628 (0.905) of E-M and 641 (0.924) of Succ at CVE level and 1,283
(0.944) of E-M and 1,297 (0.954) of Succ at function level, surpassing all baselines approaches.
C-B, which assesses the closeness of failed patches to the true patch, is highest for Mystiqe at
0.921, indicating that even the failed cases are more similar to the true patches compared to other
approaches. Comparatively, the best state-of-the-art tool, TSBPORT has 557 (0.803) of E-M and
571 (0.823) of Succ at CVE level and 1,127 (0.829) of E-M and 1,145 (0.843) of Succ at function level,
with a C-B of 0.919. Mystiqe not only improves in the Succ rate by 0.101 (12.3%) and 0.111 (13.2%)
at CVE and function level, but also slightly outperforms in C-B by 0.002. The LLM-based approach
PPatHF shows weaker performance with a Succ rate of 0.385 at CVE level and 0.550 at function
level, and a C-B of 0.876. Mystiqe markedly outperforms it in the Succ rate at CVE and function
level by 0.539 (140%) and 0.404 (73.5%), and also outperforms it in C-B by 0.045, highlighting the
effectiveness of Mystiqe. The best LLM GPT-4o shows a Succ rate of 0.716 at CVE level and 0.805
at function level, with a C-B of 0.859. Mystiqe significantly surpasses GPT-4o in the Succ rate by
0.208 (29.1%) and 0.149 (18.5%) at CVE and function level, respectively, but also outperformed it in
C-B by 0.062, indicating the limitation of the porting patches by LLM without any process.

In-Depth Analysis.As shown in Table 5, there are 62 functions that Mystiqe fails to patch. The
majority of failures are signature-related (35 failures), primarily due to inter-procedural insensitivity,
macro handling limitations, and token overflow. Moreover, tool-related issues account for 6 failures,
all stemming from Joern slicing inaccuracies. LLM-related issues contribute to 19 failures, including
placeholder mishandling, hallucination, and type insensitivity. Besides, branch-related issues lead
to 2 failures, both caused by significant discrepancies.

Contextual loss during slicing is a major root cause in these failures. The most significant source is
inter-procedural insensitivity (18 failures), whereMystiqe fails to capture security-critical relation-
ships between callers and callees. Macro handling limitations further contribute to contextual loss
(14 failures). Tool-specific constraints in Joern and Tree-sitter, particularly around complex pointer
operations and alias analysis, account for an additional 6 failures. While static intra-procedural
data/control dependency slicing and AST completion provide a solid foundation, they occasionally
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Table 5. In-Depth Analysis of Key Issues by Category

Category Key Issues Failures Category Key Issues Failures

Signature-Related
Inter-procedural insensitivity 18

LLM-Related
Placeholder mishandling 9

Macro handling limitations 14 Hallucination 8
Token overflow 3 Type insensitivity 2

Tool-Related Joern slicing inaccuracies 6 Branch-Related Significant discrepancies 2

Table 6. Results of Our Ablation Study

Ablation Success (CVE Level) Success (Func. Level) Failure (Func. Level)

E-M (Δ E-M) Succ (Δ Succ) E-M (Δ E-M) Succ (Δ Succ) Fail (Δ Fail) C-B (Δ C-B)
w/o Signature 0.717 (↓ 0.188) 0.729 (↓ 0.195) 0.796 (↓ 0.148) 0.802 (↓ 0.152) 0.198 (↑ 0.152) 0.803 (↓ 0.118)
w/o Tuning 0.438 (↓ 0.467) 0.444 (↓ 0.480) 0.567 (↓ 0.377) 0.575 (↓ 0.379) 0.425 (↑ 0.379) 0.883 (↓ 0.038)
w/o Refine 0.813 (↓ 0.092) 0.817 (↓ 0.107) 0.889 (↓ 0.055) 0.892 (↓ 0.062) 0.108 (↑ 0.062) 0.901 (↓ 0.020)

fail to preserve full semantic context. Furthermore, type insensitivity (2 failures) introduces risks in
security patches, where type changes may inadvertently introduce vulnerabilities. The remaining
failures arise from LLM hallucinations (8 failures), placeholder mishandling (9 failures), and branch
discrepancies (2 failures). Addressing these problems requires advancements in LLM-based code
understanding and improvements in tool precision. Despite these limitations, Mystiqe achieves a
95.4% success rate at the function level, demonstrating its strong foundation. The identified areas
for improvement provide a clear path for enhancing Mystiqe’s effectiveness further.

