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ABSTRACT
Continuous Integration (CI) is a widely-used software development
practice to reduce risks. CI builds often break, and a large amount of
efforts are put into troubleshooting broken builds. Despite that com-
piler errors have been recognized as one of themost frequent types of
build failures, little is known about the common types, fix efforts and
fix patterns of compiler errors that occur in CI builds of open-source
projects. To fill such a gap, we present a large-scale empirical study
on 6,854,271 CI builds from 3,799 open-source Java projects hosted on
GitHub. Using the build data, we measured the frequency of broken
builds caused by compiler errors, investigated the ten most common
compiler error types, and reported their fix time. We manually ana-
lyzed 325 broken builds to summarize fix patterns of the ten most
common compiler error types. Our findings help to characterize and
understand compiler errors during CI and provide practical impli-
cations to developers, tool builders and researchers.
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1 INTRODUCTION
Continuous integration (CI) is a software engineering practice of
merging all the developers’ working copies to a shared branch fre-
quently [14]. The concept of CI was proposed in 1991 [10]. Then,
it was adopted as one of the practices by Microsoft and Extreme
Programming [5, 12, 17]. Gradually, CI gained wide acceptance due
to its automated build process including compilation, static analysis
and testing. CI can help developers detect and fix integration errors
as early as possible, and reduce risks in software development [14].

With the widespread use and continued growth of CI [16, 24, 40],
empirical studies have been recently conducted to explore the usage,
cost, benefits, barriers and needs when developers use CI [23, 24, 49,
50]. They investigate the overall relationships between CI and soft-
ware development, but are not designed to look into the details of CI
builds. Specifically, CI builds often break (i.e., fail), and a large amount
of efforts are put into troubleshooting broken builds [23, 29]. There-
fore, studies have been conducted to analyze the type and frequency
of build failures in industrial and open-source projects [36, 41, 53].
They find that test failures, violations in static analysis, and compiler
errors are generally the most frequent types of CI build failures.

To have a deep understanding of one specific CI build failure type
in open-source projects, Labuschagne et al. [31] focused on test fail-
ures, and Zampetti et al. [55] targeted violations in static analysis.
However, little is known about the common types, fix efforts and fix
patterns of compiler errors during CI in open-source projects. Such
knowledge about compiler errors in CI is important for CI tools,
developers and compilers. To the best of our knowledge, the only
study on compiler errors is from Google [43]. However, it targets
industrial projects but not open-source projects, and it does not
systematically analyze the fix patterns of compiler errors.

To fill the gap in characterizing and understanding compiler er-
rors during CI in open-source projects, we conducted a large-scale
empirical study on 6,854,271 CI builds from 3,799 open-source Java
projects hosted on GitHub and using Travis CI [4]. By analyzing
the data, we answered four research questions in this paper.
• RQ1: Frequency Analysis. How often do CI builds fail because
of compiler errors? (Sec. 4)

• RQ2:DistributionAnalysis.What are the common types of com-
piler errors that cause CI build failures? (Sec. 5)

• RQ3: Fix Effort Analysis. How long does it take to fix CI build
failures caused by compiler errors? (Sec. 6)
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Figure 1: The Lifecycle of Travis CI

• RQ4: Fix Pattern Analysis.How are CI build failures caused by
compiler errors fixed? (Sec. 7)
Our answers to the above four research questions can be summa-

rized as the following findings. 11% of broken builds were a result
of compiler errors, affecting 75% of projects. The ten most common
compiler error types accounted for 90.2% of compiler errors. The
median fix time of the ten most common error types ranged from 18
minutes to 97 minutes. Simple fix patterns did exist for most of the
common error types, and IDEs provided limited supports to au-
tomatically fix them. Our findings shed light on the potential ar-
eas where developers, tool builders and researchers from the com-
piler and CI community can provide the most benefit.

In summary, this work makes the following contributions.
• We conducted a large-scale empirical study to understand the com-
mon types, fix efforts and fix patterns of compiler errors occurring
during CI builds of open-source projects.

• We provided practical implications of our findings to three audi-
ences: developers, tool builders and researchers.

• We released a large-scale dataset of broken CI builds to foster po-
tential applications of this dataset.

2 CONTINUOUS INTEGRATION
TravisCI.An abundance of CI tools are available, from self-hosted to
hosted systems [35]. For example, Jenkins [3] is a self-hosted system;
i.e., developers need to set up the CI service locally, and Jenkins only
store data on recent builds. Travis CI [4] is a hosted system, which is
integrated with GitHub. The entire build history of a project is avail-
able via the Travis CI API. According to the analysis of 34,544 open-
source projects fromGitHub, 40% of projects use CI and 90.1% of them
use Travis CI as their CI service [24]. To cover themajority of projects
and have access to their entire build history, we focus our attention
in this study on the projects that use Travis CI as their CI service.

Triggering Events. Travis CI builds can be triggered by several
events. Push and Pull Request are the typical ones. When a commit is
pushed to a repository onGitHub or a pull request is opened onGitHub,
Travis CI triggers a build. Besides, Travis CI supports two other events:
API andCron.API means that developers can trigger a build by send-
ing a post request directly to the Travis CI API.Cronmeans that builds
are triggered at regular intervals (e.g., every week) independently of
whether any commits were pushed to the repository.

Build Lifecycle.As shown in Fig. 1, the default lifecycle of Travis
CI consists ofmultiple phases, amongwhich install and script are the
most important ones. The install phase installs any dependencies re-
quired for building a project. The script phase runs the build script [4]
(e.g., running testing or static analysis tools). Since Travis CI relies
on automated build tools such as Maven [1] and Gradle [2], the life-
cyle of a CI build interacts with the lifecylce of a Maven or Gradle
build, as shown by the dotted arrows in Fig. 1. Hereafter, a build refers
to a CI build but not a Maven or Gradle build if not explained.

Maven andGradle are designed to separate the compilation of pro-
duction code and test code. By default, for the projects using Maven,
both production and test code are compiled in the install phase; and
thus compiler errors are reported in the install phase. Differently, for
the projects using Gradle, the production code is compiled in the in-
stall phase, and the test code is compiled in the script phase; and thus
compiler errors in the production code and test code are respectively
reported in the install and script phase.

