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ABSTRACT

As amixed result of intensive dependency on third-party libraries, flex-
iblemechanisms to declare dependencies and increased number ofmod-
ules in a project, differentmodules of a project directly depend onmul-
tiple versions of the same third-party library. Such library version in-
consistencies could increase dependency maintenance cost, or even
lead to dependency conflicts when modules are inter-dependent. Al-
though automated build tools (e.g., Maven’s enforcer plugin) provide
partial support to detect library version inconsistencies, they do not
provide any support to harmonize inconsistent library versions.

We first conduct a survey with 131 Java developers from GitHub
to retrieve first-hand information about the root causes, detection
methods, reasons for fixing or not fixing, fixing strategies, fixing ef-
forts, and tool expectations on library version inconsistencies. Then,
based on the insights from our survey, we propose LibHarmo, an in-
teractive, effort-aware library version harmonization technique, to
detect library version inconsistencies, interactively suggest a harmo-
nized version with the least harmonization efforts based on library
API usage analysis, and refactor build configuration files.

LibHarmo is currently developed for Java Maven projects. Our
experimental study on 443 highly-starred Java Maven projects from
GitHub shows that i) LibHarmo detected 621 library version incon-
sistencies in 152 (34.3%) projects with a false positive rate of 16.8%,
while Maven’s enforcer plugin only detected 219 of them; and ii) Lib-
Harmo saved 87.5% of the harmonization efforts. Further, 31 library
version inconsistencies have been confirmed, and 17 of them have
been already harmonized by developers.

∗Bihuan Chen is the corresponding author.
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1 INTRODUCTION

With the increased diversity and complexity ofmodern systems,mod-
ular development [70] has become a common practice to encourage
reuse, improve maintainability, and provide efficient ways for large
teams of developers to collaborate [35]. Therefore, automated build
tools (e.g., Maven) provide mechanisms (e.g., the aggregationmecha-
nism in Maven [3]) to support multi-module projects for the ease of
management and build. In contrast to the benefits thatmulti-module
project brings to software development, one of the drawbacks is the
complicated dependency management (colloquially termed as “de-
pendency hell” [36]), exacerbated by the increased number of mod-
ules and the intensive dependency on third-party libraries. In this
paper, we focus on the dependency management in Maven projects
as Maven has dominated the build tool market for many years [60].

Problem. It is quite common that different modules of a project
directly depend on the same third-party libraries. Maven provides
flexiblemechanisms for childmodules to either inherit third-party li-
brary dependencies from parent modules (e.g., the inheritancemech-
anism [3]) or declare their own third-party library dependencies. Be-
sides, Maven allows the version of a third-party library dependency
to be explicitly hard-coded or implicitly referenced from a property
which can be declared in parent modules. Therefore, library version
inconsistency can be easily caused in practice; i.e., multiple versions
of the same third-party library are directly depended on in different
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modules of a project. Even if the same version of a third-party li-
brary is directly depended on in different modules, the versions can
be separately declared instead of referencing a common property.
We refer to it as library version false consistency as it will turn into
library version inconsistency when there is an incomplete library
version update (e.g., a developer updates the version in one of the
modules). Intuitively, library version inconsistency could increase
dependency maintenance cost in the long run, or even lead to de-
pendency conflicts [76] when modules are inter-dependent.

For example, an issue HADOOP-6800 [1] was reported to the project
Apache Hadoop, and said that “multiple versions of the same library

JAR are being pulled in .... Dependent subprojects use different versions.

E.g. Common depends on Avro 1.3.2 while MapReduce depends on 1.3.0.

Since MapReduce depends on Common, this has the potential to cause

a problem at runtime”. This issue was prioritized as a blocker issue,
and was resolved in 30 days. Developers found other library version
inconsistencies, and finally harmonized the inconsistent versions
of libraries avro, commons-logging, commons-logging-api and
jets3t across modules Common, MapReduce and HDFS.

Maven’s enforcer plugin uses a dependency convergence rule to de-
tect multiple versions of the same third-party library along the tran-
sitive dependency graph; i.e., if a module has two dependencies A
and B, and both depend on the same dependency, C, this rule will fail
the build if A depends on a different version of C than the version of
C depended on by B. In that sense, this rule cannot detect library ver-
sion inconsistencies across modules that are not inter-dependent.
Moreover, it does not provide any support on how to harmonize in-
consistent library versions. As project developers have no direct con-
trol to harmonize the inconsistent library versions in transitive de-
pendencies, we only consider direct dependencies across modules.

Approach. To better address the problem, e.g., by realizing prac-
tical solutions that are acceptable by developers, it is important to first
understand developers’ practices on library version inconsistencies.
Therefore, we conduct a surveywith 131 Java developers fromGitHub
to retrieve first-hand information about the root causes, detection
methods, reasons for fixing or not fixing, fixing strategies, fixing ef-
forts, and tool expectations on library version inconsistencies. 90.8%
of participants experienced library version inconsistency, and 69.4%
consider it as a problem in project maintenance. Our survey sug-
gests several insights, e.g., tools are needed to proactively locate and
harmonize inconsistent library versions, and such tools need to in-
teract with developers and provide API-level harmonization efforts.

Then, inspired by the insights from our developer survey, we pro-
pose LibHarmo, the first interactive, effort-aware technique to har-
monize inconsistent library versions in JavaMaven projects. It works
in three steps. First, it identifies library version inconsistencies by an-
alyzing build configuration files (i.e., POM files). Second, for each li-
brary version inconsistency, it suggests a harmonized version with
the least harmonization efforts (e.g., the number of calls to library
APIs that are deleted and changed in the harmonized version) based
on library API usage analysis and interaction with developers. Fi-
nally, if developers determine to harmonize, it refactors POM files.

We have evaluated LibHarmo on 443 highly-starred Java Maven
projects from GitHub. Our experimental results have indicated that
LibHarmo detected 621 library version inconsistencies in 152 (34.3%)
projects, but Maven’s Enforcer plugin only detected 219 of them.We
sampled 238 library version inconsistencieswith a confidence level of

Table 1: Survey Questions

Q1 How many years of Java programming experience do you have?
Q2 How many modules in a Java project did you participate in?
Q3 Have you ever encountered library version inconsistency?
Q4 Is library version inconsistency a problem in projectmaintenance?
Q5 What are the root causes of library version inconsistencies?
Q6 How did you detect library version inconsistencies?
Q7 What are the reasons of not fixing library version inconsistencies?
Q8 What are the reasons of fixing library version inconsistencies?

Q9 Which version do you use as the harmonized version to fix library
version inconsistencies?

Q10 How do you fix library version inconsistencies?

Q11 How much time do you spend in fixing library version inconsis-
tencies?

Q12 Which part of it is most time-consuming in fixing library version
inconsistencies?

Q13 Is an automatic library version harmonization tool useful for
library management?

Q14 Which features would be useful for an automatic library version
harmonization tool?

95% and a margin of error of 5% for manual analysis and identi-
fied 40 (16.8%) false positives. Furthermore, LibHarmo saved 87.5%
of the harmonization efforts through identifying 3 of the 24 library
APIs called in projects as deleted/changed in the suggested harmo-
nized version. Further, 31 library version inconsistencies have been
confirmed, and 17 of them have been harmonized by developers.