Summary: Mystiqe demonstrates outstanding effectiveness in patch porting, achieving 641
(0.924) of Succ at CVE level and 1,297 (0.954) of Succ at function level, which outperforms
the best state-of-the-art TSBPORT at the Succ rate by 0.101 (12.3%) and 0.111 (13.2%) at CVE
and function level, respectively. Mystiqe also achieves the highest C-B of 0.921, indicating
greater similarity to true patches even in failed cases, which underscores its superior capability
in accurately addressing and refining patches compared to state-of-the-art approaches.

4.3 Ablation Study (RQ2)
RQ2 Setup.We created three ablated versions of Mystiqe, i.e., (a) keeping the pre-patch function,
post-patch function and vulnerable function without slicing and completion, thereby ablating
the patch signature and vulnerable signature (w/o Signature); (b) ablating the fine-tuning from
Mystiqe (w/o Tuning); and (c) ablating checking and refining (w/o Refine).

Overall Result. Table 6 presents the results of our ablation study. Overall, E-M and Succ decrease
across the three ablated versions. Specifically, it exhibits the most significant drop in Mystiqe w/o
Tuning, with E-M and Succ rate of 0.467 and 0.480 at CVE level, with E-M and Succ rate of 0.377
and 0.379 at function level, and a C-B drop of 0.038. This decline is primarily because the untuned
LLM interprets sliced statements as syntactically incomplete fragments rather than meaningful
semantic units, causing conflicts with Mystiqe’s placeholder preservation mechanism and leading
to failures. Additionally, without fine-tuning, LLM treats placeholders as standard code annotations
rather than structural markers, further reducing its effectiveness. As a result, its performance falls
even below that of the untrained CodeLlama in Table 4, highlighting the necessity of fine-tuning.
Besides, Mystiqe w/o Signature suffers the second-largest E-M and Succ rate drop of 0.188

and 0.195 at CVE level, and 0.148 and 0.152 at function level, and a C-B drop of 0.118. Additionally,
Mystiqe w/o Refine results in decreased E-M rate and Succ rate by 0.092 and 0.107 at CVE level
and 0.055 and 0.062 at function level. The result indicates that all the three ablated components of
Mystiqe make important contribution to its effectiveness.
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(c) 𝑡ℎ𝑢𝑑

  

(d) 𝑡𝑘𝑛𝑢𝑚

Fig. 5. Results of Our Sensitivity Analysis

Summary: Removing any component of Mystiqe results in noticeable effectiveness drops.
Specifically, ablating each component can suffer the Succ rate drop from 0.107 to 0.480 at CVE
level, and from 0.062 to 0.379 at function level.

4.4 Parameter Sensitivity (RQ3)
RQ3 Setup. Four key parameters are configurable in Mystiqe, namely the slicing depth (𝑠𝑙𝑖𝑑𝑝 ), the
over-fixing threshold (𝑡ℎ𝑜𝑣), the under-fixing threshold (𝑡ℎ𝑢𝑑 ), and the maximum session token limit
(𝑡𝑘𝑛𝑢𝑚). The default values for these parameters are set to 3, 0.3, 0.5, and 4,096 (4K), respectively.
To assess the sensitivity of these parameters on Mystiqe’s success rate, we systematically varied
one parameter while keeping the other three unchanged.
Overall Result. Fig. 5 presents the results of our sensitivity analysis. First, a deeper slicing

depth can cause the generated fixed function to include more irrelevant statements, whereas a
shallower slicing depth might miss critical statements. Mystiqe achieves the best balance with a
slicing depth of 3. This threshold is crucial for detecting the appropriate degree of patch adaptation.
Second, the best performance is observed when 𝑡ℎ𝑜𝑣 and 𝑡ℎ𝑢𝑑 are set to 0.3 and 0.5, respectively.
Last, Mystiqe demonstrates a significant performance improvement at 4K tokens, with only a
slight increase at 16K tokens in Succ rate at CVE level. Consequently, the maximum token length is
set to 4K to reduce memory usage and computational costs associated with longer token lengths.

Summary: Mystiqe achieves the optimal performance when 𝑠𝑙𝑖𝑑𝑝 , 𝑡ℎ𝑜𝑣 , 𝑡ℎ𝑢𝑑 and 𝑡𝑘𝑛𝑢𝑚 are
set to 3, 0.3, 0.5 and 4,096, respectively.