Jobs and States. In Travis CI, a build is a group of jobs, and a job is
an automated build process that clones a repository into a virtual en-
vironment and carries out a series of phases such as compiling code,
running static analysis, and executing tests. For example, a build has
three jobs, each of which runs the build with a different JDK version.
Hereafter, for the ease of presentation, a build refers to a CI build job.

Based on the result of a build, Travis CI assigns different states to a
build. A build is marked as passed if the build ran successfully; er-
rored if errors occurred in the before_install, install or before_script
phase; and failed if errors occurred in the script phase. A build fail-
ure occurs if a build is errored or failed, and the build is called a bro-
ken build. A build might have other states (e.g., canceled and started).

3 EMPIRICAL STUDY METHODOLOGY
In this section, we first introduce the design of our empirical study,
and then present our data collection process.

3.1 Study Design
Our goal is to characterize and understand the common types, fix ef-
forts and fix patterns of compiler errors that break CI builds of open-
source projects. To this end, we proposed the four research ques-
tions as introduced in Sec. 1.

The frequency analysis in RQ1 analyzes the overall frequency of bro-
ken builds caused by compiler errors, and the distribution analysis in
RQ2 reports the overall distribution of compiler error types that break
builds. Our findings from RQ1 can characterize the significance of
compiler errors in broken builds andmotivate the importance of our
study. Our findings fromRQ2 can identify themost common types of
compiler errorswhere developers, researchers and tool builders from
the compiler and CI community should concern.

Further, RQ1 and RQ2 investigate the frequency and distribution
across three important aspects of open-source projects: project prop-
erties, development mechanisms, and CI mechanisms. For the three
aspects, several factors are respectively included: number of projects,
builds and stars, branches and code types, and build states and trigger-
ing events. Our findings can hint the circumstances where compiler
errors are more likely to break builds and how compiler error types
distribute differently, and suggest how to improve the development
discipline and CI usage to avoid compiler errors during CI builds.

The fix effort analysis in RQ3measures the time spent by develop-
ers fixing each type of compiler errors. Our findings fromRQ3 can pri-
oritize the types of compiler errors that may reduce developers’ pro-
ductivity and where automated debugging or fixing tools may pro-
vide the most benefit. The fix pattern analysis in RQ4 analyzes a
total of 325 broken builds to summarize fix patterns of ten common
types. Our findings from RQ4 can assess the feasibility of automatic
fixing or fix recommendation of compiler errors and provide hints
for developers to troubleshoot compiler errors during CI.
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Figure 2: Frequency of Compiler Errors across Projects, Builds, Stars, Branches, Code Types, Build States and Triggering Events

3.2 Data Preparation
Sincewe focus on compiler errors occurring during CI builds of open-
source projects, we first used theGitHubAPI to crawl the list of open-
source Java projects that were not forked as of April 4, 2018. We fo-
cused on Java because it is widely-used and thus our findings can be
beneficial towide audiences. This resulted in a set of 1,703,090 projects.
To ensure the quality of selected projects, we removed the projects that
had less than 25 stars, which resulted in 23,693 projects. Of these
projects, we selected the projects that used Travis CI and had more
than 50 builds in order to provide sufficient build data, which re-
stricted our selection to 3,872 projects. To obtain well formatted
build logs for the ease of our analysis, we only kept the projects that
used Maven or Gradle. Finally, we had a set of 3,799 projects.

We crawled the entire build history of the 3,799 project. The data
of a build consists of two files: a log file with the logging information
generated during the whole build process, which includes the infor-
mation about compiler errors; and a json file with various fields (e.g.,
state) to report the statistics of a build. To this end, we crawled the
data through a RESTful Web-API provided by Travis CI. Totally, we
crawled a dataset of 6,854,271 builds for 3,799 projects, which had a
total size of 3.8 TB. Then, we determined whether a build was bro-
ken (or successful) by checking whether the state field in its json file
was errored or failed (or passed). Finally, we obtained 1,487,925 bro-
ken builds and 5,040,641 successful builds, which accounted for 95.2%
of all builds. The other 4.8% had uncommon states (e.g., canceled
and started) and were not considered due to their incomplete builds.

4 FREQUENCY ANALYSIS (RQ1)
To analyze the frequency of compiler errors, we obtained the broken
builds that were caused by compiler errors. To this end, we applied a

keyword search over log files of broken builds by checking whether
the log file contains “COMPILATIONERROR” forMaven projects, or
“Compilation failed” for Gradle projects. The two keywords are the
default messages to indicate compiler errors in Maven and Gradle.

4.1 Overall Frequency
Of the 1,487,925 broken builds, we had 171,043 broken builds that were
caused by compiler errors. They accounted for 11% of broken builds,
which was above the 9% as reported by Vassallo et al. [53] (using
349 open-source Java projects) but below the 26% as reported by
Miller et al. [36] (using 69 industrial build failures). The differences
might owe to the different scale of the studies. Further, we analyzed
the number of projects that had at least one broken build that was
caused by compiler errors. As a result, 2,847 (75%) projects were
affected by compiler errors. In that sense, compiler errors are a non-
negligible failure types of broken builds, and affect most of the open-
source Java projects, which motivates the study in this paper.

4.2 Frequency across Project Properties
We analyzed the ratio of broken builds caused by compiler errors for
each project. As projects with only few broken build would intro-
duce noise, we removed the 791 projects that had less than 20 broken
builds. The result is reported in Fig. 2a, where they-axis denotes the
number of projects whose ratio is in a range (e.g., 10 represents the
range (5, 10]). Of the 3,008 projects, 603 (20%) projects did not have
any broken build caused by compiler errors; 1,785 (59%) projects had
less than 20% of broken builds caused by compiler errors; and 620
(21%) projects had more than 20% of broken builds caused by com-
piler errors. Surprisingly, at least 50% of the broken builds in 101
(3%) projects were caused by compiler errors. We investigated these
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projects and found that, theymostly do not have any tests or use any
static analysis tools and hence broken builds are mostly caused by
compiler errors. For the projects with no compiler errors, we found
that some developers configure Travis CI incorrectly, making most
builds break before the compilation, and they simply ignore the fail-
ures and do not fix the configuration. Hence, CI training and auto-
mated CI configuration tools are needed to ease the configuration
and widen the practical adoption of CI in open-source projects.