Contributions. This paper makes the following contributions.

• We conducted a survey with 131 Java developers from GitHub to
retrieve first-hand information about the practices and tool ex-
pectations on library version inconsistencies.

• Weproposed the first interactive, effort-aware library version har-
monization technique, LibHarmo, based on our survey insights.

• Weevaluated LibHarmo on 443 JavaMaven projects fromGitHub,
and found 621 library version inconsistencies. 31 of them have
been confirmed with 17 being harmonized.

2 DEVELOPER SURVEY

Our online survey is designed for developers who participated in the
development of JavaMavenmulti-module projects. Therefore, we se-
lected Java Maven multi-module projects from GitHub. Then, we ex-
cluded projects whose number of stars was less than 200 in order to
ensure project quality. Finally, we had 443 projects.Wemanually cat-
egorized the domain of 443 projects, and computed their lines of
code, number of commits and number of stars. The projects spanned
over 58 domains, and averagely had 178,852 lines of code, 3,923 com-
mits, and 2,347 stars. From them,we collected 5,316 developerswhose
email address on their GitHub profile page was valid. We sent an
email to each of the developers to clarify the library version incon-
sistency problem and kindly ask them to participate in our online
questionnaire survey. The questions are listed in Table 1, and a com-
plete questionnaire with options is available at our website [5]. We
promised developers that their participation would remain confi-
dential, and all reporting would be based on aggregated responses.

Our survey consists of 14 questions, covering the following seven
aspects, to learn about their professional background, practices and
tool expectations on library version inconsistencies. The answers to
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Figure 1: An Overview of LibHarmo

open questions were categorized by three authors separately; and a
group discussion was conducted to reach consensus.

Professional Background (Q1–Q4). In response to the invita-
tion emails, 131 developers finished the questionnaire within seven
days (i.e., a participation rate of 2.5%). Of all participants, 44.3% have
more than 10 years of Java programming experience, 25.2% have 5 to
10 years, and 30.5% have less than 5 years. 47.3% participated in the
development of over 10modules in one project, 23.7% participated in
5 to 10 modules, and 29.0% participated in less than 5 modules. 90.8%
of participants experienced library version inconsistency, and 69.4%
consider it as a problem in project maintenance.We can observe that
the participants have relatively good experience in modular devel-
opment as well as in handling library version inconsistencies.

Root Causes (Q5). 67.1% and 65.8% named unawareness of the
same library in other modules and backward incompatibility issues
in library versions as the major root causes of library version incon-
sistencies. Different development schedule among differentmodules
(46.1%), unawareness of the library version inconsistency problem
(31.6%), and not considering library version inconsistency as a prob-
lem (23.7%) are the secondary root causes. Some minor root causes
(14.5%) include bad dependencymanagement hygiene, unawareness
of new library versions, and usage difficulty with Maven.

Detection Methods (Q6). Being asked about the detection or
manifestation of library version inconsistencies, bugs due to con-
flicting library versions [76] (72.4%) is the main way to manifest,
followed by bugs due to library API behavior changes (47.4%). Man-
ual investigation of module POM files (46.1%) is the main way to de-
tect, followed by communication with developers of other modules
(14.5%) and adoption of Maven’s enforcer plugin (10.5%).

Reasons for Fixing or not Fixing (Q7–Q8). The participants
reported four main reasons for not fixing: heavy fixing efforts due to
backward incompatibility issues (45.3%), heavy fixing efforts due to
intensive library API dependency (38.7%), fixing difficulty due to dif-
ferent development schedule in different modules (36.0%), and no
serious consequence occurred (30.7%). 6.6% emphasized that they
always selected to fix. On the other hand, there are three main rea-
sons for fixing: avoiding great maintenance efforts in the long run
(68.4%), ensuring consistent library API behaviors across modules
(63.2%), and serious consequences occurred (e.g., bugs) (55.3%).

Fixing Strategies (Q9–Q10).When harmonizing the inconsis-
tent library versions, 77.6% used one of the newer versions than all
currently declared versions with the least harmonization efforts, but
29.0% chose one of the currently declared versions with the least
harmonization efforts. Besides, 61.8% harmonized the versions in all
of the affected modules, while 38.2% only harmonized the versions
in some of the affected modules.

Fixing Efforts (Q11–Q12). 50.0% spent hours in fixing library
version inconsistencies, 32.9% even spent days, and only 11.8% spent
minutes. Besides, locating all inconsistent library versions (56.7%),

determining the harmonized version (49.3%), and refactoring the
source code (48.0%) are the most time-consuming steps in fixing.
Other time-consuming steps are refactoring the POM files (32.0%)
and verifying the fix through regression testing (6.7%).

Tool Expectations (Q13–Q14). 45.6% thought an automated li-
brary version harmonization tool would be useful, but 14.0% thought
it would not be useful mostly because they already adoptedMaven’s
enforcer plugin. 46.5% thought it depended on how well it would be
integrated into the build process, how automated it would be, etc.
With respect to the most useful feature in such a tool, detecting all
library version inconsistencies (75.9%) and suggesting the harmo-
nized version (71.4%) are themost useful ones, followed by reporting
detailed API-level fixing efforts (49.1%) and refactoring the POM
files (42.0%). Surprisingly, refactoring the source code (25.0%) is less
useful than all the previous features.

Insights. From our survey findings, we have several insights. I1:
tools are needed to help developers proactively locate and harmo-
nize inconsistent library versions, as library version inconsistencies
aremostlymanually detected, or passively found after serious conse-
quences. I2: developers should interact with such tools to determine
where and whether to harmonize, as library version inconsistencies
span multiple modules that have different development schedule,
and might not be fixed due to heavy harmonization efforts. I3: such
tools need to provide developers with API-level harmonization ef-
forts, as API backward incompatibility, API dependency intensity,
and API behavior consistency are key factors for developers to de-
termine whether to harmonize. I4: such tools need to be integrated
into the build process for the ease of adoption.

3 APPROACH

Based on the insights I1, I2 and I3 from our developer survey, we pro-
pose the first interactive, effort-aware technique, named LibHarmo,
to assist developers in harmonizing inconsistent library versions (and
falsely consistent library versions). As shown in Fig. 1, it takes as in-
put a JavaMaven project repository, andworks in three steps. First, it
detects inconsistency (Sec. 3.1). Here the challenge is to statically con-
struct the inheritance relationships among POMs from differentmod-
ules and resolve the version of library dependencies declared in these
POMs. This step realizes I1. Second, it suggests harmonized version
(Sec. 3.2) with harmonization efforts by interacting with developers.
Here the goal is to distinguish whether the library APIs called in the
project are deleted/changed in the suggested harmonized version so
that developers can confidently determinewhere andwhether to har-
monize while saving their harmonization efforts. This step fulfills I2
and I3. Finally, if developers decide to harmonize, it refactors POMs
(Sec. 3.3). This step achieves I1. In fact, the source code also needs to
be adapted to the harmonized version. We leave it to developers be-
cause i) empirical studies [18, 81] have reported that existing library
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<parent>
<groupId>A</groupId>
<artifactId>A</artifactId>
<version>1.0</version>