4.5 Generality Evaluation (RQ4)
RQ4 Setup. To evaluate the generality of Mystiqe, we designed four generality experiments by
applying Mystiqe across different LLMs, projects, bugs, and programming languages.

Cross-LLM Porting Evaluation. To assess the impact of different underlying large language models
(LLMs) on patch porting, we conducted a cross-LLM porting evaluation by aligning the LLMs used in
PPatHF and Mystiqe. We replaced CodeLLama with StarCoder in Mystiqe, and replaced Star-
Coder with CodeLLama in PPatHF. All models were fine-tuned with the same hyperparameters
(e.g., learning rate, and LoRA settings) across both approaches to ensure a fair comparison.

Cross-Project Porting Evaluation.Wedivided our datasets into two categories, Linux (L.) and Others
(O.). Mystiqewas fine-tuned separately on L. and O., with patch porting conducted on the opposite
category (i.e., fine-tuning on L., porting on O. (L./O. group) and vice versa (O./L. group)). This allows
us to assess how Mystiqe generalizes across different projects by comparing against PPatHF.
Bug Porting Evaluation. To evaluate Mystiqe’s effectiveness on general C bugs, we curated a

patch porting dataset consisting of common C bugs. The dataset was constructed through a meticu-
lous process. (1) We chose the top 100 C repositories on GitHub based on star count, ensuring active
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Table 7. Results of Our Generalization Evaluation Across Different LLMs

Tool # CVE # Func. Success (CVE Level) Success (Func. Level) Failure (Func. Level)

E-M (Δ E-M) Succ (Δ Succ) E-M (Δ E-M) Succ (Δ Succ) Fail C-B
PPatHF-StarCoder

694 1359

253 (0.365) 267 (0.385) 727 (0.535) 747 (0.550) 612 (0.450) 0.876
Mystiqe-StarCoder 478 (0.689) 493 (0.710) 1080 (0.795) 1095 (0.806) 264 (0.194) 0.896
PPatHF-CodeLLama 345 (0.497) 361 (0.520) 888 (0.653) 910 (0.670) 449 (0.330) 0.846
Mystiqe-CodeLLama 628 (0.905) 641 (0.924) 1283 (0.944) 1297 (0.954) 62 (0.046) 0.921

Table 8. Results of Our Generalization Evaluation Across Different Projects

Group Tool # CVE (Func.) Success (CVE Level) Success (Func. Level) Failure (Func. Level)

E-M (Δ E-M) Succ (Δ Succ) E-M (Δ E-M) Succ (Δ Succ) Fail C-B

L./O. PPatHF 181 (322) 42 (0.232) 44 (0.243) 110 (0.342) 115 (0.357) 207 (0.643) 0.749
Mystiqe 150 (0.829) 152 (0.840) 286 (0.888) 288 (0.894) 34 (0.106) 0.878

O./L. PPatHF 513 (1,037) 129 (0.251) 131 (0.255) 459 (0.443) 464 (0.447) 573 (0.553) 0.782
Mystiqe 469 (0.914) 470 (0.916) 984 (0.949) 985 (0.950) 52 (0.050) 0.915

maintenance by requiring at least two branches with activities within August 2024. (2) Commits
containing keywords like “update” or “CVE” were excluded to avoid bug-unrelated updates. We
further reduced the dataset by randomly selecting 5% of the commits made between January 1, 2024,
and August 1, 2024. (3) The filtered commits were manually reviewed, resulting in 652 confirmed
bug-fixing commit pairs for the final bug porting dataset.

Java Vulnerability Porting Evaluation. To extend the evaluation to another programming language,
we constructed a Java vulnerability patch porting dataset. Following the strategy used for C vul-
nerabilities and bugs, we collected and curated 61 confirmed Java vulnerability-fixing commit
pairs with their 204 functions. This evaluation allows us to assess Mystiqe’s ability to generalize
across different programming languages. To adapt Mystiqe with Java vulnerability, we replaced
Clang-tidy with a popular Java syntactic error checking tool [33].

