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Multiple machine learning (ML) models are often incorporated into real-world ML systems. However, updat-
ing an individual model in these ML systems frequently results in regression errors, where the new model
performs worse than the old model for some inputs. While model-level regression errors have been widely
studied, little is known about how regression errors propagate at system level. To address this gap, we pro-
pose R��T�����, a novel retrieval-enhanced ensemble approach to reduce regression errors at both model and
system level. Our evaluation across various model update scenarios shows that R��T����� reduces system-level
regression errors with almost no impact on system accuracy, outperforming all baselines by 20.43% on average.
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1 Introduction
Machine learning (ML) models are widely deployed in various real-world applications, e.g., question-
answering systems [12, 36] and autonomous driving systems [33]. Such complex ML systems often
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integrate multiple models. As these systems evolve, updating an individual model may lead to re-
gression errors, i.e., the new version of a model performs worse than the old version for some inputs.
Such regression errors can have a negative impact on ML systems. For example, in ConvLab [65], a
widely-used task-oriented dialogue system, replacing the dialogue state tracking component from
SUMBT [21] to TRADE [54] increases the slot accuracy of this component from 96.44% to 96.92%, but
decreases the overall system success rate from 27.8% to 22.4% [40]. This indicates that the number
of introduced system-level regression errors exceeds the newly added successful tasks. In July 2021,
an update to the face unlock feature of the Galaxy S10 5G led to authentication failures for users,
which harmed Samsung’s reputation and resulted in economic losses [49].

Regression errors at a single model level [10, 23, 50, 57, 58] have recently been widely investigated.
However, there is limited understanding of how regression errors propagate at the system level,
where multiple models are integrated. Moreover, it is di�cult for existing training-based [10, 57, 58]
and ensemble-based [23, 50] model-level regression error reduction approaches to extend to the
system level, as it is challenging to e�ciently gather information from downstream models when
updating amodel. For example, Li et al. [23] propose an uncertainty-based ensemble approach to mit-
igate model-level regression errors. However, this approach is di�cult to apply to the system level
because obtaining the uncertainty of downstream models during inference is time-consuming.

To address this problem, we �rst extend the formulation of regression errors from model-level to
system-level, focusing on the impact of model updates within ML systems containing multiple ML
models. Then, inspired by retrieval-augmented generation (RAG) techniques [17, 20, 41] used to en-
hance large language models, we �nd that retrieval methods can e�ciently gather information from
the overall system, thereby aiding ensemble-based approaches from a system perspective. Ensemble-
based approaches reduce regression errors by combining the prediction results of the newmodel and
the old model with ensemble weight. The main challenge is to �nd the appropriate ensemble weights
for the old and newmodels for a speci�c testing sample. Therefore, we propose a retrieval-enhanced
ensemble approach, R��T�����, to reduce both model-level and system-level regression errors e�ec-
tively and e�ciently. R��T����� estimates the accuracy of the old and newmodels on a given testing
sample by retrieving similar training samples and using the losses from these training samples to de-
termine the ensemble weights for the two models. The losses can represent system-level losses by
performing a forward pass of the entire system. As a result, R��T����� e�ectively reduces system-
level regression errors. After the datastore for retrieval is built o�ine, R��T�����’s inference latency
remains low, as it only adds the slight overhead of retrieving the nearest training samples.

We �rst conduct comprehensive experiments to demonstrate the prevalence of system-level re-
gression errors. We �nd that system-level regression errors often arise independently of model-level
regressions. Speci�cally, there are only lower than 20% system-level regression errors are caused by
model-level regression errors. These results motivate the need for specialized approaches to reduce
system-level regression errors. Then, we conduct extensive experiments to evaluate the e�ective-
ness and e�ciency of R��T����� across various model update scenarios in the spoken QA system.
The results demonstrate that R��T����� can reduce system-level regression errors by an average of
2.21% (via model losses) and 2.40% (via system losses), with little or even no loss in system F1 score
(i.e., less than 0.5%), which outperforms all baselines by 20.43% on average. Moreover, R��T�����
requires only about 20% of the inference time required by uncertainty-based approaches. Finally,
compared with baseline approaches, R��T����� shows a promising generalization capability by
reducing 14.06% more system-level regression errors in the multi-sensor fusion perception system.

In summary, this work makes the following main contributions.

• We extend the regression error problem from model-level to system-level and demonstrate that
system-level regression errors cannot always be inferred from model-level regression errors.
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… 27.7 million tons of dust fall
over the Amazon basin …

ASR Model Masr

QA Model MqaContext Pragraph "

Audio a Transcribed Question $%
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How many tons of Saharan dust falls
on the Amazon basin each year?

27.7 million tons

Fig. 1. An illustration of the spoken QA system

• We propose R��T�����, a novel retrieval-enhanced ensemble approach to reduce bothmodel-level
and system-level regression errors without compromising overall system accuracy.

• We evaluate our approach through extensive experiments, demonstrating signi�cant improve-
ments in reducing regression errors compared to baseline approaches.

2 Problem Formulation and Motivation
We �rst introduce a spoken question answering (QA) system, which will be used as a running ex-
ample. Then, without loss of generality, we formulate the model-level and system-level regression
errors for the spoken QA system, which could be easily extended to other ML systems. Finally, we
present why system-level regression errors matter with examples.

2.1 The Running Example of Spoken QA System
As Fig. 1 shows, the spoken QA system consists of an automatic speech recognition (ASR) model
and a downstream question answering (QA) model. Given an audio �le 0 as an input, the ASR model
transcribes it into a question text @̂. The QAmodel generates an answer ˆ0=B based on @̂ and a context
paragraph ? which is prepared by the QA dataset and should be retrieved from corpus in real world.
We apply word error rate (WER) and F1 score to measure the accuracy of ASR model and QA model,
respectively, which are widely used in the literature [22, 36, 56].

Generally, the ASR model transcribes the audio �le in a self regression fashion by Eq. 1,

% (G: | 0) = % (G: | 0, G<: ) = B> 5 C<0G (I: ) (1)

where % (G: | 0) is the posterior probability of :C⌘ token over vocabulary + conditioned by the
audio �le 0. It is computed from the softmax of logits I: produced by the ASR model. With a greedy
decoding strategy, every time the model selects the token Ĝ: with the maximum probability. Once
the end of sentence (EOS) token is generated, the transcribed process �nishes. Given a transcribed
question text @̂ = (Ĝ1, Ĝ2, . . . , Ĝ=) and a context paragraph ? , the extractive QA model [19, 25]
predicts the start and end position of the answer span within the context paragraph, i.e., % (B | @̂, ?)
and % (4 | @̂, ?), and then selects the answer ˆ0=B with the maximum probability.