</parent>
…
<dependencyManagement>
<dependencies>
<dependency>
<groupId>R</groupId>
<artifactId>R</artifactId>
<version>1.0</version>
<type>pom</type>
<scope>import</scope>
</dependency>
</dependencies>
</dependencyManagement>
…
<dependencies>
<dependency>
<groupId>commons-io</groupId>
<artifactId>commons-io</artifactId>
<version>2.5</version>
</dependency>
<dependency>
<groupId>com.google.guava</groupId>
<artifactId>guava</artifactId>
<version>23.0</version>
</dependency>
<dependencies>

<dependencies>
</dependencies>

A

<project>
<groupId>A</groupId>
<artifactId>A</artifactId>
<version>1.0</version>
<properties>
<guava.version>16.0.1</guava.version>
<properties>
…
</project>

<dependencies>
<dependency>
<groupId>com.google.guava</groupId>
<artifactId>guava</artifactId>
</dependency>
</dependencies>

C

D

E

B

R

1
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5
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7
8
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<dependencyManagement>
<dependencies>
<dependency>
<groupId>com.google.guava</groupId>
<artifactId>guava</artifactId>
<version>${guava.version}</version>
</dependency>
</dependencies>
</dependencyManagement>
<dependencies>
<dependency>
<groupId>commons-io</groupId>
<artifactId>commons-io</artifactId>
<version>2.5</version>
</dependency>
</dependencies>

1
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4
5
6
7
8
9
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16
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4
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6

1
2

Figure 2: An Example of POM Inheritance Graph

API adaptation techniques [7, 17, 20, 21, 28, 32, 59, 69, 79, 84] have an
average accuracy of 20% and ii) our survey indicates that refactoring
the source code is surprisingly a less useful feature (potentially due
to the low accuracy of automated techniques). Besides, LibHarmo
relies on a library database (Sec. 3.4) to provide JAR files of candidate
library versions for harmonization. At the current stage, LibHarmo
is implemented as a prototype to demonstrate its value, and hence it
is not integrated into the build process yet and does not satisfy I4.

3.1 Detecting Inconsistency

The first step of LibHarmo consists of three sub-steps: it generates a
POM inheritance graph, analyzes the POM inheritance graph to re-
solve the version of library dependencies in each POM, and identi-
fies library version inconsistencies and false consistencies.

Generating POM Inheritance Graph.Maven provides the in-
heritancemechanism [3] to inherit elements (e.g., dependencies) from
a parent POM. It does not support multiple inheritance, however, it
indirectly supports the concept by using the import scope [2].Maven
also does not allow cyclic inheritance. Therefore, the inheritance
relations among POMs in a project form a directed acyclic graph.We
define such a POM inheritance graphG as a 2-tuple ⟨M, E⟩, whereM
denotes all the POMs in a project, and E denotes the inheritance
relations among the POMs inM. Each inheritance relation e ∈ E is
denoted as a 2-tuple ⟨m1,m2⟩, wherem1,m2 ∈ M, andm1 inherits
m2 (i.e.,m2 is the parent POM ofm1).

To construct G of a project, LibHarmo scans its repository recur-
sively to collect all the local POMs and add them intoM. Then, for
each POMm inM, LibHarmo parses it to locate its parent POMs
based on the inheritance mechanism and the import scope; i.e., Lib-
Harmo parses the parent section (the inheritance mechanism) and
the dependencyManagement section (the import scope). For each lo-
cated parent POMm′, an inheritance relation e = ⟨m,m′⟩ is gen-
erated and added into E. Asm′ can be a remote POM, LibHarmo
crawls it from Maven repository, and adds it into M. E is con-
structed after all the local and remote POMs inM are parsed.

Example 3.1. Fig. 2 presents a generated POM inheritance graph,
where the nodes represent POMs, the arrows represent inheritance

relations, and the dotted lines link to excerpts from POMs. Here A, B,
C, D and E are local POMs, and R is a remote POM. B has two parent
POMs, A and R. In particular, B inherits A by declaring the groudId,
artifactId and version of A in the parent section (Line 1–5 in B).
B inherits R by declaring the groudId, artifactId and version of
R in a dependency with type being pom and scope being import in
the dependencyManagement section (Line 7–17 in B).

Resolving Library Dependencies.We first introduce Maven’s
dependency declaration mechanisms before diving into the details.
The dependencies section contains the library dependencies that a
POM declares to use, and such library dependencies will be automat-
ically inherited by child POMs, whereas the dependencyManagement
section contains the library dependencies that a POM declares to
manage, and such library dependencies will be used/inherited only
when they are explicitly declared in the dependencies section with
their version not specified. Moreover, the version of a library depen-
dency can be explicitly declared by a hard-coded value or implicitly
declared via referencing a property. A property can be overwritten
by declaring the same property with a different value.

Example 3.2. In Fig. 2, B declares two library dependencies Bwants
to use, and the versions are hard-coded (Line 20–29 in B). C declares
one library dependency C wants to use (Line 10–16 in C); and C also
declares one library dependency C wants to manage (Line 1–9 in C),
and the version references a property, guava.version, which is
declared in Line 5–7 in A. D automatically inherits the library depen-
dency in Line 10–16 in C; and D also inherits the managed library
dependency in Line 1–9 in C by explicitly declaring it in Line 1–6 in
D. E inherits from D the two library dependencies D inherits from C.

Based on the dependency declaration mechanisms, all the library
dependencies of a POM can be resolved based on the resolved library
dependencies of its ancestor POMs. To ease the detection and har-
monization of inconsistencies and false consistencies, we first define
a library dependencyd as a 6-tuple ⟨lib,ver ,pro,ml ib ,mver ,mpro⟩,
where lib denotes a library, uniquely identified by its groupId (i.e.,
the organization lib belongs to) and artifactId (i.e., the name of lib);
ver denotes the resolved version number of lib;pro denotes the prop-
erty that the version of lib references, and it will be nullwhen the ver-
sion of lib is hard-coded;ml ib denotes the POM that owns lib either
by declaration or inheritance;mver denotes the POM that declares
the version of lib; andmpro denotes the POM that declares pro.

For each POMm inM, we resolvem’s library dependenciesDm
that are declared inm or inherited from ancestors ofm. To this end,
LibHarmo performs a breadth-first search on G to visitm andm’s
ancestors while following Maven’s nearest definition wins and first

declaration wins strategy [2]. For each visited POM, we parse each li-
brary dependency in the dependencies section to create ad and add
d toDm , and analyze the properties and dependencyManagement
section to resolve the unresolved version of library dependencies in
Dm . Here version range is supported by finding the highest version
from our library database that satisfies the version range specifica-
tion. Finally, we get all library dependencies D =

⋃
m∈M Dm .

Example 3.3. Table 2 presents the the process of resolving library
dependencies for E in Fig. 2 along its inheritance hierarchy. At E, as
E does not declare any library dependency, no library dependency is
created. Next, at E’s parent D, guava is declared but its version is not
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Table 2: An Example of Resolving Library Dependencies

E
D <guava, , , E, , >
C <guava, , guava.version, E, C, > <commons-io, 2.5, null, E, C, null>
A <guava, 16.0.1, guava.version, E, C, A> <commons-io, 2.5, null, E, C, null>

declared. Hence, d1 is created with lib andml ib set to guava and E.
Next, at D’s parent C, d1’s version is declared by referencing a prop-
erty. Thus, d1’s pro andmver is set to guava.version and C. Mean-
while, C declares commons-io and hard-codes its version. Thus,d2 is
created as ⟨commons-io, 2.5, null, E, C, null⟩. Finally, at C’s parent
A, the property guava.version is declared, and thus d1’s ver and
mpro is set to 16.0.1 and A. E owns library dependencies d1 and d2.