Cross-LLM Porting Result. As shown in Table 7, when comparing Mystiqe-StarCoder with
PPatHF-StarCoder, E-M increases from 0.365 to 0.689 at the CVE level and from 0.535 to 0.795 at
the function level, while Succ rises from 0.385 to 0.710 at the CVE level and from 0.550 to 0.806 at
the function level. The failure rate is significantly reduced from 0.450 to 0.194, demonstrating that
Mystiqe generates fewer incorrect patches. These findings confirm that Mystiqe’s methodology,
including slicing, fine-tuning strategies, and iterative refinement, greatly enhances patch porting
performance, independent of the underlying LLM. When replacing StarCoder with CodeLlama,
both PPatHF and Mystiqe show further performance improvements. For PPatHF, switching to
CodeLlama increases Succ by 0.135 at the CVE level and 0.120 at the function level. For Mystiqe,
using CodeLlama leads to a more substantial boost, with Succ increasing by 0.214 at the CVE level
and 0.148 at the function level. These results highlight that CodeLlama is a superior LLM for patch
porting compared to StarCoder, but the most significant gains come from the combination of
Mystiqe’s methodology with CodeLlama, demonstrating that both the methodology and the
LLM choice contribute to achieving the state-of-the-art performance.

Cross-Project Porting Result. The results shown in Table 8 highlight the superior generaliza-
tion capabilities of Mystiqe compared to PPatHF across different projects. In the L./O. group,
Mystiqe achieved 150 (0.829) E-M and 152 (0.840) Succ at CVE level and 286 (0.888) E-M and 288
(0.894) Succ at function level, with a C-B of 0.878, respectively. In contrast, PPatHF achieved only
42 (0.232) E-M and 44 (0.243) Succ at CVE level, 110 (0.342) E-M and 115 (0.357) Succ at function
level, and a C-B of 0.749, respectively. Mystiqe outperforms PPatHF by 0.597 (245.7%) and 0.537
(150.4%) in Succ at CVE and function level in the L./O. group. Similarly, in the O./L. group, Mystiqe
maintained robust performance with 470 (0.916) and 985 (0.950) Succ at CVE and function level,
respectively. Meanwhile, PPatHF again exhibited a notable decline, achieving only 131 (0.255) and
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Table 9. Results of Our Generalization Evaluation Across Bugs

Tool # Bug (Func.) Success (Bug Level) Success (Func. Level) Failure (Func. Level)

E-M (Δ E-M) Succ (Δ Succ) E-M (Δ E-M) Succ (Δ Succ) Fail C-B
FixMorph (L.) 185 (340) 35 (0.189) 38 (0.205) 69 (0.203) 75 (0.221) 265 (0.779) 0.638
Mystiqe (L.) 164 (0.886) 164 (0.886) 317 (0.932) 317 (0.932) 23 (0.068) 0.891
TSBPORT

652 (1,185)

489 (0.750) 494 (0.758) 920 (0.776) 932 (0.786) 253 (0.214) 0.853
GPT-3.5 187 (0.287) 198 (0.304) 413 (0.349) 430 (0.363) 755 (0.637) 0.698
GPT-4o 420 (0.644) 431 (0.661) 903 (0.762) 918 (0.775) 267 (0.225) 0.709
CodeLlama 298 (0.457) 304 (0.466) 667 (0.563) 675 (0.570) 510 (0.430) 0.698
StarCoder 351 (0.538) 358 (0.549) 784 (0.662) 797 (0.673) 388 (0.327) 0.685
PPatHF 292 (0.448) 297 (0.456) 692 (0.584) 698 (0.589) 487 (0.411) 0.738
Mystiqe 576 (0.883) 577 (0.885) 1,103 (0.931) 1,104 (0.932) 81 (0.068) 0.897

464 (0.447) Succ at CVE and function level. Mystiqe outperforms PPatHF by 0.661 (259.2%) and
0.503 (112.5%) in Succ at CVE and function level in the O./L. group.

Bug Porting Result. The results shown in Table 9 demonstrate the consistent performance of
Mystiqe, particularly in comparison to other tools. Mystiqe achieved 576 (0.883) E-M and 577
(0.885) Succ at bug level and 1,103 (0.931) E-M and 1,104 (0.932) Succ at function level. In contrast,
PPatHF showed significantly lower performance, with 292 (0.448) E-M and 297 (0.456) Succ at bug
level, and 692 (0.584) E-M and 698 (0.589) Succ at function level. TSBPORT is recognized as the
best state-of-the-art with 489 (0.750) E-M and 494 (0.758) Succ at bug level, and 920 (0.776) E-M
and 932 (0.786) Succ at function level. However, it experienced a performance drop in E-M and
Succ compared with vulnerability patch porting. Mystiqe outperforms the best state-of-the-art
TSBPORT by 0.127 (16.8%) and 0.146 (18.6%) at Succ rate at bug and function level. Other tools
showed varied performance, with GPT-4o and StarCoder performing relatively better but still
falling short of Mystiqe’s consistency at both bug and function level.