2.2 Model-Level Regression Error Formulation
Given an ASR testing datasetDC4BC of# samples with groud-truth transcribed questions, i.e.,DC4BC =
{(01,@1), (02,@2), . . . , (0# ,@# )}, theWER of an ASRmodel" on a sample (08 ,@8 ) is de�ned by Eq. 2,

F4A (@8 , @̂8 ) =
(8 + ⇡8 + �8

|@8 |
(2)

where |@8 | denotes the length of question @8 , and (8 , ⇡8 and �8 respectively denote the number of
substitutions, deletions and insertions to transform @̂8 into @8 . Usually, we update an old model">;3

to a new model"=4F for accuracy improvement, support of more label classes, model compression,
etc. There will be positive �ips (PFs) that"=4F corrects the mispredictions of">;3 , and negative �ips
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(NFs), i.e., regression errors, that"=4F misclassi�es but">;3 classi�es correctly. The model accuracy
improvement or degradation originates from the di�erence between PFs and NFs. Formally, the
regression error rate at model level is de�ned by Eq. 3,

'46(">;3 ,"=4F) = 1
#

#’
8=1

1
⇣
F4A (@8 , @̂8=4F) �F4A (@8 , @̂8>;3 ) � g<

⌘
(3)

where 1 is an identi�er function to indicate whether WER increases more than a threshold g< after
model update. We de�ne regression error reduction as a constrained optimization problem by Eq. 4,

minimize
" 0

'46(">;3 ,"
0 ), subject to ,⇢'(" 0 ) ,⇢'("=4F) (4)

where" 0 denotes the improvedmodel produced by regression error reduction techniques (e.g., model
ensemble [23] and knowledge distillation [57, 58]), and,⇢'(" 0 ) ad,⇢'("=4F) respectively
denote the average WER of the model" 0 and"=4F over the whole testing dataset. It is a kind of
Pareto Improvement [4] because regression errors are reduced without any sacri�ce of accuracy.

2.3 System-Level Regression Error Formulation
A spoken QA system ( consists of an ASRmodel"0BA and a QAmodel"@0 , i.e., ( = {"0BA ,"@0}. We
measure the accuracy of the overall system with F1 score of "@0 , which is calculated based on the
overlap between the predicted answer and the ground-truth answer. Generally, the ASR model and
QA model should be updated individually to evaluate their impact on the whole system fairly. Here,
we consider the system update in the ASR model update scenario, while keeping the QA model not
updated, i.e., (=4F = {"=4F

0BA ,">;3
@0 } and (>;3 = {">;3

0BA ,"
>;3
@0 }. There are also PFs and NFs (i.e., regres-

sion errors) at system level. Formally, the regression error rate at system level is de�ned by Eq. 5,

'46((>;3 , (=4F) = 1
#

#’
8=1

1
⇣
�1(0=B8 , ˆ0=B8>;3 ) � �1(0=B8 , ˆ0=B8=4F) � gB

⌘
(5)

where �1(0=B8 , ˆ0=B8>;3 ) denotes the F1 score of word set in predicted answer ˆ0=B8>;3 compared with
that in ground-truth answer 0=B8 , and 1 denotes an identi�er function to indicate whether F1 score
decreases more than a threshold gB after system update. We formalize the system-level regression
error reduction problem by Eq. 6,

minimize
( 0

'46((>;3 , ( 0 ), subject to �1(( 0 ) � �1((=4F) (6)

where ( 0 denotes the improved system produced by regression error reduction techniques, and �1(( 0 )
and �1((=4F) denote the average F1 score of the system (

0 and (=4F on the whole testing dataset.

2.4 Why System-Level Regression Errors Ma�er
System-level updates always happen with model-level updates as we update one or several models
to update the system. Then why should we consider regression errors at system level? Does the
reduction of regression errors at model level also reduce those at system level? Li et al. [22] and
Wu et al. [56] found that ASR errors have huge negative impact on the accuracy of downstream
QA model. Inspired by them, Su et al. [39] and You et al. [61] proposed to use contextualized word
representations and knowledge distillation to improve the overall system accuracy. However, system-
level regression errors in spoken QA system are still unexplored.
Srivastava et al. [38] and Zhu et al. [3] show that the accuracy improvement of a single model

does not indicate the improvement of the whole ML system, denoted as Eq. 7 in spoke QA system.

,⇢'("=4F) ,⇢'(">;3 ) 6=) �1((=4F) � �1((>;3 ) (7)
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Algorithm 1 Construction of the Datastore
1: Input: a training dataset DCA08= , an old spoken QA system (>;3 = {">;30BA ,">;3@0 }, a new spoken QA system (=4F =

{"=4F0BA ,">;3@0 }
2: Output: a datastoreHCA08= that consists of token samples as key-value pairs
3: HCA08= = ;.
4: for (08 ,@8 ,?8 ,0=B8 ) in DCA08= do
5: // Iterate over every token for a given ground-truth question text @8
6: for C 9 in @8 do
7: 28 9 = (08 ,G8 (< 9 ) ) , where 28 9 is the context of 9C⌘ token in the 8C⌘ training sample from DCA08=

8: A8 9 = R ("=4F0BA , 28 9 ) , where R gets the intermediate representation of"=4F0BA for context 28 9
9: ✓>;38 9 = L (">;30BA , 28 9 ,G8 9 ) , ✓=4F8 9 = L ("=4F0BA , 28 9 ,G8 9 ) , where G8 9 is the ground-truth token for current context,

andL is the model-level loss function
10: g

>;3
8 9 = G((>;3 , 28 9 ,G8 9 ) , g=4F8 9 = G((=4F , 28 9 ,G8 9 ) , where G is the system-level loss function

11: HCA08= = HCA08= [ { (A8 9 , (✓>;38 9 , ✓=4F8 9 , g>;38 9 , g=4F8 9 ) ) }
12: end for
13: end for
14: return HCA08=

DCA08= , the key of its corresponding token sample in HCA08= is A8 9 , while the value is model-level
and system-level losses (see Sec. 3.2 and 3.3). A8 9 is created from the intermediate representation of
the new model (Line 8), e.g., the last hidden states in transformer-based architecture. We utilize the
representation from the new model, instead of the old model, because it is supposed to be more
accurate. Each token sample is accompanied with model-level losses ;8 9 and system-level losses g8 9
of the old and new models (Line 9–10). They are used during inference to estimate ensemble weight.

Inference. Given an ASR testing datasetDC4BC = {(01, ?1), . . . }, we transcribe it with Alg. 2, and
then apply the downstream QA model to predict the answer for transcribed question @̂ according to
context paragraph ? . Essentially, the logits from the old and newmodel are combined token by token
(Line 14-15), according to the ensemble weight that is computed from similar neighbors’ losses
inHCA08= . At Line 11–13, the model-level ensemble weight _<C is calculated based on model-level
losses and ensemble function. Similarly, we replace model-level losses and ensemble function with
system-level losses and ensemble function to obtain system-level ensemble weight _BC .

We have described the overall framework of our retrieval-enhanced ensemble approach. We will
explain the model-level and system-level regression error reduction in detail. They share the same
framework as presented before, but have di�erent loss functions and loss ensemble functions.