Identifying Inconsistencies and FalseConsistencies.Aswe
do not have direct control over remote POMs,we remove fromD the
library dependencieswhoseml ib is a remote POM.However, it is pos-
sible that the library dependencies of local POMs are inherited from
remote POMs. To detect library version inconsistencies and false con-
sistencies, we first identify the libraries L fromD, i.e., L = {d .lib |

d ∈ D}. Then, for each lib ∈ L, we find all the library dependencies
Dl ib = {d | d ∈ D ∧ d .lib = lib}. Finally, we determine the consis-
tency of Dl ib by classifying it into the following four types.
• Inconsistency (IC).Dl ib belongs to the type of inconsistency if the
library dependencies in Dl ib do not have the same version; i.e.,
Dl ib satisfies that ∃d1,d2 ∈ Dl ib ,d1.ver , d2.ver .

• True Consistency (TC).Dl ib belongs to the type of true consistency
if all the library dependencies in Dl ib have the same version by
referencing one property or inheriting from one POM; i.e., Dl ib
satisfies that ∀d1,d2 ∈ Dl ib , (d1.pro , null ∧ d1.pro = d2.pro ∧
d1.mpro = d2.mpro ) ∨ (d1.mver = d2.mver ).

• False Consistency (FC). Dl ib belongs to the type of false consis-
tency if all the library dependencies inDl ib have the same version
but do not reference one property and do not inherit from one POM;
i.e.,Dl ib satisfies that∀d1,d2 ∈ Dl ib ,d1.ver = d2.ver∧∃d1,d2 ∈

Dl ib ,d1.pro , d2.pro∨d1.mpro , d2.mpro∨d1.mver , d2.mver .
• Single Library (SL). Dl ib belongs to the type of single library if
there is only one library dependency in Dl ib (i.e., |Dl ib | = 1).

Example 3.4. Fig. 3 presents all the resolved library dependencies
of Fig. 2, which involve two libraries guava and commons-io. Hence,
we haveDдuava = {d1,d3,d7} andDcommons−io = {d2,d4,d5,d6}.
Dдuava belongs to IC as two different versions of guava are used, and
Dcommons−io belongs to FC because the version of commons-io is
hard-coded in two POMs.

3.2 Suggesting Harmonized Version

On the one hand, for a false consistencyDl ib , the same version is al-
ready adopted in the library dependencies inDl ib , but it will turn into
an inconsistency if there is an incomplete library version update (e.g.,
a developer updates the version of some but not all of the library de-
pendencies inDl ib ). In that sense, it also needs to be harmonized to
become a true consistency. To reduce the harmonization efforts, we
directly recommend the currently used version as the harmonized
version. On the other hand, for an inconsistency Dl ib , we first ana-
lyze the harmonization efforts at the library API level, and then in-
teractively suggest a harmonized version with the least efforts.

Analyzing Harmonization Efforts. If developers try to manu-
ally harmonizeDl ib to a new version, theymust determine whether

d1 = <guava, 16.0.1, guava.version, E, C, A> 
d2 = <commons-io, 2.5, null, E, C, null>

d3 = <guava, 16.0.1, guava.version, D, C, A> 
d4 = <commons-io, 2.5, null, D, C, null>

d5 = <commons-io, 2.5, null, C, C, null>

d6 = <commons-io, 2.5, null, B, B, null>
d7 = <guava, 23.0, null, B, B, null> 

Figure 3: The Resolved Library Dependencies of Fig. 2

each called library API in each library dependency inDl ib is deleted
(i.e., its API signature does not exist, which will fail the compilation)
or changed (i.e., its API signature is not changed, but its behavior is
changed, which will pass the compilation) in the new version.While
deleted APIs can be easily caught during compilation, changed APIs
can be easily missed but may cause API breaking. Hence, we define
harmonization efforts as the number of called library APIs that are
deleted/changed in the harmonized version and the number of calls
to library APIs that are deleted/changed in the harmonized version.

To this end, for eachd ∈ Dl ib , LibHarmo runs JavaParser [71] on
the src folder that has the same prefix path tod .ml ib , with JAR files
from our library database (see Sec. 3.4), to locate API calls tod . Thus,
we have a set of called library APIsAd and a set of library API calls
Cd . Then, LibHarmo determines the candidate library versionsVd
for harmonization from our library databasewhich contains all the re-
leased versions of d .lib. Here, we compute Vd as the versions that
are no older than the highest version inDl ib as developers tend to use
newer versions but not always the newest version, as suggested by our
survey. Next, for each candidate versionv ∈ Vd , LibHarmo locates
the called libraryAPIs ind that are deleted or changed inv . Here, a li-
brary API is deleted inv if there is no library API with the same fully
qualified name inv . A library API is changed inv if its fully qualified
name is not changed but the body code of the library API or the code
of its transitively called methods in its static call graph is changed.
LibHarmo uses Soot [74] to extract the static call graph. Hence, we
decomposeAd into three setsADv

d ,ACvd andAUv
d , respectively

representing the called library APIs in d that are deleted, changed
and unchanged in v . Correspondingly, we can decompose Cd into
three sets CDv

d , CC
v
d and CUv

d , respectively representing the calls
to the library APIs in ADv

d , ACvd and AUv
d (i.e., the calls to the

deleted, changed and unchanged library APIs). Therefore, the ef-
forts f vd to harmonize d to the version v can be characterized as a
6-tuple, i.e., f vd = ⟨ADv

d ,ACvd ,AUv
d , CD

v
d , CC

v
d , CU

v
d ⟩. Notice

thatAUv
d and CUv

d actually represent the efforts that are saved for
developers by LibHarmo because developers do not need to waste
time on these called but unchanged library APIs.

Example 3.5. Weuse one of the detected inconsistencies in the pop-
ular project Apache Tika to demonstrate our harmonization effort
analysis. This inconsistency is about library commons-cli, involv-
ing three modules: tika-server, tika-batch and tika-eval. The
first module explicitly declares commons-cli with version 1.2. The
latter two reference two properties with the same property name
cli.version declared in their own POM file, and both of them
declare version 1.4. Version 1.4 is one of the candidate version. It
turns out that the number of called library APIs in version 1.2 in
tika-server is 5, and there are 33 calls to the 5 library APIs. The 5
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library APIs are all changed in version 1.4. Therefore, |ADv
d | = 0,

|ACvd | = 5, |AUv
d | = 0, |CDv

d | = 0, |CCvd | = 33, and |CUv
d | = 0.