In addition, we analyzed project’s number of builds and stars to in-
vestigate whether they correlate to the ratio of broken builds caused
by compiler errors. The result is reported in Fig. 2b, where they-axis
denotes themedian number of builds and stars of the projects whose
ratio is in a range. The projects whose ratio was between 0% and 20%
had a largermedian number of builds and stars (588 and 177) than the
projects whose ratiowas 0% (218 and 104) and than the projects whose
ratio was between 20% and 100% (487.5 and 139). Thus, popular and
frequently-built projects have a relatively low ratio of broken builds
caused by compiler errors, and the differences are statistically signif-
icant (p = 2.8937e-5 and 3.0905e-5 in one-way ANOVA test [25]). It
implies that frequent builds can facilitate fast integration. However,
too frequent builds may incur high time overhead. Thus, build pre-
diction techniques are needed to suggest developers when to build.

4.3 Frequency across Branches
We investigated the ratio of broken builds caused by compiler errors
across different branches to test the hypothesis thatmaster branches
are less likely to contain compiler errors than non-master branches.
We distinguished the master branch from others, and extracted this
branch data from the branch field of the json files of broken builds.
The result is shown in Fig. 2c, where they-axis denotes the ratio and
the number of broken builds caused by compiler errors is shown in
each bar (which is the same in Fig. 2d, 2e and 2f).

We failed to get the branch data from the json files of 64,545 bro-
ken builds because of tag builds or missed build data; and 5,239 of
themwere caused by compiler errors. Of the 902,216 and 521,164 bro-
ken builds from the master and other branches, 9.9% and 14.6% were
caused by compiler errors. This indicates that broken builds on mas-
ter branches are less likely to have compiler errors than those on other
branches. This difference is statistically significant (p = 2.3955e-14 in
Wilcoxon signed rank test [45]). It is potentially because developers
are oftenmore careful when changing code onmaster branches so as
to make master branches stable; otherwise, many developers will be
affected. Hence, a strengthened discipline is need for committing to
non-master branches, e.g., pre-compilation before committing.

4.4 Frequency acrossCodeTypes andBuild States
As compiler errors in production and test code are reported in differ-
ent phases of CI depending on whether Maven or Gradle is used (see
details in Sec. 2), the build state of the resulting broken builds can be
different. Hence, we analyzed the ratio of broken builds caused by com-
piler errorswith respect to code types and build states together.We de-
terminedwhether a broken buildwas caused by compiler errors in the
production or test code by two ways: checking whether compiler er-
rors occur in the default task of compiling production or test code as
Maven and Gradle separate their compilation in two tasks, or check-
ingwhether the file with compiler errors locates in the default folder

of production or test code as Maven and Gradle have separate fold-
ers for them. Further, we extracted the state data from the state field
in the json files. Here we also analyzed the successful builds as we
found some of them also had compiler errors. The results for projects
using Maven and Gradle are shown in Fig. 2d and 2e, respectively.

We failed to decide whether compiler errors happened in the pro-
duction or test code for 1,158 broken builds as some projects changed
the default compilation tasks or source code structures. 564,563 and
923,362 broken buildswere respectivelymarked as errored and failed,
and 5,040,641 builds were marked as passed. First, production code
wasmore likely to contain compiler errors than test code, and the dif-
ference is statistically significant (p = 2.3093e-235 inWilcoxon signed
rank test). The potential reasons are that, production code is usually
more complex and frequently-changed than test code, and projects
can have a small number of tests or even no test.

Second, for Maven projects, not all compiler errors occurred in
errored builds; and for Gradle projects, not all compiler errors in pro-
duction (resp. test) code occurred in errored (resp. failed) builds. This
indicates that Travis CI provides the flexibility for developers to com-
pile production code in the later script phase. However, this flexibil-
ity is at the cost of a longer build time, affecting the efficiency of soft-
ware development. In detail, we analyzed the average build time of
errored and failed builds that were caused by compiler errors; and er-
rored builds took 212 seconds, while failed builds took 374 seconds.
This difference is statistically significant (p = 0.0001 in one-way
ANOVA test). Therefore, developers should be aware of this trade-
off when changing compilation configurations.

Third, surprisingly, 11,239 of 5,040,641 successful builds also had
compiler errors. To find root causes, two of the authors separately
analyzed 96 cases by investigating commits, logs and configuration
files to summarize root causes. Then, they discussed root causes and
investigated inconsistent cases together to reach consensus. These 96
cases were randomly selected from 11,239 cases, achieving a confi-
dence level of 95% and amargin of error of 10%. Finally, we identified
three root causes: (i) compiler errors occur after the script phase, and
they will not affect the build result (27%); (ii) Travis CI can be con-
figured to allow some compiler errors to happen without affecting
the build result (56%); and (iii) Travis CI provides a retry mechanism
to rebuild when a previous build fails, and thus previously-occurred
compiler errors would disappear in retried builds (17%). Thus, auto-
mated compiler error localization techniques are needed to locate
such easily-missed but still risky compiler errors.

4.5 Frequency across Triggering Events
We investigated the ratio of broken builds caused by compiler errors
across four kinds of events to trigger a build (see details in Sec. 2).We
extracted this event data from the event_type field in the json files
of broken builds. The result is presented in Fig. 2f.

It turned out that 31 broken builds had a value of null for this event
data due to missed build data; and one of them was caused by com-
piler errors. Of the 796,827, 666,830, 13,439 and 10,798 broken builds
respectively triggered by Push, Pull Request,API andCron, 11.0%, 12.4%,
1.2% and 4.7%were caused by compiler errors. This shows that while
being themost commonway to trigger builds, pull requests aremore
likely to make compiler errors than pushes. The difference is statisti-
cally significant (p = 7.9891e-39 inWilcoxon signed rank test). As pull
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Figure 3: Overall Distribution of Compiler Error Types

requests are developed on an isolated branch from themaster branch,
developers may be less aware of code changes on the master branch.
Besides, it is also possible to file a pull request for a feature that is in-
complete such that other developers can provide suggestions inside
of the pull request. On the other hand, as developers may do not use
IDEs or be unaware of code changes from other developers, or differ-
ent Java versions are used in local and CI compilation environments,
compiler errors appear in pushes. Therefore, proactive alerting tech-
niques are needed to inform developers about potential compiler
errors just before pushes or pull requests.