3.2 Model-Level Regression Error Reduction
We �rst introduce how to reduce model-level regression errors with model-level losses and ensemble
function. During the datastore construction, ✓>;38 9 and ✓=4F8 9 at Line 9 in Alg. 1 are calculated by Eq. 9,

✓8 9 = � log % (G8 9 | 28 9 ) (9)

where G8 9 denotes the ground-truth token given the context 28 9 = (08 , G8 (< 9 ) ). Once the estimated old
loss ✓>;3C and new loss ✓=4FC for the next token prediction are obtained at Line 11 in Alg. 2, we de�ne
the ensemble function E< to compute the ensemble weight _<C according to them. In principle, the
larger ✓38 5 5C = ✓=4FC �✓>;3C is, the larger _<C should be, because the newmodel may performworse than
the old model to predict the speci�c next token. We have analyzed ✓38 5 58 9 = ✓=4F8 9 � ✓>;38 9 for all token
samples inHCA08= in model update scenarios described in our evaluation setups (see Sec. 4), and
found that they roughly follow the probability density distribution (PDF) of normal distribution.
Therefore, it is natural to apply the cumulative distribution function (CDF) of normal distribution
to map the current ✓38 5 5C into _<C which ranges from 0 to 1.
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Algorithm 3 Approximation of System-Level Losses
1: Input: a training dataset DCA08= , a datastore HCA08= , a spoken QA system ( = {"0BA ,"@0 }
2: Output: the estimated system-level losses set⌧ for token samples in HCA08=

3: // Step 1: Calculate system-level losses of training samples in DCA08=

4: for (08 ,@8 ,?8 ,0=B8 ) in DCA08= do
5: @̂8  "0BA (08 )
6: ˆ0=B8  "@0 (@̂8 ,?8 )
7: ĝ8 = � log% (B | @̂8 ,?8 ) � log% (4 | @̂8 ,?8 ) , where B and 4 respectively denote the start and end position of the

ground-truth answer 0=B8 in the context paragraph ?8
8: end for
9: //Step 2: Approximate system-level losses of token samples in HCA08=

10: ⌧ = ;
11: for each token sample in HCA08= do
12: g8 9 = ĝ8

13: ⌧ = ⌧ [ g8 9
14: end for
15: return ⌧

around 0.5 when ✓38 5 5C is 0. However, when the accuracy of the old model is comparable to that of
the new model for the current token prediction, we prefer an ensemble weight greater than 0.5, as
the new model could not introduce signi�cant accuracy improvement and may cause regression
errors. As a result, the logits I>;3 from the old model is preferred to reduce regression errors. To
achieve this goal, W< should be negative to shift the CDF to the left, as illustrated by⇠⇡�2 in Fig. 4.
In this way, the new _<C will be larger than 0.5 on ⇠⇡�2 when ✓

38 5 5
C is 0.

Accuracy Preservation. Consider another scenario where the newmodel improves the accuracy
signi�cantly compared with the old model. The PDF and CDF of the loss di�erence distribution
are %⇡�3 and ⇠⇡�3, as illustrated in Fig. 4. If W< is set to 0 in Eq. 10, i.e., the CDF is not shifted,
_<C scatters around 0.5 when ✓38 5 5C is a signi�cantly negative value `3. However, when the new
model improves the accuracy signi�cantly, we prefer a weight smaller than 0.5, and thus the logits
I=4F from the new model is preferred to preserve the accuracy. To achieve this goal, W< should be
positive to shift the CDF to the right, as illustrated by ⇠⇡�2 in Fig. 4. In this way, the new _<C will
be smaller than 0.5 on ⇠⇡�2 when ✓

38 5 5
C is `3.

In summary, the appropriate W< should be di�erent for di�erent model update scenarios, which
is a trade-o� between regression error reduction and accuracy preservation. It will be tuned with
validation dataset and analyzed in the hyper-parameter analysis evaluation.

3.3 System-Level Regression Error Reduction
Up to now, we calculate _<C only based on the ASR model losses to reduce regression errors at model
level. However, as we have shown in Fig. 2, there are system-level hidden regression errors that are
not caused by model-level regression errors. Therefore, we propose to utilize system-level losses
(i.e., QA losses) to calculate the ensemble weight _BC . Our approach is intuitive but has challenges to
be addressed, because the ASR model outputs the logits and retrieves neighbors token by token,
while the whole transcribed question @̂ is needed to calculate the QA loss. Therefore, we propose
Alg. 3 to estimate system-level loss g8 9 of token samples in HCA08= for a given spoken QA system ( .

For each training sample in the training datasetDCA08= , Alg. 3 �rst transcribes it by the ASRmodel
(Line 5), then predicts the answer ˆ0=B for the question with the QA model (Line 6). After that, it
calculates the system-level loss ĝ8 for every transcribed sample (@̂8 , ?8 ) with the cross entropy loss
of its answer prediction position (Line 7). Finally, it directly approximates the system-level loss for
token samples g8 9 as 6̂8 , which is its corresponding training sample’s system-level loss (Line 11). 6̂8
represents the loss of the downstream QA model"@0 given the entire question @̂8 transcribed by
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"0BA from the audio input 08 . Therefore, it is intuitive to use 6̂8 as an approximation for the loss
of"@0 given a speci�c token in @̂8 predicted by"0BA . Notice that this approximation is somewhat
coarse, and could be further improved by techniques like token attribution [27].

During the construction of datastore, we execute Alg. 3 with (>;3 and (=4F to calculate 6>;38 9 and
6=4F8 9 , respectively. During the inference, one intuitive way to obtain _BC is by Eq. 11,

_BC = EB (g38 5 5C ) = �

 
g
38 5 5
C � `B � WB ⇤ fB

fB

!
(11)

where _BC is calculated similar to _<C in Eq. 10 except that it is calculated with system-level loss di�er-
ence g38 5 5C = g

=4F
C � g>;3C . `B and fB denote the mean and standard deviation of system-level losses

di�erence distribution of all token samples in HCA08= , respectively. WB also is a hyper-parameter to
shift the CDF of system-level loss di�erence, which should also be tuned with validation dataset.
However, the inaccuracy of system-level losses approximation may harm the accuracy of the

ensemble model signi�cantly. Therefore, we propose an enhanced approach to consider model-level
losses and system-level losses together by Eq. 12.

_B+C = EB+(✓38 5 5C ) = �

 
✓38 5 5C � `< � (W< + (1 � 2 ⇤ _BC ) ⇤ d) ⇤ f<

f<

!
(12)

Compared to _<C in Eq. 10, _B+C incorporates _BC to shift the CDF of model-level loss di�erence
distribution. For example, if the current token prediction from the new model may cause system-
level regression errors, i.e., _BC > 0.5 calculated by Eq. 11, then 1 � 2 ⇤ _BC < 0 holds, and the CDF
of ✓38 5 5C is shifted to the left. As Fig. 4 shows, shifting ⇠⇡�1 to ⇠⇡�2 causes _<C increase. Thus,
_B+C will be larger than _<C , i.e., the ensemble model assigns larger weight on the logits from the old
model, then the regression error in this case could be reduced. d is the hyper-parameter to balance
the in�uence between model-level losses and system-level losses, because too much weight on
system-level losses (especially inaccurate ones) will harm the accuracy of the ensemble ASR model.