Interactively Recommending Harmonized Version. As re-
vealed by our survey (see Sec. 2), developers may choose to not har-
monize all inconsistent library dependencies due to various reasons
(e.g., different development schedule, or heavy efforts due to API de-
pendency intensity or backward incompatibility). Thus, LibHarmo
is designed to interact with developers such that 1) developers are
provided with detailed library API-level harmonization efforts f vd
for each library dependency d ∈ Dl ib to be harmonized into each
candidate version v ∈ Vd ; 2) developers have the flexibility to de-
cide which of the library dependenciesD ′

l ib ⊆ Dl ib need to be har-
monized; and 3) developers are provided with a ranked list of candi-
date versions based on flexible combinations ofADv

d ,ACvd ,AUv
d ,

CDv
d , CC

v
d and CUv

d (e.g., the default ranking is based on the sum-
mation of |CDv

d | and |CCvd | over all library dependencies in D ′
l ib )

such that they can choose the harmonized versionvh with the least
harmonization efforts they consider acceptable.

To ease the determination of D ′
l ib , we first decompose Dl ib ac-

cording to d .mver ; i.e., the library dependencies that have their ver-
sion declared in the same POMmver are grouped intoDmver

l ib .Dmver
l ib

actually belongs to the type of true consistency (or single library),
and should be harmonized together to still keep the consistency. For
example,Dдuava in Example 3.4 can be decomposed intoDC

дuava =

{d1,d3} andDB
дuava = {d7}. Based on the decomposition, we allow

developers to determine which groups need to be harmonized.

3.3 Refactoring POMs

The last step of LibHarmo is to carry out the harmonization on POMs.
LibHarmo can automatically refactor POMs based on the library de-
pendenciesD ′

l ib that developers choose from an inconsistencyDl ib
and the harmonized version vh that developers choose. The POM
refactoring is exactly the same for false consistencies.

The goal of our harmonization is tomakeD ′
l ib become a true con-

sistency; i.e., all the library dependencies inD ′
l ib need to have their

version reference a property of value vh . To this end, LibHarmo
first locates the POMsM ′ that declare the version of the library de-
pendencies in D ′

l ib ; i.e., M
′ = {d .mver | d ∈ D ′

l ib }. On one hand,
the lowest common ancestor of the POMs in M ′ on the POM in-
heritance graph G is the POM where LibHarmo newly declares a
property of value vh . On the other hand, M ′ contains the POMs
where LibHarmo changes the (implicit or explicit) version declara-
tion of lib to a reference to the newly declared property. Occasion-
ally, the lowest common ancestor could be a remote POM that we
do not have direct control, or G contains several sub-graphs that
are not connected. Thus, LibHarmo finds several lowest common
ancestors, each of which is the lowest common ancestor of some
POMs in M ′, and separately applies the same refactoring process.

Finally, LibHarmo checks whether the properties that are refer-
enced inD ′

l ib are referenced by the other library dependencies inD.
If not, such properties become unused after our refactoring and can
be deleted. Specifically, for each library dependency d ∈ D ′

l ib that
declares the version by referencing a property, LibHarmo extracts a
2-tuple ⟨d .pro,d .mpro⟩, and checks whether there exists a library
dependency d ′ in D − D ′

l ib such that d .pro = d ′.pro ∧ d .mpro =

<parent>
<groupId>A</groupId>
<artifactId>A</artifactId>
<version>1.0</version>

</parent>
…
<dependencyManagement>
<dependencies>
<dependency>
<groupId>R</groupId>
<artifactId>R</artifactId>
<version>1.0</version>
<type>pom</type>
<scope>import</scope>
</dependency>
</dependencies>
</dependencyManagement>
…
<dependencies>
<dependency>
<groupId>commons-io</groupId>
<artifactId>commons-io</artifactId>
<version>${commons-io.version}</version>
</dependency>
<dependency>
<groupId>com.google.guava</groupId>
<artifactId>guava</artifactId>
<version>${guava.new.version}</version>
</dependency>
<dependencies>

<dependencies>
</dependencies>

A

<project>
<groupId>A</groupId>
<artifactId>A</artifactId>
<version>1.0</version>
<properties>
<guava.new.version>23.0<guava.new.version>
<commons-io.version>2.5<commons-io.version>
<properties>
…
</project>

<dependencies>
<dependency>
<groupId>com.google.guava</groupId>
<artifactId>guava</artifactId>
</dependency>
</dependencies>

C

D

E

B

R

1
2
3
4
5
6
7
8
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14
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<dependencyManagement>
<dependencies>
<dependency>
<groupId>com.google.guava</groupId>
<artifactId>guava</artifactId>
<version>${guava.new.version}</version>
</dependency>
</dependencies>
</dependencyManagement>
<dependencies>
<dependency>
<groupId>commons-io</groupId>
<artifactId>commons-io</artifactId>
<version>${commons-io.version}</version>
</dependency>
</dependencies>

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16

1
2
3
4
5
6

1
2

Figure 4: An Example of Refactoring POMs

d ′.mpro . If exists,d .pro is still referenced by other library dependen-
cies, and is kept; otherwise, LibHarmo deletes d .pro from d .mpro .

Example 3.6. GivenDдuava = {d1,d3,d7} in Example 3.4 and the
harmonized version 23.0,M ′ is computed as {B, C}, and their low-
est common ancestor is A. Hence, a property guava.new.version is
declared at Line 6 in A in Fig. 4, and B and C respectively change the
version declaration at Line 28 in B and at Line 6 in C to reference the
property guava.new.version. Moreover, as the previous property
guava.version is not referenced by other library dependencies, it
is deleted from A. Similarly, for the false consistency Dcommons−io
= {d2,d4,d5,d6} in Example 3.4, M ′ is computed as {B, C}. Hence,
a property commons-io.version is declared in A, the lowest com-
mon ancestor of B and C; and the version declaration at Line 23 in B
and at Line 14 in C is changed to reference commons-io.version.

3.4 Library Database

Recall that our harmonization efforts analysis (see Sec. 3.2) requests
from the library database the JAR files of a library version and some
newer releases of the same library. Therefore, LibHarmo crawls the
JAR files of all releases of a library in a demand-driven way from
Maven repository. Besides, LibHarmo regularly updates any new li-
brary releases for the libraries in our library database. Currently, our
library database has 6,007 libraries and 12,595 library releases.

4 EVALUATION

We have implemented a prototype of LibHarmo in Java and Python
in a total of 14.6K lines of code. We have released the source code at
our website [5]. In this section, we report our evaluation results.

4.1 Evaluation Design

We used the same set of 443 Java Maven multi-module projects used
in our survey as the dataset for our evaluation.We designed our eval-
uation to answer the following four research questions.
RQ1: Can LibHarmo effectively detect library version inconsis-

tencies and false consistencies? (Sec. 4.2)
RQ2: What is the prevalence and severity of the detected library ver-

sion inconsistencies and false consistencies? (Sec. 4.3 and 4.4)
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Figure 5: Overall Distribution of IC, FC, TC and SL

RQ3: Can LibHarmo help to save efforts of harmonizing library ver-
sion inconsistencies for developers? (Sec. 4.5)

RQ4: What is developers’ feedback about LibHarmo? (Sec. 4.6)

Specifically,RQ1 is designed to showLibHarmo’s capability in de-
tecting inconsistencies and false consistencies. To this end, we com-
pare LibHarmowithMaven’s enforcer plugin, and also manually an-
alyze LibHarmo’s false positive rate by statistical sampling. RQ2 is
designed to raise attention from the community to the problem of in-
consistencies and false consistencies. RQ3 is designed to report the
degree ofmanual efforts saved by using LibHarmo.RQ4 is designed
to report the usage feedback about LibHarmo.