Compiler errors caused 11% of broken builds, affecting 75%
of projects. 21% of projects had more than 20% of broken
builds caused by compiler errors. Production code and pull
requests were more likely to contain compiler errors than
pushes and test code. Broken builds on master branches
were less likely to be caused by compiler errors than those
on other branches. Travis CI’s flexibility to compile code in
later phases was at a price of a longer build time. Even suc-
cessful builds could contain compiler errors.

5 DISTRIBUTION ANALYSIS (RQ2)
To identify the common types of compiler errors and their distribu-
tion, we analyzed the compiler errormessages reported in the log files
of 171,043 broken builds caused by compiler errors. The list of com-
piler error typeswith the formatted errormessages are available from
the compiler properties file used by javac. Thus, we analyzed the com-
piler properties file for Java 6, 7, 8 and 9, made a union of their error
types, and obtained 498 error types. Then for each of the error types,
we wrote regular expressions based on the formatted error message
and used them to match the error messages in the log files. Finally,
we counted the number of matched compiler errors for each error
type, and computed the distribution of error types.

5.1 Overall Distribution
We matched 252 error types with 1,785,067 compiler errors, but did
not find any error for 246 types. We believe this is attributed to the
extensive usage of IDEs during software development as many error
types can be easily captured by IDEs and are fixed before building.

Fig. 3 lists the 20most common error types. They covered 95.4% of
compiler errors. The most common error type was cant.resolve that
accounted for 54.0% of compiler errors. This error occurswhen a com-
piler cannot recognize a symbol in code. doesnt.exist covered 15.9% of
compiler errors. This error occurswhen the compiler cannot find the
imported package in the classpath. expected appeared in 5.6% of com-
piler errors. Such an error occurs when the compiler expects a token
that is not found. The three most common error types covered 75.5%
of compiler errors, while the ten most common ones covered 90.2%.
Thus, developer, researchers and tool builders should focus on these
most common error types to provide the most benefit. Hereafter, we
will focus our discussion on the ten most common error types.

Comparison toGoogle’s Study [43].Themost two common er-
ror types in ours are the same in theirs (i.e., they respectively rank 1st
and 3rd as reported by Seo et al. [43]; and an error type strict ranks
2nd, which corresponds to a Google-specific dependency check).
Such dependency related error types are common regardless of the
different development practices in Google and open-source commu-
nity. Besides, some common error types in ours are less common
in theirs (e.g., expected and method.does.not.override.superclass
rank 3rd and 4th in ours, but rank 9th and 8th as reported by Seo et
al. [43]), or even not in their 20 most common error types (e.g., dupli-
cate.class). We believe this attributes to different datasets produced
via different development practices. Our dataset is produced from
CI, while Google’s dataset is produced from a monolithic software
repository and a centralized build system where code review is con-
ducted before committing and products are built from head. Thus,
syntax errors (e.g., expected) and class access rule violation errors
(e.g., method.does.not.override.superclass and duplicate.class) are
less likely introduced by Google’s developers. Further, some com-
mon error types in theirs are missing in our 20 most common error
types (e.g., unchecked and rawtypes rank 7th and 13th as reported
by Seo et al. [43], but rank 39th and 30th in ours). As unchecked and
rawtypes are warnings, only 72 projects in our study were con-
figured to treat them as errors and the other projects just filtered
them out, but we believe the command line flags to javac in the
centralized build system in [43] were consistent across the dataset.
These differences motivate the necessity of this study.

5.2 Distributions across Code Types and
Triggering Events

We further analyzedwhether the distribution of compiler error types
differswith respect to projects, branches, code types, build states and
triggering events. We found that the distribution had no statistically
significant difference for projects whose ratio of broken builds caused
by compiler errorswas below and above 20% (see Sec. 4.2) and for dif-
ferent build states and branches. Hence, we omitted their results; and
investigated the tenmost common compiler error types for different
code types and triggering events.

Fig. 4a and 4b report the results for production code and test code.
The first major difference was that does.not.override.abstract and
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Figure 4: Distribution of Compiler Error Types across Code Types and Triggering Events
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method.does.not.override.superclass were more commonly seen in
production code than in test code. This difference is statistically sig-
nificant (p = 7.0709e-26 and 9.4066e-47 inWilcoxon signed rank test).
These two error types are related to inheritance and implements. Gen-
erally, production code has more complicated inheritance and imple-
ments relationships than test code, whichmight cause the difference.
The second differencewas that cant.apply.symbol occurredmore fre-
quently in test code than in production code. This error occurs when
a method is called with an incorrect argument list. This difference is
statistically significant (p = 2.1176e-14 inWilcoxon signed rank test).
This can be attributed to that test codemay not be timelymaintained
when production code changes. Hence, automated co-evolution tech-
niques are needed to either suggest or automate the co-evolution of
production code and test code.

Fig. 4c and 4d present the results for pushes and pull requests. One
main differencewas that doesnt.existwas less commonly seen in pull
requests than in pushes. This difference is statistically significant (p
= 1.6670e-15 inWilcoxon signed rank test). As pull requests are filed
with the expectation to be successfully merged, developers are less
likely to import a non-existent package. Besides, pushes have a high
chance to add new features that often introduce new classes.

cant.resolve, doesnt.exist, and expectedwere themost com-
mon compiler error types. The ten most common compiler
error types accounted for 90.2% of compiler errors.