4 Evaluation Setups
Research Questions. To evaluate our approach, we design the following six research questions.
• RQ1 System-Level Regression Error Investigation: Do system-level regression errors exist
and can them be indicated by model-level regression errors?

• RQ2 E�ectiveness Evaluation: Does R��T����� reduce more regression errors compared with
the baseline approaches without the harm of accuracy?

• RQ3Ablation Study: How does the CDF-based loss ensemble function contributes toR��T�����?
• RQ4 Hyper-Parameter Analysis: What is the impact of hyper-parameters on R��T�����?
• RQ5 E�ciency Evaluation: What is the e�ciency of R��T����� compared with baselines?
• RQ6 Generalization Evaluation: Does R��T����� generalize to various ML systems?
Notice that the �rst �ve RQs are conducted on the spoken QA system, while RQ6 is conducted on
the multi-sensor fusion perception system.

4.1 Evaluation Setups on the Spoken QA System
Dataset. To evaluate the whole spoken QA system, pure ASR datasets [29] or QA datasets [36] are
not enough. Thus, we use HeySQuAD [56], the largest spoken QA dataset up to now, for approach
evaluation. It contains 72K/4K human-spoken questions for training and evaluation. Audios in it
were created by 12 English speakers from questions in SQuAD1.1 [36] and SQuAD2.0 [35]. We only
utilize 48K/1K samples from SQuAD1.1, because lots of questions in SQuAD2.0 are unanswerable,
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Table 1. The setups of di�erent update scenarios

ID Update Scenario Model Training Dataset WER(%) M.Reg(%) F1(%) S.Reg(%)

1 Model Size (2)B<0;;!(2)<438D< !81A80;; 31.69!40.90 7.69 73.85!74.64 7.49

2 Model Size (2)<438D<!(2);0A64 !81A80;; 31.69!31.44 6.29 73.85!75.90 6.79

3 Model Architecture &
Training Data (2);0A64!F⌘8B?4AC8=~ !81A80;;!,⌘8B?4A4= 41.06!9.87 0.20 72.40!82.40 3.49

4 Prediction Class F⌘8B?4AC8=~ ,⌘8B?4A4=!,⌘8B?4A<D; 17.53!13.24 1.80 78.50!80.00 5.59

5 Training Data (2)B<0;; !81A82;40=!!81A80;; 31.57!31.17 4.29 72.42!75.77 5.89

6 Training Data (2)B<0;;
!81A80;;!!81A80;;&
HeySQuAD 31.17!17.08 0.00 75.77!81.07 1.90

7 Training Step (2)B<0;; !81A850 0;; ! !81A8300 0;; 44.90!31.17 1.70 72.43!75.77 4.29

Note: M.Reg and S.Reg respectively denote the model-level and system-level regression error rate in percentage. (2)B<0;; , (2)<438D< and (2);0A64 are S2T
models with di�erent sizes. !81A80;; and !81A82;40= denote the LibriSpeech dataset with all data and with only the clean partition, respectively. !81A850 0;; and

!81A8300 0;; denote that the model is trained 50K and 300K steps with the LibriSpeech dataset.,⌘8B?4A4= and,⌘8B?4A<D; are the proprietary dataset used to
train the English version and multi-language version of whisper models.�4~(&D�⇡ denotes the spoken QA dataset.

which brings di�culties for the system-level loss computation. We randomly select 4K samples
from the training dataset as the validation dataset for hyper-parameter tuning.

Models. For the ASR model, we consider two transformer-based model architectures, i.e., Speech
to Text Transformer (S2T) [52] and Whisper [34]. S2T was proposed by Meta FAIR, which was pre-
trained on LibriSpeech [29]. LibriSpeech is a de-facto standard ASR benchmark that contains 1k
hours of English speech from audiobooks. S2T is also used byWu et al. [56] to measure the accuracy
of QA models on transcribed audio with noise. Whisper was proposed by OpenAI, the state-of-the-
art ASR model that supports multi-language transcription. It was pre-trained with proprietary data
collected by OpenAI with more than 68K hours audio. 65% of the data represents English transcripts.

For the QA model, we adopt roberta-large [25], which is shown to be well-performed with noisy
transcribed questions by Wu et al. [56]. We train it with the training data from SQuAD1.1 [36], and
keep it unchanged in our model update scenarios.
Update Scenarios. As Table 1 shows, we investigate the following �ve types of typical model

update scenarios with seven speci�c scenarios which may happen in real-world.

• Model Size Update. Update the old model with a new model with more parameters but the same
architecture, e.g., the update from (2)B<0;; with 29.5M parameters to (2)<438D< with 71.2M
parameters, and (2)<438D< to (2);0A64 with 1B parameters in Scenario 1 and 2, respectively.

• Model Architecture Update. Update the old model with a new model with a di�erent architec-
ture, e.g., the update from (2);0A64 toF⌘8B?4AC8=~ in Scenario 3.

• Prediction Class Update. Update the old model with a new model supporting more prediction
classes, e.g., the update from an English-onlymodel to amulti-languagemodel in Scenario 4. These
two models share the same architecture and size, but are trained with di�erent training data.

• Training Data Update. Update the old model with a new model trained with more data. For
example, the old model is pre-trained only with clean partition of LibriSpeech, but the new model
is pre-trained with all of LibriSpeech in Scenario 5. Another scenario is to perform further �ne-
tuning with task speci�c training data, e.g., the (2)B<0;; is further �ne-tuned with training data
from HeySQuAD in Scenario 6.

• Training Step Update. Update the old model with a new model trained with the same training
data but more training steps. For example, the old model is pre-trained with 50K steps while the
new model is pre-trained with 300K steps with LibriSpeech in Scenario 7.

We directly use the released model checkpoints from Hugging Face [42] in the �rst four scenarios,
while train the model in the last three scenarios. Table 1 indicates that the magnitude of model-level
regression error rate does not fully re�ect system-level regression error rate. For example, although
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Fig. 5. An illustration of the multi-sensor fusion perception system

Scenario 4 has a 2.49% lower model-level regression error rate than Scenario 5, its system-level re-
gression error rate is lower by only 0.3%. It is consistent with Eq. 8, and will be analyzed in Sec. 5.1.
Further, system-level regression error rate is larger that model-level one across almost all scenarios.
Baseline Approaches. There are two mainstream types of approaches to reduce regression

errors, training-based and ensemble-based approaches [23]. Training-based approaches are time-
consuming and have been shown by Li et al. [23] to signi�cantly reduce model accuracy. Therefore,
we selected ensemble-based approaches as baselines. We did not select Bayesian-based ensemble
because, when the number of predicted classes is large (in our token prediction scenario), Bayesian
estimation of ensemble weights becomes inaccurate due to the large prior and posterior matrix,
greatly a�ecting model accuracy, as already revealed by Li et al. [23]. Besides, NeuRecover [48] is
not open-source due to company policies. In summary, we select the following baselines.
• Simple Approaches.We select simple approaches with heuristics, including simple average (Avg)
and taking max belief (Max) of logits between I>;3 and I=4F predicted by two ASR models.