To this end, we ran LibHarmo against 433 projects to 1) detect all
inconsistency (IC), false consistency (FC), true consistency (TC) and
single library (SL) (see Sec. 3.1 for definitions), which is used to an-
swerRQ1 andRQ2, 2) analyze the harmonization efforts for each in-
consistency for each candidate harmonized version, which is used to
answerRQ3, and 3) generate a report including the previous two sets
of information and send to developers, which is used to answerRQ4.

4.2 Effectiveness Evaluation (RQ1)

LibHarmo detected 621 ICs and 2,576 FCs, respectively affecting 152
and 346 projects. Differently, Maven’s enforcer plugin only detected
219 of the 621 ICs. The reason is that enforcer only focuses on a sub-
set of inconsistencies (i.e., inconsistencies in inter-dependent mod-
ules of a project). In addition, Maven’s enforcer plugin does not
provide support on how to harmonize ICs, while LibHarmo esti-
mates required harmonization efforts for developers to confidently
make harmonization decisions while saving harmonization efforts
(see a detailed evaluation in Sec. 4.5).

False Positive Analysis. Considering the large size of detected
ICs and FCs, we took a statistical sampling approach to manually an-
alyze false positives. Specifically, we randomly sampled 238 ICs and
334 FCs. The sample size allows the generalization of our results at a
confidence level of 95% and a margin of error of 5%, computed by a
sample size calculator [4]. Then, four of the authors followed an open
coding procedure [38] to investigate each IC and FC and categorize
reasons for false positives. We found no false positive for FCs; but
we found 40 false positives for ICs because developers intentionally
declare multiple properties for different versions of the same library
so as to provide comprehensive supports for different runtime envi-
ronments. For example, project memcached-session-manager is a
tomcat session manager that keeps sessions in memcached or Redis,

for highly available, scalable and fault tolerant web applications. It
declares four properties for version 6.0.45, 7.0.85, 8.5.29 and 9.0.6 for
various tomcat dependencies, as it is currently working with tomcat
6.x, 7.x, 8.x and 9.x (as explained in its README file). However, such
false positives can be easily and quickly determined by developers.
Therefore, a false positive rate of 16.8% for ICs can be acceptable.

LibHarmo detected 621 inconsistencies and 2,576 false con-
sistencies respectively in 152 and 346 projects, while Maven’s
enforcer plugin only detected 219 inconsistencies. LibHarmo
had a false positive rate of 16.8% for inconsistencies, and no
false positive for false consistencies.

4.3 Prevalence Evaluation (RQ2)

We analyzed the prevalence of ICs and FCs by measuring the overall
distribution of ICs, FCs, TCs and SLs as well as their fine-grained
distribution with respect to the modular complexity of projects (ap-
proximated as the number of POMs).

Overall Distribution. Fig. 5a reports the overall distribution of
detected ICs, FCs, TCs and SLs. SLs account for 61.0%, while ICs, FCs
and TCs account for 39.0%, whichmeans that over one-third of the li-
braries are used across multiple modules. More specifically, TCs ac-
count for 22.6%, which are much higher than ICs and FCs, and cover
318 projects. This indicates that library version harmonization (via
referencing a property) is already a practice that is adopted by many
projects. Nevertheless, there are still 2,576 FCs, accounting for 13.2%
and covering 346 projects. They could turn into ICs if not carefully
maintained, and thus increase the burden of library maintenance.
There are 621 ICs, which account for 3.2% and cover 152 projects.
These results indicate that library version inconsistency and false
consistency are quite prevalence in real-world projects.

Moreover, Fig. 5b reports the intersections among the projects
that are affected by IC, FC and TC. Noticeably, there is a high overlap
(i.e., 251 projects) between TC and FC. This indicates that whilemany
projects adopt consistent library versions, they still leave many li-
braries not truly consistent. Similarly, the libraries in 51 projects are
all consistent, while the libraries in 70 projects are all falsely consis-
tent. Moreover, the overlap between FC and IC is also high (i.e., 134
projects), and most of the projects that have IC also have FC. This is
potentially because that FC has a high chance to turn into IC. Fur-
thermore, 109 projects have IC, FC and TC at the same time, which
indicates that using consistent library versions is not consistently
recognized across the whole development team of a project.

Fine-Grained Distribution. The bars in Fig. 6a report the total
number of projects whose number of POMs is in a specific range. As
we can see, nearly half (47.6%) of the projects have less than 10 POMs,
and only 22.3% of projects have more than 30 POMs. These results
indicate that most projects have moderate complexity in modules.
The four curves in Fig. 6a report the distribution of IC, FC, TC and SL
as projects’ complexity in modules increases, while the four curves
in Fig. 6b correspondingly present the ratio of projects that have IC,
FC, TC and SL. We can see that the ratio of IC slightly increases and
the ratio of projects having IC greatly increases. This indicates that
as projects have more complexity in modules, library maintenance
becomes more complicated, and hence there is a higher chance to
introduce inconsistencies. Besides, the ratio of FC and TC does not
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Figure 7: Distribution of IC and FC across Affected POMs

decrease, and the ratio of projects having FC and TC even increases.
This indicates that although projects become more complex in mod-
ules, developers may still willing to keep library versions consistent.
In that sense, LibHarmo can help developers systematically detect
inconsistencies or false consistencies as early as possible.

While the practice of true consistencies is widely adopted, in-
consistencies and false consistencies are still quite common in
real-world projects. As projects have more complexity in mod-
ules, it becomes more likely to introduce inconsistencies.

4.4 Severity Evaluation (RQ2)

We analyzed the severity of a detected inconsistency or false consis-
tency (i.e.,Ml ib ) in terms of four indicators: 1) the number of POMs
that are affected (i.e., |Ml ib |), 2) the ratio of POMs that are affected
(i.e., |Ml ib | / |M|), 3) the number of distinct versions declared in
Ml ib , and 4) whether the versions of library dependencies inMl ib
are all explicitly declared (i.e., hard-coded), all implicitly declared
(i.e., via referencing a property), or declared in a mixed way. The
third indicator is only applicable for inconsistencies as false consis-
tencies only have one version. The higher the first three indicators,
the more versions are simultaneously adopted in more POMs, and
thus the more severe the inconsistency or false consistency. For the
fourth indicator, we regard explicit declaration is more severe than
mixed declaration and implicit declaration because it indicates that
developers seem to be unaware to harmonize library versions by a
property. We report the aggregated result over all consistencies or
false consistencies for each of the four indicators.

Affected POMs. Fig. 7a presents the distribution of IC and FC
with respect to the number of affected POMs. 67.8% of ICs and 70.8%
of FCs affect less than five POMs, and 21.3% of ICs and 12.9% of FCs
affectmore than ten POMs. On the other hand, Fig. 7b reports the dis-
tribution of IC and FC with respect to the ratio of affected POMs.
70.9% of ICs and 53.5% of FCs affect less than 20% of POMs, while
9.7% of ICs and 22.9% of FCs affect more than 50% of POMs. These re-
sults indicate that most ICs and FCs affect a relatively small number
of POMs, but still around one-tenth of ICs and one-fifth of FCs could
involve a relatively large number of POMs.