6 FIX EFFORT ANALYSIS (RQ3)
To measure the fix effort of each compiler error type, we analyzed
the elapsed time during which a broken build (caused by compiler
errors) was fixed to be either passed or failed with its compilation be-
ing successful (i.e., the previous compiler errors had been fixed, but
the build still broke, e.g., due to test failures), as shown in Fig. 5. The
build can break for several times before compiler errors are fixed.
Therefore, we identified the sequences of broken builds that had one
type of compiler errors andwere succeeded by a successful build or a
failed build with a successful compilation. Since the sequences of
Travis CI builds are not linear but a directed graph [8], we followed
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Figure 6: Fix Time of Common Compiler Error Types

themethod proposed by Beller et al. [8] to extract the sequences. Fol-
lowing Google’s study [43], we excluded broken builds that hadmul-
tiple types of compiler errors because it is difficult to discriminate
the fix time for each error type. In total, we found 17,948 sequences.
Then, we computed the fix time as the time interval between the fin-
ishing time of the first broken build in the sequence (i.e., indicating
the discovery of a compiler error) and the creation time of the suc-
ceeded build in the sequence. As suggested in Google’s study [43],
we excluded the sequences in which the fix time was greater than 12
hours to avoid compounding the fix time with developers’ schedule
as well as to have fair comparisons with Google. Finally, we com-
puted the fix time for 12,000 sequences, covering 138 error types.

Fig. 6 presents the fix time of the tenmost common compiler error
types in Fig. 3. A box plot is shown for each error type, and the line
within the box denotes the median value of fix time. The error types
in Fig. 6 were ordered in increasing median fix time, and the number
of identified sequences that contained the error typewas reported in
the parentheses after each error type name in the x-axis.

Overall, themedian fix time of the error types ranged from 18min-
utes to 97 minutes. Some error types like does.not.override.abstract
and method.does.not.override.superclass took twice more fix time
than others such as expected, doesnt.exist and cant.resolve. This dif-
ference is statistically significant (p = 3.1464e-19 in one-wayANOVA
test). This is reasonable because both does.not.override.abstract and
method.does.not.override.superclass usually require developers to
think about the implementation of new methods, while expected in-
volves token-level syntax changes and doesnt.exist and cant.resolve
are mostly related to dependency or type mismatch issues. Besides,
the median number of build attempts until the compiler errors were
fixed was 1; and 25.9% of the compiler errors were fixed by at least
2 builds. This indicates that compiler errors are not trivial to fix.

Comparison toGoogle’s Study [43].Themedian fix time of the
common compiler error types in our study was much longer than in
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Google’s study (less than 12minutes). This large difference can be at-
tributed to that Google’s dataset is gleaned from iterative develop-
ment and Google’s monolithic repository asks developers to quickly
respond to errors to avoid affecting a wide range of developers.

Themedian fix time of the tenmost common compiler error
types ranged from 18 minutes to 97 minutes.

7 FIX PATTERN ANALYSIS (RQ4)
To analyze the fix patterns of compiler errors, we focused on the ten
most common error types. For each error type, we first randomly se-
lected five broken builds that contained the error type, and two of the
authors separately looked into the broken builds (with the code, com-
mit or pull request) to investigate how theywere fixed. Then, they dis-
cussed their discovered fix patterns to reach a consensus. Multiple
rounds of selection, investigation and discussion were conducted
until no new fix pattern could be discovered for two consecutive
rounds. Finally, we analyzed a total of 325 broken builds. Table 1 lists
the derived fix patterns for each error type, where the first column
shows the error type with the number of analyzed broken builds in
the parentheses, the second column describes the error, the third col-
umn shows the fix pattern with the number of fixed broken builds
in the parentheses, and the last column reports the number of errors
falsely reported or having imprecise error message.

cant.resolve.Weanalyzed 90 broken builds to have stable fix pat-
terns for cant.resolve. Themost commonfix is to correctmistypes, e.g.,
change package, class, method or variable name. The error is usually
due to misspelling, incomplete refactoring or code change, usage of
snapshot libraries, and different Java versions in build environments.
Another commonfix is to remove all the relevant code about the sym-
bol not found, which is often caused by incomplete refactoring or
code change. An interesting pattern is to add a class, meaning that
developers seem to use a class that does not exist. A close look at the
commit messages shows that developers often miss some code files
in commits. Adding an import statement or a dependency library is
also quite common. Less common patterns include adding a vari-
able declaration, updating the dependency library version, moving
a class from a package to another or casting the object type.

doesnt.exist. From 30 broken builds, we summarized four pat-
terns to fix doesnt.exist. In particular, adding a dependency library is
the most common pattern, which resolves errors caused by a missed
dependency declaration in automated building tools. Changing an
imported package fixed eight broken builds. These errors are often
due to misspelling, incomplete code change, or usage of snapshot
libraries. Similar to the case in cant.resolve, developers may miss to
commit a whole package. Thus, a corresponding fix pattern is to add
the package and the classes in it. The last pattern is to remove the
package import statement. It is interesting that in one of the broken
builds, a cant.resolve error was falsely reported as a doesnt.exist
error due to static method invocation, where the compiler falsely
considered a class as a package since it is possible that a class is used
through its fully qualified name without an import statement.

expected.We investigated 35 broken builds of expected. As this
error type is generally related to syntax violations, many fixes are hard
to summarize, e.g., changing a token from “,” to “;”, add “{”, or remove

“)”. Therefore, we grouped them together as a pattern to change, add
or remove a token. Besides, a common pattern is to remove illegal
tokens, which occurred 16 times. Most of the illegal tokens were re-
sulted from merge conflicts, which developers did not resolve. The
other two patterns are to change misspelled keywords and move
code (e.g., moving a method declaration out of a method declara-
tion). Surprisingly, 29 (82.9%) broken builds had imprecise error
messages that failed to locate the position of an error.

method.does.not.override.superclass. Via analyzing 25 bro-
ken builds, we summarized seven fix patterns. Most commonly, it is
fixed by removing the @Override annotation and method in the
subclass, which is usually caused by the removed method in its su-
perclass (i.e., incomplete code changes). Another common fix is to
change the method signature in the subclass to match the already
changed method in its superclass. Adding the superclass fixed two
broken builds, where the cant.resolve error was reported together.
Updating dependency library version fixed two broken builds. The
libraries were developed by developers in the same team, but vio-
lated the original design. Thus, the libraries were updated to follow
the original design. Other patterns are to remove the @Override an-
notation, or add the missed superclass or dependency library.