• Uncertainty-Based Approaches. We select two uncertainty-based approaches proposed by Li
et al. [23]. Speci�cally, for a given testing sample, they estimate the uncertainty of a model by the
variance from multiple forward passes via Dropout or random noise (Pertub). Then, they compute
the ensemble weight _C based on the uncertainty of the old and new model. We adopt their
default hyper-parameters for comparison. It has been shown that they are the state-of-the-art to
reduce model-level regression errors in image classi�cation tasks [23].
Implementation. The datastoreHCA08= contains millions of token-level samples, thus we use

FAISS [15] to index and search neighbors e�ciently. The last decoder hidden states of samples are
used as the keys in the datastore, which are supposed to capture the semantic meaning of current
sample e�ectively [17, 20]. The number of retrieved neighbors is set to 20. We set the threshold g<
and gB in Eq. 3 and 5 to 0.3. W< in Eq. 10 and WB in Eq. 11 are tuned with the HeySQuAD validation
dataset. Once the most appropriate W< and WB for Pareto Improvement are decided, d in Eq. 12 is
tuned with �xed W< and WB . The experiments were conducted on a server with Intel (R) Core (TM)
i9-10980XE CPU @ 3.00GHz, 128GB RAM, and 4 NVIDIA GeForce RTX 3090 GPUs.

The ensemble of models with di�erent vocabulary corpus requires vocabulary alignment, such
as Scenario 3 and 4, because logits I>;3 and I=4F should be summed in a weighted way directly. We
adopt the vocabulary alignment from existing work [51], which utilizes edit distance to match vocab-
ularies between di�erent models. The vocabulary of the old model is mapped into the vocabulary of
the newmodel, which causesWER of the old model increase. For example, WER of (2);0A64 increases
from 31.44% (new model in Scenario 2) to 41.06% (old model in Scenario 3) with token alignment.

4.2 Evaluation Setups on the Multi-Sensor Fusion Perception System
To answer RQ6, we conduct experiments on CLOCs (Camera-LiDAR Object Candidates Fusion) [30],
a representativemulti-sensor fusion perception system. As shown in Fig. 5, it consists of threeML com-
ponents (i.e., a 2D object detection model, a 3D object detection model, and a fusion model) and one
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non-ML component (i.e., the intersection �lter). First, a 2D image from a camera and a 3D point cloud
data from a LiDAR are processed by the respective 2D and 3D object detection models to generate
2D and 3D detected bounding boxes. Then, the intersection �lter applies rule-based �ltering to
identify overlapping bounding boxes. Finally, a CNN-based fusion model, trained on labeled data,
merges the �ltered bounding boxes to produce the �nal detection result.

Metrics. In object detection tasks, true positives and false positives are calculated based on the
IOU (Intersection over Union) between predicted and ground truth bounding boxes. Recall, precision,
and regression errors are thus all computed based on IOU. We use recall to measure the accuracy
of the 2D object detection model, as any redundant boxes will be �ltered out by the intersection
�lter, making precision less important. F1 score is used to measure the system accuracy.

Dataset.We adopt the widely used 3D object detection benchmark KITTI [16]. It includes LiDAR
point clouds and camera images, and consists of 7,481 training samples and 7,518 testing samples.

Models.We use Cascade R-CNN [11] and YOLO-v5 [47] as the 2D object detection models, SEC-
OND [59] as the 3D object detection model, and CLOCs fusion model [30] as the fusion model.

Update Scenarios. Only the 2D object detection model was updated, while other components
remained unchanged. Two update scenarios were considered: (1) model architecture update, i.e.,
replacing R-CNN with YOLOv5 (Scenario 8); and (2) training step update, i.e., replacing R-CNN
trained for 1 epoch with R-CNN trained for 12 epochs (Scenario 9).

Baseline Approaches. Let ⌫>;3 = {1>;31 ,1>;32 , . . . ,1>;3< } be the bounding boxes detected by the old
model on a sample, ⌫=4F = {1=4F1 ,1=4F2 , . . . ,1=4F= } be the bounding boxes detected by the newmodel,
and �$* (1>;38 ,1=4F9 ) be the IOU between 1>;38 and 1=4F9 . Here, the goal of regression error reduction
is to compute the re�ned bounding box set ⌫0 according to ⌫>;3 and ⌫=4F , such that '46(⌫>;3 ,⌫0 ) <
'46(⌫>;3 ,⌫=4F). The bounding boxes in ⌫>;3 and ⌫=4F with an IOU greater than 0.8 are denoted as
⌫>;3>E4A;0??43 and⌫

=4F
>E4A;0??43 (whose size is denoted as>), respectively. The remaining parts are denoted

as ⌫>;3;4 5 C and ⌫
=4F
;4 5 C . We use Eq. 13 to merge ⌫>;3>E4A;0??43 and ⌫=4F>E4A;0??43 .

⌫B4;42C43 =
>ÿ
8=1

(
⌫>;3>E4A;0??43,8 with the probability of _
⌫=4F>E4A;0??43,8 with the probability of 1 � _

(13)

That is to say, each overlapped bounding box in ⌫0 is selected from ⌫>;3 and ⌫=4F based on the
probability _. _ plays a role similar to the logits ensemble weight in spoken QA scenarios. Based on
⌫B4;42C43 , ⌫>;3;4 5 C , and ⌫

=4F
;4 5 C , we construct the following baselines for obtaining the �nal ⌫0.

• Simple Approaches.We select two simple approaches (respectively named Old and New), where
_ is set to 0.5, and the remaining bounding boxes from the old model ⌫>;3;4 5 C and the new model
⌫=4F;4 5 C are respectively unioned with ⌫B4;42C43 ; i.e., ⌫

0
= ⌫B4;42C43 [ ⌫>;3;4 5 C , and ⌫

0
= ⌫B4;42C43 [ ⌫=4F;4 5 C .

• Uncertainty-Based Approaches.We select one uncertainty-based approach (named Perturb) by
adding random noise to the input image data, calculating _ based on the variance of the predicted
bounding boxes, and unioning ⌫>;3;4 5 C and ⌫B4;42C43 . Since R-CNN and YOLO-v5 do not have explicit
dropout layers, we cannot use the dropout-based approach as a baseline.