Java Vulnerability PortingResult. The results shown in Table 10 show thatMystiqe achieved
51 (0.836) E-M and 52 (0.852) Succ at CVE level, and 192 (0.941) E-M and 194 (0.951) Succ at function
level. Mystiqe outperformed the best approaches GPT-4o in adapting to a different programming
language by 0.229 (37.7%) at E-M and 0.213 (33.3%) at Succ at CVE level, and 0.137 (17.0%) at E-M
and 0.127 (15.4%) at Succ at function level, respectively. Pattern-based tools like TSBPORT and
FixMorph are not compatible with other languages except C, with no results reported.

Summary: The overall evaluation demonstrates the superior generalization capabilities of
Mystiqe across LLMs, projects, bugs, and programming languages. In the cross-LLM porting
evaluation, comparing Mystiqe-StarCoder with PPatHF-StarCoder, Succ rises from 0.385
to 0.710 at the CVE level and from 0.550 to 0.806 at the function level. For Mystiqe, using
CodeLlama leads to a more substantial boost, with Succ increasing by 0.214 at the CVE level
and 0.148 at the function level. In the cross-project porting evaluation, Mystiqe outperforms
PPatHF by 0.597 (245.7%) and 0.537 (150.4%) at Succ rate at CVE and function level in the L./O.
group. Similarly, Mystiqe outperforms PPatHF by 0.661 (259.2%) and 0.503 (112.5%) at Succ
rate at CVE and function level in the O./L. group. In the bug porting evaluation, Mystiqe
outperforms the best state-of-the-art TSBPORT by 0.127 (16.8%) and 0.146 (18.6%) at Succ rate
at bug and function level. In the Java vulnerability porting evaluation, Mystiqe demonstrates
its adaptability, achieving 51 (0.836) E-M and 52 (0.852) Succ at CVE level, and 192 (0.941) E-M
and 194 (0.951) Succ at function level, which outperforms GPT-4o by 0.213 (33.3%) and 0.127
(15.4%) at Succ rate at CVE and function level.
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Table 10. Results of Our Generalization Evaluation Across Java

Tools # CVE (Func.) Success (CVE Level) Success (Func. Level) Failure (Func. Level)

E-M (Δ E-M) Succ (Δ Succ) E-M (Δ E-M) Succ (Δ Succ) Fail C-B
PPatHF

61 (204)

23 (0.377) 23 (0.377) 131 (0.642) 131 (0.642) 73 (0.358) 0.566
GPT-3.5 16 (0.262) 18 (0.295) 110 (0.539) 112 (0.549) 92 (0.451) 0.702
GPT-4o 37 (0.607) 39 (0.639) 164 (0.804) 168 (0.824) 36 (0.176) 0.787
CodeLlama 30 (0.492) 30 (0.492) 136 (0.667) 136 (0.667) 68 (0.333) 0.695
StarCoder 35 (0.574) 36 (0.590) 161 (0.789) 162 (0.794) 42 (0.206) 0.641
Mystiqe 51 (0.836) 52 (0.852) 192 (0.941) 194 (0.951) 10 (0.049) 0.830

Table 11. Results of Our Efficiency Evaluation

Time (s) Mystiqe TSBPORT FixMorph PPatHF GPT-3.5 GPT-4o CodeLlama StarCoder
Per CVE 110.8 123.9 3,239.8 69.4 29.8 24.9 64.3 55.7
Per Func. 56.5 63.2 1,603.7 35.4 15.2 12.7 32.8 28.4

4.6 Efficiency Evaluation (RQ5)
RQ5 Setup.We measured the average time taken to port patch for each CVE as well as for each
function. The fine-tuning took 5.1 hours for Mystiqe and 19.4 hours for PPatHF.