cant.apply.symbol(s). For the 40 broken builds, the common fix
patterns are all about changing arguments in a method call, i.e., add
an argument, remove an argument, change the type of an argument,
and change the order of two arguments. These errors are caused by
incomplete refactoring or code changes, or method misuses due to
carelessness or unfamiliarity. Another common fix is to add missed
method declaration, which is usually caused by new features. A com-
mon pattern is to change the method name, which means that devel-
opers called the wrong method. A less common pattern is to remove
the method call. We got one false reports due to a bug in type infer-
ence in Java generics, and it was resolved by updating Java version.

illegal.start. Similar to expected, illegal.start is related to syntax
violations, and often occurs simultaneously with expected. Its fix
patterns are almost the same to expected except that it has a pattern
that adds the generic type in constructor or method invocations. Ac-
tually, generic types can be omitted in Java 7 and beyond. This error
occurs because of a lower Java version in CI build environment.

incompatible.types. This error type usually occurs in assign-
ments, where the right hand side can be a literal, a variable, amethod
invocation, etc. Among 25 broken builds, the most common fix pat-
tern is to change the assignee’s declared type tomatch the previously-
changed type of the right hand side. Correspondingly, some fix pat-
terns are to change the type of right hand side, e.g., changemethod’s
return type and its implementation, assign a new value, and convert
the type of amethod call’s return value through a chained call (e.g., a
chained call to toString()). Other fix pattern are to add a generic type
when the generic type inference fails to work, or to simply remove
the assignment code resulted from incomplete code changes. Simi-
lar to cant.apply.symbol(s), we got two false reports due to the same
bug in type inference in Java generics.

does.not.override.abstract.Analyzing 25 broken builds, we de-
rived three fix patterns for does.not.override.abstract. Themost com-
mon one is to implement the abstract method in the subclass. Such
errors aremostly caused by the new features added in the superclass.
Because of incomplete refactoring or code changes, the method sig-
nature in the superclass is changed without timely changing the
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Table 1: Fix Patterns of the Common Compiler Error Types
Error Type Error Description Fix Pattern Eclipse IntelliJ IDEA ImpreciseSug.? Aut.? Sug.? Aut.?

cant.resolve (90) symbol (e.g., class, variable, or
method) is not found

correct mistype (24) ✓ × ✓ ×

0

remove relevant code (22) ✓ × ✓ ×

add class (14) ✓ × ✓ ×

add import (9) ✓ ✓ ✓ ✓
add dependency library (8) ✓ × ✓ ×

add method (6) ✓ × ✓ ×

add variable (4) ✓ × ✓ ×

update dependency library (1) × × × ×

move class (1) × × × ×

cast object type (1) ✓ ✓ ✓ ×

doesnt.exist (30) package does not exist
add dependency library (10) ✓ × ✓ ×

1change imported package (8) ✓ × ✓ ×

add imported package and class (8) ✓ × ✓ ×

remove package import (4) ✓ × ✓ ×

expected (35) token is expected but not found
remove illegal tokens (16) × × × ×

29change, add or remove token (15) × × × ×

change keyword (2) × × × ×

move code (2) × × × ×

method.does.not.override.superclass (25)
method has @Override annotation
but does not override or implement
method from superclass

remove @Override and method (10) × × × ×

0

change method signature in subclass (8) ✓ × ✓ ×

add superclass (2) ✓ × ✓ ×

update dependency library (2) × × × ×

remove @Override (1) ✓ × × ×

import superclass (1) ✓ ✓ ✓ ✓
add dependency library (1) ✓ × ✓ ×

cant.apply.symbol(s) (40) method is called with incorrect
argument list

add argument (13) ✓ × × ×

1

remove argument (8) ✓ × ✓ ×

change argument type (6) ✓ × ✓ ×

add method (5) ✓ × ✓ ×

change method name (4) ✓ × × ×

change argument order (2) ✓ ✓ ✓ ×

remove method call (1) × × × ×

illegal.start (30) start of expression, type or
statement is illegal

remove illegal code (17) × × × ×

0change, add or remove token (9) × × × ×

add generic type (2) ✓ ✓ ✓ ✓
move code (2) × × × ×

incompatible.types (25) types are incompatible in assignment

change assignee’s type (5) ✓ × ✓ ×

2
assign new value (4) × × × ×

remove relevant code (4) × × × ×

convert return value’s type (4) ✓ × ✓ ×

change method’s return type (3) ✓ ✓ ✓ ✓
add generic type (3) ✓ × ✓ ×

does.not.override.abstract (25)
method is not abstract and does not
override abstract method from
superclass

implement method in subclass (18) ✓ × ✓ ×

0change method signature in subclass (5) ✓ × ✓ ×

remove method in superclass (2) × × × ×

duplicate.class (25) two classes have the same fully
qualified name

remove class (14) × × × ×

0change package name (7) ✓ × ✓ ×

change class name (4) ✓ ✓ ✓ ×

method signature in the subclass. Therefore, the corresponding fix
is to accordingly change the method signature in the subclass. An-
other common pattern is to remove the method in the superclass,
which occurs due to the redesign of interfaces.

duplicate.class.Weanalyzed 25 broken builds of duplicate.class.
Themost common fix pattern is to remove the duplicated class. Such
errors are usually caused by branchmerges or a lack of coordination
among developers. Other patterns are to change the class name or
package name to resolve naming conflicts among developers.

From this manual analysis, we found that while fix patterns often
exist for most of the common error types, the root causes of the er-
rors are often hard to derive, simply from build logs or commits, due
to the lack of context when developers make such errors. Moreover,
most of the fix patterns were simple, only involving lines of code
changes or code removals. Such simple fix patterns indicate the
potential feasibility of automatically fixing common compiler er-
rors. For example, “add dependency library” can be implemented by
locating the jar file containing the specific class from the maven

repository. However, the main challenge is to automatically identify
the root cause such that we can know which fix pattern should be
applied. On the other hand, such fix patterns and the potential root
causes can be useful for developers to troubleshoot compiler errors
or avoid some compiler errors during collaborative development.