R��T����� Adaption. Similar to Perturb, R��T����� also needs to estimate _, but it is based
on the loss of retrieved neighbors. We use the commonly used localization loss in object detection
tasks to compute the model-level loss, and then calculate the _< based on the CDF of loss di�erence,
just as in the spoken QA scenarios. The system-level loss is obtained by passing the 2D model’s
object detection results through the entire pipeline, calculating the fusion model’s loss. Finally, the
_B is computed based on the system-level loss.
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Table 2. The results of di�erent approaches in the spoken QA system

Scenario Metric(%) Orig Simple Uncertainty RegTrieve Ablation
Max Avg Dropout Pertub Model System System+ M.Loss S.Loss

1
WER 40.90 31.65 31.10 32.25 31.69 27.53 26.98 28.32 27.60 27.65
M. Reg 7.68 2.20 2.20 3.19 2.50 0.90 0.70 0.60 1.60 1.10
F1 74.64 74.47 75.21 73.82 75.26 74.71 74.72 74.70 75.47 75.26

S. Reg 7.49 4.69 4.99 5.49 4.79 2.99 3.79 1.50 4.69 4.89

2
WER 31.44 26.70 25.43 25.68 26.09 24.47 24.22 24.26 24.17 24.20
M. Reg 6.29 2.10 1.30 2.30 1.60 1.10 1.30 1.10 1.20 1.50
F1 75.90 75.78 76.12 74.83 76.10 75.96 76.32 76.12 75.94 75.98

S. Reg 6.79 4.69 4.19 5.89 4.99 3.09 4.19 3.09 4.79 4.39

3
WER 9.87 31.47 31.31 18.19 27.05 11.01 11.84 11.09 13.24 30.06
M. Reg 0.20 1.30 1.50 0.90 0.60 0.50 0.70 0.50 0.70 2.10
F1 82.44 77.66 75.67 81.42 78.40 82.07 82.09 82.13 81.03 75.28

S. Reg 3.49 2.99 5.39 3.89 3.29 3.79 3.39 3.79 3.99 7.19

4
WER 13.24 12.23 12.81 12.75 12.96 17.06 15.58 15.09 12.30 12.68
M. Reg 1.80 0.40 0.70 0.40 0.70 0.40 0.40 0.80 1.10 0.60
F1 80.00 81.42 81.55 81.62 81.08 80.06 81.00 81.13 81.46 81.68

S. Reg 5.59 2.10 2.50 1.90 2.89 1.90 1.70 2.10 3.09 2.79

5
WER 31.17 28.63 28.69 27.32 28.47 26.84 26.88 27.15 26.43 27.34
M. Reg 4.29 2.40 2.30 1.80 2.20 1.20 1.60 1.20 1.30 1.40
F1 75.77 75.80 75.59 73.91 75.65 75.85 75.92 75.85 76.25 75.62

S. Reg 5.89 4.39 4.49 6.39 4.59 3.89 4.69 3.79 4.79 4.69

6
WER 17.08 26.43 24.51 20.10 21.20 16.85 17.95 16.85 18.13 18.86
M. Reg 0.00 0.90 0.20 0.30 0.20 0.10 0.10 0.10 0.20 0.10
F1 81.07 78.49 78.87 79.35 79.67 81.85 81.43 81.85 81.29 80.58

S. Reg 1.90 1.40 1.20 1.70 1.70 1.10 1.10 1.10 1.40 1.60

7
WER 31.17 35.62 33.90 33.02 35.65 31.48 31.04 31.41 31.53 31.13
M. Reg 1.70 1.10 1.10 0.60 1.30 1.00 0.80 1.20 1.10 0.90
F1 75.77 74.76 75.51 74.95 74.63 75.94 75.99 76.02 75.74 75.99

S. Reg 4.29 2.99 2.59 3.09 2.69 3.19 2.99 3.29 3.39 3.09

Note: The bold values indicate the approaches that achieve the greatest reduction in model-level or
system-level regression errors without compromising the WER or F1 score in each scenario.

score from 75.77% to 75.50%. In contrast, Model maintains an F1 score of 75.99%. Among the three
settings of R��T�����, System+ generally achieves the best performance because it combines both
model-level and system-level losses. However, in Scenario 3 and 4, the old ASR model requires
token alignment, which makes the estimation of model-level losses less accurate. As a result, System,
which relies solely on system-level losses, can reduce more regression errors in these scenarios.

Summary. R��T����� consistently outperforms baseline approaches in reducing regression
errors while maintaining system accuracy. Numerically, R��T����� reduces more regression errors
than all baselines by 20.43% in average. R��T����� achieves Pareto Improvement in all but one
scenario, with System+ and System demonstrating the best performance in di�erent scenarios.

5.3 RQ3: Ablation Study
R��T����� primarily consists of two parts, i.e., estimating the testing sample’s loss using the losses
from similar training samples, and computing the ensemble weight based on CDF of the loss di�er-
ence. We investigate the contribution of the CDF-based ensemble function by simply using the ratio
of old loss to new loss as the ensemble weight. Speci�cally, the ensemble weight is calculated by
_
0
< = ✓=4FC /(✓=4FC + ✓>;3C ) and _0B = g

=4F
C /(g=4FC + g

>;3
C ), respectively denoted as M. Loss and S. Loss

in the last two columns in Table 2.M. Loss and S. Loss achieve Pareto Improvement in �ve scenarios
(i.e., Scenario 1, 2, 4, 5 and 6) and four scenarios (i.e., Scenario 1, 2, 4 and 7), respectively, exceeding
the number of scenarios where the baseline approaches achieve. However, the average reduction in
regression errors for M. Loss and S. Loss is signi�cantly less than that of R��T�����.

Summary.R��T�����without the CDF-based ensemble function (M. Loss and S. Loss) still achieves
Pareto Improvement in more scenarios than all baseline approaches. However, the CDF-based
ensemble function is important for more reduction of system-level regression errors.
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(a) Analysis of W< (b) Analysis of WB (c) Analysis of d
Fig. 7. The impact of model ensemble hyper-parameters in Scenario 1

(a) Analysis of W< (b) Analysis of WB (c) Analysis of d
Fig. 8. The impact of model ensemble hyper-parameters in Scenario 5

(a) Scenario 1: Model se�ing (b) Scenario 1: System se�ing (c) Scenario 1: System+ se�ing

(d) Scenario 5:Model se�ing (e) Scenario 5: System se�ing (f) Scenario 5: System+ se�ing
Fig. 9. The impact of  in Scenario 1 and Scenario 5

5.4 RQ4: Hyper-Parameter Analysis
Weanalyze the impact of hyper-parameters on the performance of R��T�����. There are threemodel
ensemble hyper-parameters to con�gure for the Model, System and System+ settings, namely W< , WB
and d , respectively. Next, we measure the impact of (i.e., the number of neighbors retrieved to esti-
mate the ensemble weight). Due to space limitation, we only demonstrate the impact of these hyper-
parameters for Scenario 1 and Scenario 5. These two scenarios represent cases where F1 score
improvement of the new system over the old system is small (Scenario 1) and large (Scenario 5),
respectively. Results for other scenarios are also available at our website [7].