Distinct Versions. Fig. 8a reports the distribution of distinct ver-
sions in inconsistencies. We can see that 81.8% of ICs only have two
distinct versions, and only 3.7% of ICs have more than five distinct
versions. Moreover, we generated a box plot for each bar in Fig. 8a to
measure the affected POMs. The result is reported in Fig. 8b, where
the arrows indicate higher outliers that we hide to enhance the com-
prehension of the box plots. As the number of distinct versions in
ICs increases, the number of affected POMs increases. With regard
to the ICs that have two distinct versions, the median number of
affected POMs is around three. This indicates that most ICs are still
manageable if developers want to harmonize them. Still, there are
80 outliers in the first box plot, and some of them can affect around
400 POMs. We looked into these 80 outliers, and found that in 72
(90.0%) outliers, more than 80% of the POMs use one version, while
less than 20% of the POMs use the other version. More interestingly,
in 58 (72.5%) outliers, one of the distinct versions is only used in one
POM. One potential reason is that developers have to use a specific
version in a minority of POMs to avoid the heavy API backward
incompatibility in them. However, if inconsistencies can be detected
at the first time they are introduced, such technical debt will not
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Figure 8: Distribution of Distinct Versions in IC

be accumulated. This is also how LibHarmo can help developers
to reduce long-term maintenance cost. Another potential reason
is that developers are unaware of the minority of POMs that use a
distinct version due to the complex POM inheritance graph. In that
sense, automated tools like LibHarmo are needed.

Version Declaration. Fig. 9 shows the distribution of version
declarations (i.e., explicit declaration (EX), implicit declaration (IM)
and mixed declaration (MX)) for IC and FC. It turns out that 94.1%
of FCs declare versions by hard-coding. This means that developers
need to change all the affected POMs at the same time to keep these
FCs consistent rather than turning such FCs into ICs, which is actu-
ally a huge but avoidable maintenance cost. Besides, 36.1% of ICs de-
clare versions by hard-coding. This shows that hard-coding version
numbers is probably not a good practice, and it tends to introduce in-
consistencies. 63.9% of ICs include implicitly declared versions. This
means that developers already have the sense to declare versions by
referencing a property for reducing library maintenance cost.

67.8% of ICs and 70.8% of FCs affect less than five POMs. 81.8%
of ICs only have two distinct versions, affecting a median num-
ber of three POMs. 36.1% of ICs and 94.1% of FCs declare all
versions by hard-coding. Overall, the severity of ICs and FCs
is relatively not high, indicating potentially low fixing efforts
for developers to mitigate ICs and FCs.

4.5 Efforts Evaluation (RQ3)

We analyzed the harmonization efforts for each of the 621 inconsis-
tencies for each candidate harmonized version.We report the results
for the candidate version with the least harmonization efforts se-
lected based on our default ranking (see Sec. 3.2). Fig. 10 shows two
box plots (one denotes the number of APIs, and the other denotes
the number of API calls) for deleted, changed, unchanged, and total
library APIs that are called. Overall, 190 (30.6%) ICs have no harmo-
nization efforts; i.e., all the invoked library APIs are not changed in
the suggested harmonized version. In the remaining 431 ICs, on av-
erage, 1 and 2 of the 24 called library APIs are respectively deleted
and changed in the suggested harmonized version, affecting 1 and 12
of the 63 library API calls, as indicated by the green diamonds. In
otherword, by using LibHarmo, developers only need to focus on the
potential incompatibilities in the 3 deleted/changed APIs without
worrying about the other 21 (87.5%) unchangedAPIs. Hence, 87.5% of
the manual efforts can be saved for developers by using LibHarmo.

Moreover, LibHarmo provides developers with the 13 callsites of
the 3 deleted/changed APIs to ease the harmonization. These results
also indicate that the harmonization efforts with respect to the num-
ber of deleted and changed APIs seem small, which is actually good
news as developers aremore likely tomitigate inconsistencies. How-
ever, the actual harmonization efforts depend on how the deleted or
changed APIs affect the business logic. Therefore, we choose to pro-
vide developers with detailed API-level reports to assist them in
determining where and whether to harmonize.

Besides, as LibHarmo can automatically refactor POMs, such ef-
forts are also saved for developers. To evaluate the effectiveness of
POM refactoring, four of the authors followed an open coding proce-
dure [38] tomanually analyze the refactored POMs for the randomly
sampled 238 ICs and 334 FCs in Sec 4.2, and found that refactored
POMs were all correct. This owes to the fact that LibHarmo is de-
signed to refactor POMs in such a systematic and non-invasive way
that does not change the inheritance relationship among POMs.

In 190 (30.6%) ICs, all the called library APIs are not changed in
the suggested harmonized version. In the remaining 431 ICs,
on average, 3 of the 24 called library APIs are deleted/changed,
affecting 13 library API calls. Overall, LibHarmo helps to save
87.5% of the harmonization efforts. The harmonization efforts
are relatively small but the true efforts are application-specific.

4.6 Developer Feedback (RQ4)

To understand developers’ feedback about LibHarmo, we targeted
621 inconsistencies in 152 projects, and sent our automatically gen-
erated report to the developers of these projects. Some sample re-
ports can be found at our website [5]. In one month, 39 developers
replied. 12 of them explicitly commented that version inconsistency
is certainly a problem for library maintainers, and our tool and re-
port are useful; e.g., “the problem you’re describing is very real, and I

have encountered it myself in my day-to-day job several times”, “keep
up the good work with your harmonization tool. It definitely sounds

interesting!”, “the cool reports here helped me find one real issue,

thanks!”, and “we can run your tool as part of our CI (to prevent future
regressions)”. 9 of them did not comment on our tool, but only dis-
cussed the detected inconsistencies, 12 of them asked us to fill a pull
request to fix the problem, 3 of them intentionally used inconsistent
versions, and 3 of them were no longer Java developers or no longer
in charge of the projects.
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Besides, 31 inconsistencies from 26 projects have been confirmed
and 17 of them have been fixed. As we crawled the project reposi-
tories several months before our report, 4 developers asked us to
re-generate the report for their current repositories, and we are still
waiting for their feedback. The others are still under discussion.

Interestingly, a developer from hadoop confirmed that adopt-
ing consistent libraries is one of their common practice, but “peo-
ple neglect to do this; when that’s found we will pull the explicit

version declaration out and reference from hadoop-project; adding the

import there if not already present. Therefore any duplicate declara-

tion of a dependency with its own <version> field in any module other

than hadoop-project is an error. Your dependency graphs are helpful

here”. It is also worth mentioning that 4 developers commented that
they also cared about inconsistencies in transitive dependencies, but
also said that “it is also very hard to fix, since the source code is not

owned by me”. This is why we only focus on direct dependencies.

Nearly half of the responded developers thought that our tool
and report are useful. 31 inconsistencies have been confirmed
and 17 of them has been harmonized.