Overall Result. As shown in Table 11, Mystiqe takes 56.5 seconds per function and 110.8 sec-
onds per CVE to port patches, closely matching the performance of PPatHF, which takes 35.4 sec-
onds per function and 69.4 seconds per CVE. Mystiqe significantly outperforms pattern-based
approaches FixMorph and TSBPORT. While GPT-3.5 and GPT-4o are faster, completing patch
porting in just 10 to 30 seconds. The time cost of Mystiqe owes to two parts, i.e., signature
generation and refining. Specifically, for each CVE, Mystiqe spends 75.3 seconds on signature
generation by Joern and 35.5 seconds on refining, leading to a total of 110.8 seconds. For each
function, Mystiqe spends 38.4 seconds on signature generation and 18.1 seconds on refining,
totaling 56.5 seconds. We believe that they are acceptable given Mystiqe’s superior effectiveness
for the patch porting task.

Summary: Mystiqe takes 56.5 and 110.8 seconds per function and CVE to port patches.

4.7 Usefulness Evaluation (RQ6)
RQ6 Setup. We first extracted all C/C++ and Java vulnerabilities from CVE/NVD, along with their
referenced patches, from January 1, 2020, to September 1, 2024. After extraction, we collected 810 C-
related CVEs and 368 Java-related CVEs. Next, we employed three state-of-the-art vulnerability code
clone detection tools (i.e., DeepDFA [45], FIRE [10], and MVP [58]) to identify vulnerabilities that
remained vulnerable across the original repository branches and related forked branches. To ensure
the presence of vulnerabilities while minimizing human effort, we extracted the intersection of
vulnerabilities identified by the three approaches across the branches. After manual verification, we
identified a total of 16 CVEs, which included 10 CVEs with 24 vulnerable branches in C repositories
and 6 CVEs with 10 vulnerable branches in Java repositories.

Overall Result. Table 12 presents the results of our usefulness evaluation. Mystiqe performed
automated patch porting for these CVEs and successfully ported 34 patches across the branches.
We then reported the porting results through 34 pull requests (PRs) to the repository developers.
Developers have accepted 29 PRs with the ported patches by Mystiqe. However, 5 PRs have not
been merged in a timely manner. Among these, 1 PR was not merged because the vulnerability was
considered low severity, despite the ported patch was confirmed correct by the developers. 4 PRs
are still awaiting confirmation from developers.
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Table 12. Pull Request Results of Our Usefulness Evaluation

CVE Language Patched Repository@Branch # Vul. Branches Merge Status
CVE-2024-41565 Java mezz/JustEnoughItems@1.21.x 1 ✓
CVE-2024-26579 Java apache/inlong@master 1 ✓
CVE-2020-1926 Java apache/hive@branch-2.3 6 ✓
CVE-2021-3878 Java stanfordnlp/CoreNLP@main 1 ✓
CVE-2024-43406 Java lf-edge/ekuiper@master 1 ✓
CVE-2022-47021 C/C++ xiph/opusfile@master 2 ✓
CVE-2024-6381 C/C++ mongodb/mongo-c-driver@r1.26 2 ✓
CVE-2021-43814 C/C++ rizinorg/rizin@dev 1 ✓
CVE-2023-27590 C/C++ rizinorg/rizin@dev 2 ✓
CVE-2020-24370 C/C++ lua/lua@master 9 ✓
CVE-2020-14147 C/C++ redis/redis@unstable 4 ✓
CVE-2024-34696 Java geoserver/geoserver@main 1 △
CVE-2023-28097 C/C++ OpenSIPS/opensips@master 1 △
CVE-2023-32690 C/C++ NVIDIA/open-gpu-kernel-modules@550 1 △
CVE-2024-39894 C/C++ freebsd/freebsd-src@main 1 △
CVE-2024-28882 C/C++ OpenVPN/openvpn@master 1 ×

Summary: Mystiqe successfully ported patches of 16 CVEs in C and Java repositories, and
submitted 34 PRs to those repositories. 29 of the 34 PRs have been successfully merged into
the repository branches or related forked branches.

4.8 Discussion
Threats. First, our human evaluation to determine the correctness of generated patch relies on the
patches submitted by developers. However, some developers’ patches may only partially fix the
issues or include errors, which introduces potential bias into our human evaluation process. Second,
the configurable parameters inMystiqe, such as those for slicing, refining and LLM, are empirically
set. To mitigate this threat, we evaluate the robustness of Mystiqe by assessing its effectiveness
through parameter sensitivity analysis. Third, open-source LLMs are advancing rapidly, with more
sophisticated models like StarCoder2 [2] emerging regularly. We plan to integrate Mystiqe with
these advanced code LLMs to explore its generalizability across different underlying LLMs. Last, the
results of usefulness evaluation largely depend on the effectiveness of the vulnerability clone detec-
tion approaches. Some vulnerable branches may go undetected by these tools, which establishes
the lower bound of Mystiqe’s overall usefulness of patch porting in practice.