Modern IDEs already provide the capability of fix suggestion and
automated fix to compiler errors. Therefore, we reproduced the com-
piler errors in 325 broken builds in the twomostwidely adopted IDEs
[44], Eclipse and IntelliJ IDEA, to (i) determinewhether they provide
our derived fix patterns as fix suggestions and (ii) apply suggested
fixes to see whether they automatically fix compiler errors without
any human intervention. The results are reported in the fourth to sev-
enth columns of Table 1, respectively under column Sug.? and Aut.?.
Of the 48 fix patterns, Eclipse and IntelliJ IDEA respectively do not
support 16 and 19 fix patterns. Specifically, they have poor supports
for syntax violation errors (e.g., expected and illegal.start). Among
the supported 32 and 29 patterns, Eclipse and IntelliJ IDEA only sup-
port automated fix for 7 and 4 fix patterns. Therefore, our derived

183



A Large-Scale Empirical Study of Compiler Errors in Continuous Integration ESEC/FSE ’19, August 26–30, 2019, Tallinn, Estonia

patterns can be used to enrich fix suggestions in IDEs, and more
importantly, automated techniques are needed to automatically fix
compiler errors so as to improve IDEs.

Simple fix patterns did exist for most of the ten common
compiler error types, but root causes were hard to analyze
due to the lack of development context. IDEs provided very
limited supports to automatically fix compiler errors.

8 DISCUSSION
In this section, we discuss the threats to the validity of our empirical
study and the practical implications of our findings.

8.1 Threats to Validity
Construct.Weare interested in compiler errors that break CI builds
of open-source projects. Hence, we designed four research questions
to analyze the frequency, common types, fix efforts and fix patterns
of compiler errors. We believe these questions have the potential to
provide implications to different audiences (see Sec. 8.2). Besides, we
broke down the results of frequency and common types across three
aspects that capture the properties of projects and how the projects
are developed and use CI.We selected several factors for each aspect.
While not to be exhaustive, the factors capture key characteristics of
each aspect. Our purpose is to identify the opportunities to improve
development discipline and CI usage to reduce compiler errors.

Internal. This study is mostly focused on the ten most common
compiler error types. They accounted for more than 90% of compiler
errors. Such a high coverage indicates the representation of our re-
sults. More specifically, in RQ2, we focused on the error types in com-
piler properties files of Java 6, 7, 8 and 9. While we cannot guarantee
that all 3,799 projects do not use lower Java versions, we believe this
choice is representative as the public updates of Java 5 ended in No-
vember 2009 and most error types across Java versions are the same.

In RQ3, the computed fix time for each error type might not pre-
cisely reflect the time developers spent in fixing errors as developers
often tangle multiple development tasks and switch between tasks.
To mitigate this threat, we excluded build sequences whose fix time
was greater than 12 hours. Besides, the identified sample data for
each error type varied by an order ofmagnitude, e.g., ranging from 83
to 5,355. This is due to the unbalance distribution across error types
and our constraints on identifying the sample data for a relatively pre-
cise computation of fix time. We believe this trade-off is reasonable
and at least 83 sample data can provide representative results.

In RQ4, we analyzed 325 broken builds tomanually summarize fix
patterns for each common error type. We cannot guarantee that the
derived fix patterns are complete, butwe believe they can have a good
coverage because we performed several rounds of data selection, in-
vestigation and discussion until no new fix pattern was discovered.

External.Weanalyzed a large number of 3,799 Java projects with
a total of 6,854,271 CI builds.While believing that our findings can be
generalized for Java projects, we cannot guarantee that our results
can still hold for projects in different programming languages (e.g.,
C++ and C#). This is due to the specific compilers designed for dif-
ferent languages. Further studies are needed to investigate such dif-
ferences. Besides, we only used Java projects that adopted Travis CI.

As Travis CI is widely-used in more than 90% of GitHub projects us-
ing CI [24], we believe our findings are representative.

8.2 Implications
Developers. This study identifies the common compiler error types
where developers should be pay attention to and need the most help.
Moreover, our findings provide some development suggestions. De-
velopers should know the trade-offwhen changing compilation con-
figurations; developers should analyze whether test code needs co-
evolution when changing production code; developers should guar-
antee the integrity of committed changes to avoidmissing some files;
developers should resolve merge conflicts timely; developers should
strength the discipline of team coordination to avoid dependency is-
sues (e.g., some developers included dependencies in their local class-
path, but did not put them in configuration files, which might cause
errors in CI builds due to the missing dependencies); and developers
should be aware of the differences between local development en-
vironments and CI build environments (e.g., the differences in JDK
versions, and the accessibility of dependencies). Our fix patterns
can be useful for developers to troubleshoot compiler errors.

Tool Builders.Our findings in studying common compiler error
types and their fix time shed light on the areaswhere tool builders can
provide themost benefit for developers. For CI community, we found
projects that incorrectly configured CI but never fixed the configu-
ration problem, and projects that configured CI to perform compi-
lation at later phases at a cost of a longer build time. This shows that
Travis CI’s configuration flexibilitymay have negative effects. Hence,
training or automated configuration tools are needed to lower the
entry barrier of CI or take the full advantage of CI. Besides, tools are
needed to automatically predict and suggest when to build projects
to ensure fast integration and low time overhead, and to parse build
logs to automatically locate compiler errors in failed or even passed
builds. For compiler community, we found that some compiler er-
rors were falsely reported, and some error messages failed to re-
port precise error positions or hints. Based on such cases, design-
ers can find hints to build more powerful compilers. Besides, IDE de-
velopers can use our fix patterns to enrich their fix suggestions.

Researchers. This study highlights the needs for researchers to
propose new techniques to automatically debug, locate or fix com-
mon compiler errors, which can be helpful to developers. Consider-
ing the recent advances in automatic program repairing [33, 39, 54],
we believe there is a high potential of fixing compiler errors. Along
this line, Santos et al. [42] have attempted to fix single token syntax
errors (i.e., some of the errors in expected and illegal.start). Our sum-
marized fix patterns can provide them with hints on automatic fix-
ing, while our dataset of compiler errors can serve as a benchmark to
evaluate fixing techniques. Moreover, a systematic study of the root
causes of compiler errors can be helpful. Experiences from our man-
ual analysis suggest that interviews with developers or analyzing
developers’ programming activities might provide good insights.
Besides, pro-active alerting techniques should be proposed to in-
form developers about potential compiler errors before committing.