Fig. 7 and 8 show the impact of model ensemble hyper-parameters in Scenario 1 and Scenario 5,
respectively. As for the impact of W< on the Model setting, as it increases, system-level regression
error rate continues to decrease in both scenarios. This is because a larger W< assigns more weight
to the old model during model ensemble, thus reducing regression errors. F1 score of the ensemble
model in both scenarios initially increases and then decreases, because the ensemble model could
e�ectively combine the logits of the new and old models when W< is around 0, achieving a higher
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Table 3. The initialization overhead of R��T�����

Scenario Datastore Storage I/O Time (in seconds)
Model System Model Dataset Datastore

1 4.4G 12.4M 0.281 3.841 1.927
2 7.2G 12.4M 0.591 3.817 2.922
3 7.5G 12.1M 2.363 6.268 2.599
4 3.7G 11.8M 1.724 6.448 1.733
5 2.6G 11.8M 0.241 3.823 1.200
6 2.6G 11.8M 0.244 3.873 1.185
7 2.6G 11.8M 0.254 3.853 1.200

Note: Model and System under the Datastore Storage column represent the sizes of the datastores when using model-level
and system-level loss in R��T�����, respectively. I/O Time indicates the time to load Model, Dataset and Datastore.

Table 4. The inference time of di�erent approaches for a testing sample (in seconds)

Scenario Old M. New M. Simple Uncertainty RegTrieve
Max/Avg Dropout Pertub All Settings

1 0.016 0.019 0.106 1.307 1.281 0.464
2 0.017 0.020 0.197 2.136 2.213 0.652
3 0.017 0.022 0.295 2.746 2.957 0.348
4 0.013 0.022 0.238 2.214 2.344 0.264
5 0.016 0.016 0.081 0.939 0.980 0.290
6 0.017 0.014 0.086 0.931 0.945 0.247
7 0.019 0.017 0.098 1.064 1.039 0.255

Note: Old M. and New M. denotes the inference time of the old ASR model and new ASR model. The inference time for Max
and Avg is very close, and thus we combine them into one column. The same also applies to the three settings of R��T�����.

F1 score. When W< becomes larger, F1 score in Scenario 5 decreases more rapidly than that in
Scenario 1 due to the larger performance gap between the old and new models. The impact of WB
on the System setting follows a similar trend to the impact of W< .

When evaluating the impact of d on the System+ setting, we select W< (which maximizes F1 score)
and WB (which minimizes regression error rate) based on previous results. As shown in Fig. 7 and 8,
both F1 score and system-level regression error rate decrease as d increases. This is because a larger
d increases the in�uence of System, which has lower F1 score and system-level regression error
rate, on System+. Finally, by performing hyper-parameter tuning on the validation set, we select W< ,
WB and d values that do not decrease F1 score of the new system while minimizing the regression
error rate, and report the corresponding results in Table 2.

As shown in Fig 9, under the three settings of R��T�����, the F1 score initially increases with  
and then stabilizes. Similarly, the system regression error rate decreases with increasing  and then
stabilizes. This trend is expected, as a larger K means more neighbors, leading to more accurate
estimates of model accuracy and ensemble weights. However, beyond 15 or 20 neighbors, the newly
added neighbors are increasingly distant from the current sample and contribute less to the �nal
result. Therefore, setting  to 20 in previous experiments is a reasonable choice.
Summary. Increasing W< and WB consistently reduces system-level regression errors, while in-

creasing �rst and then reducing F1 score. Increasing d in System+ reduces both F1 score and system-
level regression errors due to the growing in�uence of System. Increasing  to 15 or 20 improves
system accuracy and reduces system-level regression errors.

5.5 RQ5: E�iciency Evaluation
We �rst measure the initialization overhead, including the data repository size and the I/O time for
loading the data repository, and then measure the inference time of R��T�����.

Proc. ACM Softw. Eng., Vol. 2, No. FSE, Article FSE088. Publication date: July 2025.



FSE088:18 Cao, Xiang, Cheng, Chen, Wang, Lu, Sha, Xie, and Peng

Table 5. The results of di�erent approaches in the multi-sensor fusion perception system

Scenario Metric(%) Orig Simple Uncertainty RegTrieve
New Old Pertub Model System System+

8
M. Recall 95.26 95.23 87.37 95.25 96.86 96.88 96.89
M. Reg 4.15 4.08 0.12 4.11 1.20 1.23 1.17
S. F1 84.60 82.93 82.7 84.60 84.36 84.41 84.40
S. Reg 2.64 2.02 0.80 2.23 1.76 1.70 1.72

9
M. Recall 87.13 86.88 74.88 87.09 87.95 88.02 88.03
M. Reg 1.92 1.90 0.15 1.90 0.95 1.01 1.01
S. F1 83.01 83.13 81.93 82.99 83.26 83.02 83.03
S. Reg 1.01 0.86 0.14 0.92 0.80 0.78 0.78

Note: The bold values indicate the approaches that achieve the greatest reduction in model-level or system-level regression
errors without compromising the recall or F1 score in each scenario.

Initialization Overhead.As shown in Table 3, the datastore size of R��T����� ranges from 2GB
to 8GB in di�erent scenarios, which can typically be fully loaded into the memory of mainstream
machines. Additionally, it can be observed that the time taken to load the datastore is similar to
that of loading the model and dataset. The latter two are essential for normal model inference, and
thus the additional I/O cost introduced by RegTrieve is relatively small. Moreover, the I/O time
during initialization is minimal compared to the total inference time (from 200 to 700 seconds).

Inference Time.We report only the inference time of the ASR model with di�erent approaches
in Table 4, while the QA model’s inference time is not included since it remains unchanged in our
experiments. For a single testing sample, R��T�����’s average inference time is 0.36 seconds, which
is only about 20% of the time required by Dropout (1.62 seconds) and Perturb (1.69 seconds). Com-
pared to Max/Avg, R��T����� introduces only about twice the time overhead due to retrieval and
loss ensemble, whereas uncertainty-based approaches require multiple forward passes (10 in this
case) for uncertainty estimation. The inference time in Scenario 3 and 4 is larger than that in other
scenarios due to the additional time required for vocabulary mapping. Note that the time required
byMax/Avg is signi�cantly greater than that of the old system and the new system, as we implement
a custom greedy decoding logic for easier logits ensemble. Replacing this with the built-in decoding
function from Transformers [44] library will further speed up all reduction approaches.
Summary. The datastores of R��T����� range from 2GB to 8GB, which could be fully loaded

into memory for later inference. Therefore, R��T����� only needs about 20% of the time required by
uncertainty-based approaches for inference, introducing twice the overhead ofMax/Avg approaches.

5.6 RQ6: Generalization Evaluation
We report the adaption e�ort and generalization e�ectiveness when applying R��T����� to another
ML system that contains non-ML components, i.e., the multi-sensor fusion perception system.

Adaption E�ort. During adaptation, the overall framework of R��T����� is the same to that of
the spoken QA system, as both rely on loss-based model accuracy estimation to compute ensemble
weights. However, we need to adapt the methods for calculating the loss and merging bounding
boxes that di�er from the spoken QA system. All baselines also need to be adapted for bounding box
merging. Notice that the Dropout approach cannot be adapted because the models lacks a dropout
layer. Overall, R��T����� requires similar small adaptation e�orts, compared with baselines.