Limitations. First, a primary limitation of Mystiqe is that it does not consider inter-function
semantic and syntactic features, such as function calls, which limits its ability to port patches for
inter-procedural vulnerabilities. Second, the semantic function level slicing does not incorporate
knowledge beyond the function itself, such as the structure of C code. Last, the accuracy of slicing
depends on Joern. While we have addressed some of Joern’s buggy logic to improve patch porting
performance, there may still be limitations related to its implementation.

5 Related Work
Patch Porting. Several studies have highlighted the high rate of vulnerability inheritance and
delays in porting patch within open-source projects after branching [6, 35, 41, 42]. These delays
leave open-source projects exposed to security risks, and adapting patches across different branches
is often error-prone for developers [3, 40, 47]. To assist developers in managing patch porting,
several automated approaches (e.g., pattern-based and LLM-based approaches) have been proposed.
FixMorph [41] is a syntactical pattern-based approach that leverages clang/llvm to port patch to
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lower versions. TSBPORT [62] is a semantical pattern-based approach that fixes vulnerabilities.
Pattern-based approaches are limited by their dependence on predefined patterns, which hinders
their generalization when modifications fall outside these patterns. Moreover, these approaches
struggle with function level changes that require a nuanced semantic understanding, extending
beyond local hunks. PPatHF [35], an LLM-based approach, shows potential in patch porting by
leveraging fine-tuned LLM. However, this approach simplifies the patching process by reducing
compound blocks without any changed statement to focus on core statements, which can inad-
vertently strip away critical syntactic or semantic information. Additionally, its heavy reliance on
intra-repository knowledge for LLM fine-tuning can lead to misalignments with actual porting
tasks, especially when LLM is used to port patches in projects that were not included during the
fine-tuning stage, without any further refinement. SkyPort [43] defines a list of sink functions
for PHP injection vulnerabilities, limiting their applicability to other programming languages or
vulnerability types. PatchWeave [42] utilizes exploitable test cases to guide patch porting, but its
effectiveness is also constrained by the availability of such test cases.
Automated Program Repair (APR). APR is a related but different problem from patch port-

ing. After the fundamental APR approaches of GenProg [19, 53], there are five mainstream APR
approaches, which are heuristic-based, constraint-based, pattern-based, DL-based, and very recent
LLM-based. Heuristic-based approaches (e.g., [11, 19, 51, 53, 64–66]) use the genetic algorithms to
generate patch. Some improved approaches (e.g., [17, 51, 59]) narrow down the searching space by
using the similar code in code databases. Pattern-based approaches (e.g., [1, 18, 21]) use pre-defined
fix patterns that are summarized by human, which faces the same problems with the pattern-based
porting approaches. Constraint-based approaches (e.g., [8, 16, 24, 25, 61]) usually focus on a single
conditional expression and employ advanced constraint-solving or synthesis techniques to synthe-
size candidate patches. DL-based approaches (e.g., [4, 57, 63]) or very recent LLM-based approaches
(e.g., [9, 13, 15, 50, 52, 56]) aim to automate patch generation by employing DL models that can
capture the semantic features of programs and generate candidate patches. All APR approaches
take buggy code and test suites as inputs to generate candidate patches, which do not fit the patch
porting task where the inputs are an original patch and a target vulnerable function.

6 Conclusions
We have developed Mystiqe, a novel approach for automatically porting security patches. Mys-
tiqe takes both the patch and vulnerable functions as inputs, extracts semantic and syntactic
vulnerability-relevant signatures from the patch, and identifies corresponding signature in the
vulnerable function. Using a fine-tuned LLM, Mystiqe ports the patch and iteratively refines it
for higher success rate of patch porting. Extensive experiments have demonstrated Mystiqe’s
effectiveness, generality, and practical usefulness. In future work, we plan to integrate additional
LLMs to further enhance Mystiqe’s patch porting capabilities and support more languages.

7 Data Availability
The source code for Mystiqe, with experimental data and results, is available at our website [48].
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