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Abstract

The widespread use of open-source software (OSS) has led to ex-
tensive code reuse, making vulnerabilities in OSS significantly per-
vasive. The vulnerabilities due to code reuse in OSS are commonly
known as vulnerable code clones (VCCs) or recurring vulnerabili-
ties. Existing approaches primarily employ clone-based techniques
to detect recurring vulnerabilities by matching vulnerable func-
tions in software projects. These techniques do not incorporate spe-
cially designed mechanisms for vulnerabilities with multiple fixing
functions (VM). Typically, they generate a signature for each fix-
ing function and report VM using a matching-one-in-all approach.
However, the variation in vulnerability context across diverse fix-
ing functions results in varying accuracy levels in detecting VM,
potentially limiting the effectiveness of existing methods.

In this paper, we introduce VMud, a novel approach for detecting
Vulnerabilities with Multiple Fixing Functions. VMud identifies vul-
nerable function clones (VCCs) through function matching similar
to existing methods. However, VMud takes a different approach by
only selecting the critical functions from VM for signature genera-
tion, which are a subset of the fixing functions. This step ensures
that VMud focuses on fixing functions that offer sufficient knowl-
edge about the VM. To cope with the potential decrease in recall due
to excluding the remaining fixing functions, VMud employs seman-
tic equivalent statement matching using these critical functions. It
aims to uncover more VM by creating two signatures of each critical
function and matching precisely by contextual semantic equiva-
lent statement mapping on the two signatures. Our evaluation has
demonstrated that VMud surpasses state-of-the-art vulnerability
detection approaches by 30.30% in terms of F1-Score. Furthermore,
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VMud has successfully detected 275 new VM from 84 projects, with
42 confirmed cases and 5 assigned CVE identifiers.

CCS Concepts

• Security and privacy → Software security engineering; Vul-
nerability scanners; • Software and its engineering → Soft-

ware libraries and repositories.

Keywords

software vulnerability detection, recurring vulnerabilities, open
source repositories
ACM Reference Format:

Kaifeng Huang, Chenhao Lu, Yiheng Cao, Bihuan Chen, and Xin Peng. 2024.
VMud: Detecting Recurring Vulnerabilities with Multiple Fixing Functions
via Function Selection and Semantic Equivalent Statement Matching. In
Proceedings of the 2024 ACM SIGSAC Conference on Computer and Communi-
cations Security (CCS ’24), October 14–18, 2024, Salt Lake City, UT, USA. ACM,
New York, NY, USA, 15 pages. https://doi.org/10.1145/3658644.3690372

1 Introduction

In recent years, the open-source software (OSS) ecosystem has wit-
nessed substantial growth [3, 14, 20], providing developers with a
vast array of options for using free software. It has become a com-
mon practice for developers to adopt third-party OSS components
to accelerate development and reduce costs [26]. Consequently,
the vulnerability landscape has expanded beyond traditional pro-
prietary software to encompass open-source software (OSS). The
increasing vulnerabilities in open-source software have raised sig-
nificant concerns, such as inaccurate vulnerability reports [6, 58],
silent vulnerability fixes [64], and software supply chain attacks
[7]. Attackers can exploit these vulnerabilities, affecting not only
the open-source software itself but also its downstream users, thus
amplifying potential financial gains and cyber chaos [1].

Notably, downstream software shares or reuse logic from up-
stream OSS components. As these OSS components evolve and
downstream software undergoes customization, the code initially
derived from OSS components diverges from the original one at
both ends. Consequently, it leads to challenges in mitigating Vulner-
able Code Clones (VCCs) [40]. When facing incompatible changes or
customized OSS components, mitigating VCCs by replacing newer
OSS components becomes infeasible or cumbersome, especially in
languages like C/C++ that lacks a dominant package manager.
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In this context, developers often resort to manually finding and
backporting security patches [60] into downstream software. How-
ever, it is time-consuming and resource-intensive. Notably, 80% of
attacks leveraged the vulnerabilities reported more than three years
ago [2], indicating that the issue of VCCs has not been fully resolved.