4.7 Discussions

Threats to Survey. First, we chose an online survey with GitHub
developers instead of a face-to-face interview study with industrial
developers, because it is difficult to recruit industrial developers for
interviews at a reasonable cost, and an online study allows us to
recruit a relatively large number of developers. Second, we decided
to not offer compensation but kindly ask participants to voluntarily
take the survey. As a result, we expected that GitHub developers
who were really interested in library version inconsistencies and
well motivated would participate in this survey. This instead could
improve the quality of our survey to avoid potential cases that par-
ticipants only wanted the compensation but answered haphazardly.

Threats to Evaluation. First, as we have not integrated our tool
into the build process, we generated reports about inconsistencies
and sent reports to relevant developers for obtaining their feedback
instead of letting developers directly use our tool.While thismay not
get first-hand information from developers (especially for the inter-
action part), it relieves the burden of developers to install our tool and
only focuses on the results. We believe this can help us obtain more
feedback. As we have got positive feedback from developers, we are
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Figure 10: Harmonization Efforts

developing LibHarmo as aMaven plugin such that LibHarmo can de-
tect the introduction of inconsistency at the first place without accu-
mulating technical debt. Second, to be honest, we only obtained lim-
ited responses from open-source projects.We are collaborating with
two interested industrial partners to deploy our tool into their CI.

Limitations. First, due to thewell-known limitation of static anal-
ysis, our generated API call graphs can be unsound (e.g., due to re-
flection), which affects the precision of our API-level harmonization
efforts analysis and RQ3. We will explore a combination of static
analysis and dynamic analysis to improve the precise. Second, we cur-
rently only target Maven Java projects as Maven is the most widely-
used build tool for Java projects, but there are other automated build
tools like Gradle and Ant. Given the positive feedback from devel-
opers, we plan to support other automated build tools.

5 RELATEDWORK

Library Analysis. Patra et al. [61] analyzed JavaScript library con-
flicts caused by the lack of namespaces in JavaScript, and proposed
ConflictJS to first apply dynamic analysis to identify potential con-
flicts and then use targeted test synthesis to validate them. Wang et
al. [76] analyzed manifestation and fixing patterns of dependency
conflicts in Java, and developed Decca to detect dependency con-
flicts. Wang et al. [77] also proposed Riddle to generate crashing
stack traces for detected dependency conflicts. Maven’s enforcer plu-
gin, Decca and Riddle are focused on library version inconsisten-
cies that might have harmful consequence (e.g., bugs), and Decca
and Riddle can be seen as an advanced version of enforcer by fur-
ther locating and triggering the bugs. However, as indicated by our
survey (Q8), harmful consequence is one of the commonest reasons
for fixing library version inconsistencies, and the other top two rea-
sons are to avoid great maintenance efforts in the long run and to
ensure consistent library API behaviors across modules. Motivated
by this result, LibHarmo is designed to have a wider scope in the
sense that it also detects library version inconsistencies that will not
cause harmful consequence. It is valuable to extend LibHarmo to
distinguish harmful and unharmful library version inconsistencies.
On the other hand, enforcer, Decca and Riddle support transitive
library dependencies, while LibHarmo does not because project
developers often have no direct control to harmonize the inconsis-
tent library versions in transitive library dependencies. Moreover,
LibHarmo provides API-level harmonization effort estimation for
developers to confidently fix library version inconsistencies, while
enforcer, Decca and Riddle do not.
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Cadariu et al. [16] proposed an alerting tool to notify developers
about Java library dependencies with vulnerabilities. Mirhosseini
and Parnin [56] compared the usage of pull requests and badges to
notify outdated npm packages. These approaches only detect the in-
clusion of vulnerable libraries. To determine if the vulnerable library
code is in the execution path of a project, Plate et al. [62] applied
dynamic analysis to check whether the vulnerable methods were
executed by a project; and Ponta et al. [63] extended it by combining
dynamic analysis with static analysis. We will consider vulnerabili-
ties as another factor when recommending harmonized versions.

Bloemen et al. [12] analyzed the evolution of the Gentoo package
dependency graph, while Kikas et al. [39] and Decan et al. [25] com-
pared the evolution of dependency graphs in different ecosystems.
Kikas et al. [39] and Decan et al. [24] also investigated the impact of
security vulnerabilities on the dependency graph. Zimmermannet et
al. [85] further modeled maintainers and vulnerabilities into the de-
pendency graph in the npm ecosystem, and systematically analyzed
the risk of attacked packages and maintainers and vulnerabilities.
LibHarmo can be extended to support library version inconsistency
analysis on the ecosystem-level dependency graph.

To the best of our knowledge, no previous work has systemati-
cally investigate library version inconsistency.

API Evolution.Many studies have investigated API evolution
to analyze how developers react to API evolution [13, 33, 52, 67, 68],
how APIs are changed and used [80], how API stability is measured
[65], howAPI stability affects Android apps’ success [49], how refac-
toring influences API breaking [27, 40, 44], how andwhy developers
break APIs [15, 37, 83], how API breaking impacts client programs
[66, 82], etc. Moreover, several advances have been made to detect
API breaking. Previous work mostly uses theorem proving [29, 30,
45, 50, 51] or symbolic execution [58, 73], but has scalability issues
when detecting breaking APIs in real-life program. Recently, test-
ing techniques have been used to detect breaking APIs. Gyori et
al. [31] relied on regression tests, while Soares et al. [72] generated
new tests to detect behavior changes in refactored APIs. Mezzetti et
al. [53] andMøller and Torp [57] targeted Node.js libraries, and used
model-based testing to detect type-related breaking (i.e., changes to
API signatures). Similarly, Brito et al. [14] used heuristics to stati-
cally detect type-related changes in Java libraries. However, it is an
open problem to detect behavior changes when API signatures are
not changed but the API bodies are changed. We will extend such
approaches to improve the precision of our effort analysis.

APIAdaptation. Several advances have beenmade to adapt client
programs toAPI evolution based on change rules. Change rules can be
manually written by developers [7, 17], automatically recorded from
developers [32], derived byAPI similaritymatching [84], mined from
API usage changes in libraries themselves [20, 21] and client pro-
grams [28, 59, 69], and extracted by a combination of some of these
methods [79]. Several empirical studies [18, 81] have found that these
methods achieved an average accuracy of 20%.More accurate API adap-
tation techniques are needed and can be integrated into LibHarmo.

Library Empirical Studies.A large body of studies has been fo-
cused on characterizing the usage and update practice of libraries in
different ecosystems, e.g., the usage trend and popularity of libraries
and APIs [6, 8, 9, 22, 34, 42, 46, 48, 54, 55, 64, 78], the practice of
updating library versions [10, 43], the latency of updating library

versions [19, 23, 41, 47], and the reason of updating or not updat-
ing library versions [10, 11, 26, 43]. Our prior study [75] analyzed us-
ages, updates and risks in third-party libraries, and motivated the
problem of library version inconsistency. To the best of our knowl-
edge, we are the first to systematically understand this problem.

6 CONCLUSIONS

In this paper, we have conducted a survey with 131 Java developers
fromGitHub to collect the first-hand information about practices on
library version inconsistencies. Using our survey insights, we have
proposed LibHarmo to harmonize inconsistent library versions in
JavaMaven projects. Our evaluation on 443 JavaMaven projects has
shown promising results. In the future, we will integrate LibHarmo
into the build process, and we plan to turn our data, currently avail-
able at our website [5], into archived open data.
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