9 RELATEDWORK
CI Studies. Vasilescu et al. [49] analyzed the popularity of CI using
233 GitHub projects, and found that pull requests are much more
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likely to result in successful builds than pushes. Vasilescu et al. [50]
also studied the productivity and quality for 246 GitHub projects
using CI, and found that CI helps to merge pull requests from core
members more effectively and detect more bugs by core developers.

Hilton et al. [24] conducted a large-scale quantitative study of the
usage, costs and benefits of CI in open-source projects. They found that
CI is widely used by themost popular projects; the lack of familiarity
is themost common reason of not using CI; and CI helps projects to re-
lease twice as often and accept pull requests faster. Hilton et al. [23]
further studied the barriers and needs when adopting CI. They
derived three trade-offs developers faced, i.e., testing speed and cer-
tainty, access to the CI system and information security, and more
configuration options and greater ease of use.

Gautam et al. [20] adopted clustering analysis to classify projects
that follow CI practices and have distinct characteristics with re-
spect to activity, popularity, size, testing and stability, using the Trav-
isTorrent dataset [8] from 1,300 projects. Besides, industrial case stud-
ies (e.g., [32, 36, 46, 47]) were reported with respect to the adoption
of CI and corresponding lessons learned. Recently, Vassallo et al. [51]
analyzed whether and how the adoption of CI has changed the way
developers perceive and adopt refactoring; and Bernardo et al. [9]
studied how CI has affected the time to deliver merged pull requests.

These studies discuss the overall relationships between CI and
software development, but are not designed to look into the details
of CI builds. Instead, our study is focused on one of the most fre-
quent types of build failures, i.e., compiler errors.

CI Build Failures.Miller’s seminal work [36] on CI build fail-
ures in Microsoft products categorized 69 build failures into compi-
lation (26%), unit tests (28%), static analysis (40%) and server failures
(6%). Rausch et al. [41] studied CI build failures in 14 GitHub Java
projects and found 14 failure types. They reported that testing, code
quality and compilation are the most frequent types. Vassallo et al.
[53] compared CI build failures in 349 Java open-source projects
and 418 projects in an industrial organization. Their results showed
that testing, compilation and dependency are the most frequent fail-
ure types for open-source projects; and testing, release preparation
and static analysis are the most frequent failure types for industrial
projects. These studies inspired us to specifically focus on compiler
errors as they showed the significance of compiler errors in CI.

Instead of classifying failure types, Kerzazi et al. [29] investigated
the impacts, circumstances and factors of build failures by analyzing
3,214 builds in a large software company in a period of six months.
They showed that build failures cost more than 336.18 man-hours,
are mostly caused by missing files, accidental commits and missing
transitive dependencies. Gallaba et al. [18] analyzed the noise in
build data. They found that 12% of passing builds had an actively
ignored failure, while 9% of builds had a misleading or incorrect
outcome. Instead of analyzing all build failure types together, we
focus on one specific failure type in this study.

Hassan et al. [21] studied the feasibility of automatic building us-
ing 200 GitHub projects and analyzed the root causes of build fail-
ures. Another similar work was studied by Tufano et al. [48]. How-
ever, they both targeted traditional build environments, but not CI.
Thus, they run default build commands of build tools to generate
build logs, but we collect real-life build logs from Travis CI servers.

Compilation in CI.Our work falls in the compilation step of CI,
and the closest study is by Seo et al. [43]. They investigated failure

frequency, error types and fixing efforts of compilation, using 26.6
million builds produced in nine months by thousands of Java and
C++ developers in Google. Different from industrial projects, open-
source Java projects are used in our study. Moreover, we analyze the
frequency and error types across three aspects and summarize the
fixing patterns of common compiler errors, but they only analyzed
fix patterns for 25 cant.resolve errors.

Static Analysis in CI. Zampetti et al. [55] studied how static
analysis tools are used in CI pipelines using 20 GitHub projects. In
these projects, seven static analysis tools are used; build failures
caused by static analysis are mainly related to adherence to coding
standards; and build failures related to detected potential bugs or
vulnerabilities occur less frequently. Usage of static analysis tools in
open-source projects has been widely studied (e.g., [6, 28, 30, 56]),
whose results may not hold in CI. These studies are focused on the
static analysis step in CI, but we focus on the compilation step.

Testing in CI. Beller et al. [7] studied the testing adoption in CI,
using 1,359 GitHub projects. They reported that only around 20%
of projects never include testing in CI; failing tests are the domi-
nant reason for build failures; programming language has a strong
impact on the number of tests and test failures; and multiple integra-
tion environments help to uncover more test failures. Labuschagne
et al. [31] investigated the cost and benefits of regression testing in
CI, using 61 GitHub projects. Among the 87% non-flaky test failures,
74% are caused by bugs, which can be seen as the benefits; and 26%
are due to incorrect or obsolete tests, which represent the mainte-
nance cost. Moreover, several advances have beenmade on studying
ways to improve testing in CI [11, 13, 15, 27, 37, 38, 57]. These stud-
ies target the testing step in CI, and we study the compilation step.

Failure Build Repair. Recently, researcher have studied auto-
matic methods to repair build failures. Hassan and Wang [22] pro-
posed to repair build scripts using fix patterns extracted from exist-
ing build script fixes using predefined fix-pattern templates. Vas-
sallo et al. [52] provided repair hints by summarizing failed build logs
and linking StackOverflow discussions. Macho et al. [34] targeted
dependency-related build failures and summarized three strategies
(i.e., update version, delete dependency and add repository) to re-
pair them. Santos et al. [42] applied n-gram and LSTMmodels to fix
single token syntax errors, which is useful especially for novice pro-
grammers [26]. Gallaba et al. [19] studied how CI features in config-
uration files are used and misused, and derived four anti-patterns.
They also developed tools to detect and remove these anti-patterns
in CI configuration files. We believe our study can shed light on
automatic repairing of compiler errors.

10 CONCLUSIONS
In this paper, we present a large-scale empirical study to character-
ize and understand the compiler errors that break CI builds of open-
source projects. Our findings provided practical for developers, tool
builders and researchers. In future, we plan to investigate how to au-
tomatically fix compiler errors. Our dataset with the more complete
analysis results are released at https://compilererrorinci.github.io.
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