Generalization E�ectiveness.As shown in Table 5, all three settings of R��T����� reduce more
regression errors without compromising model-level recall, compared to baselines. Among them,
System+ reduces themost regression errors both in Scenario 8 and Scenario 9. SinceOld retains many
non-overlapped bounding boxes from the old model, it has fewer regression errors. However, it does
not consider enough results from the new model, leading to a much lower accuracy. Although in
Scenario 8,R��T����� causes a slight decrease in system-level F1, the reduction isminimal compared
to baselines, while also reducing a relatively larger number of system-level regression errors.
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Summary. Compared with baselines, R��T����� requires similar e�orts for adaption, and shows
promising generalization capability by reducing 14.06% more system-level regression errors in the
multi-sensor fusion perception system on average.

5.7 Threats
First, R��T����� is evaluated on a spoken QA system and a multi-sensor fusion perception system,
and thus its e�ectiveness on other complexML systems, remains uncertain.We have only considered
scenarios involving a single upstream model update. More complex cases, such as system regression
errors arising frommultiple models being updated simultaneously or updates involving downstream
models, require further evaluation and research. Second, the inadequacy of accuracy evaluation
metrics (e.g., WER and F1 score) may lead to bias in computing regression errors during experiments.
Future work should investigate whether improving metrics in�uences our �ndings, particularly the
observation that model-level and system-level regression errors do not always occur simultaneously.
Third, we have only evaluated the ensemble ASR models using greedy decoding. The performance
on other decoding strategies, such as Multinomial Sampling [43] or Beam-Search Decoding [14],
remains unknown. However, the evaluation results from greedy decoding re�ect the quality of the
ensemble model’s predicted logits and could serve as a good indicator for the performance across
other decoding strategies. Finally, in our evaluation scenarios, the datastore can be fully loaded
into memory, and thus retrieving samples introduces minimal overhead. If the datastore becomes
too large to �t into memory, retrieval operations would incur additional disk I/O overhead. In such
cases, R��T����� could easily bene�t from techniques designed to optimize RAG, such as Caching
Embeddings [45] and Contextual Compression [46].

6 Related Work
ML Regression Errors. Regression bugs have been widely investigated by the SE community [60],
including regression testing [13, 60], debugging [53] and automatic regression bug dataset construc-
tion [37]. Recently, the ML community has started to notice regression errors during model updates,
due to potential negative in�uences on human trust [8] in human-AI collaboration scenarios and
downstream modules in ML systems [38]. Some studies refer this to backward compatibility prob-
lem [8, 38, 50], but it is essentially the same as ML regression errors [23, 58]. DRFuzz [62] generates
inputs that trigger diverse regression errors. Techniques to reduce regression errors could be divided
into two categories, training-based approaches and ensemble-based approaches.

Training based approaches aim to add additional loss term during training of the updated model
to align its output with old model’s output without sacri�cing its accuracy too much. For example,
Yan et al. [58] proposed focal distillation to reduce the KL divergence of regression error samples
between the updated and old model in image classi�cation tasks. Xie et al. [57] and Caciolai et
al. [10] extended focal distillation to natural language classi�cation tasks and spoken language
labeling with revised distillation loss, respectively. We did not adopt this approach for two reasons.
First, training the updated model is costly and may not be feasible in practice (e.g., when the
updated model is provided by cloud APIs). Second, Zhu et al. [3] demonstrated that training-based
approaches essentially average the old model and updated model. Furthermore, Li et al. [23] showed
that training-based approaches signi�cantly harm the accuracy of the updated model.
Ensemble-based approaches combine the prediction results of the updated model and the old

model to reduce regression errors. For example, Trauble et al. [50] proposed a Bayesian-based ensem-
ble approach to iteratively update the prediction posterior. NeuRecover [48] adjusted the weights
of the model that can safely correct the regressions by comparing the training history between
old models and new models. Li et al. [23] aligned the uncertainty of predictions of old model and
updated model via uncertainty estimation before the model ensemble. Their experiment results
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show that ensemble-based approaches could achieve better results than training-based approaches.
Therefore, our retrieval-enhanced approach builds upon the ensemble approach.

To the best of our knowledge, there has been no comprehensive evaluation or reduction of regres-
sion errors at system level. Srivastava et al. [38] highlighted the potential impact of ML regression
errors in ML system, and conducted a conceptual analysis of an OCR system. However, they neither
evaluated the regression errors nor proposed any reduction approaches for a real-world ML system.

Study ofML Systems. While much of the attention has been onMLmodels [32, 64], system-level
analysis has received less attention [18]. We begin by discussing the study of general challenges that
arise from integrating multiple models in complex ML systems. Peng et al. [33] investigated the in-
tegration of ML models in Apollo by analyzing how these models interact with the system. Cao et
al. [12] explored the complexity and testing challenges due to module interactions in Rasa. More-
over, Abdessalem et al. [1, 2] studied the feature interaction failures in self-driving systems. Apel et
al. [6] also discussed feature interactions in ML systems. In addition, several attempts have been
proposed to address the issue of ML component entanglement [5], including applying metamorphic
testing on systems with two ML components [63], troubleshooting failures in systems with three
ML components using human intellect [28], and decomposing errors in systems with two or three
ML components [55]. Similar to them, our work also takes the perspective of a whole system.

Next, we summarize the existing e�orts aimed at optimizing the overall performance of ML sys-
tems. Amershi et al. [5] and Bernardi et al. [9] reported that models can be complexly entangled to
cause non-monotonic errors [5], and model quality improvement does not necessarily indicate sys-
tem value gain [9]. Takanobu et al. [40] showed that the component-wise evaluation results are not
always consistent with the overall performance of task-oriented dialogue systems. To address this,
Lin et al. [24] proposed a joint system-wise optimization method to improve system performance
in dialogue systems. Similarly, Li et al. [22] and Wu et al. [56] found that ASR errors severely a�ect
the accuracy of downstream QA models. Su et al. [39] suggested using contextualized word repre-
sentations in QA models to mitigate the detrimental e�ects of ASR errors. You et al. [61] employed
knowledge distillation to align the ASR model with the expectations of QA models.

In summary, it is important to reduce regression errors from a system perspective, and our work
complements previous research, as they do not consider regression errors at system level.

Retrieval-Based Approaches. Retrieval-based augmentation techniques have been used to en-
hance language model without �ne-tuning on domain speci�c data [17, 20, 41]. They can be catego-
rized into two types, i.e., retrieval enhancement for inputs [26, 31] and outputs [17, 20, 41]. Our work
is inspired by the latter. Rather than directly augmenting the retrieved logits from training data,
we use the retrieved neighbors to calculate weights for ensembling the old and updated models.

7 Conclusions and Data Availability
We formulate the problem of system-level regression errors, and propose a retrieval-enhanced
ensemble approach, R��T�����, to reduce both model-level and system-level regression errors.
Experiments in spoken QA system demonstrate that R��T����� reduces system-level regression
errors by 20.43% more than all baseline approaches, with little or even no loss in system F1 score.
All the data and code of R��T����� have been released at our website [7] to foster future research.
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