Typically, developers employ vulnerable code clone (VCC) dis-
covery techniques [25, 53, 54, 59] to identify reused components
(such as files, functions, or fragments) in a target project program.
They can also use learning-basedmethods for classifying vulnerable
functions [5, 8, 41, 47, 65]. However, the effectiveness of vulnera-
bility detection is often hindered in cases of Vulnerabilities with
Multiple Fixing Functions (VM), where fixing patches span across
multiple functions or files. Unfortunately, VM are inevitably preva-
lent in real world due to complex inter-procedural program logic,
posing challenges for accurate VM detection.

Limitations of Existing Approaches. Existing research of-
ten addresses the detection of Vulnerabilities with Multiple Fixing
Functions (VM) by dividing the task into matching vulnerability
characteristics within individual functions (i.e.,matching-one-in-all
approach). Clone-based techniques [25, 53, 54, 59] identify vulner-
able code clones (VCCs) within functions, while learning-based
approaches represent functions in abstract spaces and classify them
as vulnerable or not [5, 8, 41, 47, 65]. However, these approaches
assume equal importance for all fixing functions in a vulnerability,
potentially leading to over-representation resulting in false alarms.
Additionally, while software composition analysis (SCA) techniques
[21, 53, 56, 57, 61] can detect VM, they are primarily designed for
identifying reused OSS components, which may overlook specific
vulnerability or fixing characteristics, resulting in false alarms.

Challenge. Naturally thinking, assigning all fixing equal impor-
tance is straightforward andmay not accurately represent the actual
characteristics of vulnerabilities. Some fixing functions may carry
adequate information to represent a vulnerability, while others may
not. However, it is challenging to measure and weigh the unique
fingerprints of each fixing function to a vulnerability. The primary
challenge lies in how to capture and distinguish the uniqueness of
fixing functions and identify the critical ones for a vulnerability.

Our Approach. To tackle this challenge, we introduce VMud, a
novel approach for Vulnerabilities-with-Multiple-Fixing-Function-
Detection. Unlike traditional methods that treat all fixing functions
equally, VMud prioritizes the fixing functions and selects the most
critical functions for vulnerability representation (see Section 3.3.1).
It involves matching the signatures [25, 59] of these critical func-
tions. To cope with the potential decrease in recall due to excluding
the remaining fixing functions, we employ semantic equivalent
statement matching, which consists of program rephrasing [46]
(see Section 3.3.2) and contextual semantic equivalent statement
mapping (see Section 3.4.3). The program rephrasing aims to un-
cover more VM by creating another signature for the rephrased
form of the critical functions, while contextual semantic equiva-
lent statement mapping aims to match the composing statements
precisely based on their contextual semantic equivalence.

The insight of the contextual semantic equivalent statement map-
ping stems from our observation that some syntactically identical
statements serve different contextual purposes. Existing approaches
add new context similarity constraints using syntactically equiva-
lent statements, which does not correct the error from the essential.

We claim that “statement equivalence” should be redefined not
only from syntactic similarity, but also from their contextual sim-
ilarity. To our best knowledge, VMud is the first to discriminate
critical functions from fixing functions and consider both program
rephrasing and contextual semantic equivalent statements to iden-
tify vulnerabilities with high quantity and quality.

Evaluation. We implemented VMud and generated vulnerabil-
ity signatures from 810 CVEs. We conducted an evaluation using
a dataset comprised of the top 1,000 C/C++ real-world projects
selected from GitHub. Comparing VMud with state-of-the-art tech-
niques, VMud achieves a f1-score of 0.84, outperforming the best
state-of-the-art at 30.30%. VMud discovered 275 VM across 84
projects, with 42 of them confirmed by developers and 5 of them
assigned with corresponding new CVE identifiers. We observed the
robustness of VMud regarding the ixing function number in the VM.
We conducted an ablation study to observe the contribution of key
components in VMud. We also measured the threshold sensitivity
and performance of VMud. The results demonstrate VMud’s effec-
tiveness and efficiency in identifying VMwithin real-world projects.

Contribution.We summarize our contributions as follows:

• We propose VMud, a novel approach to detect Vulnerabilities
with Multiple Fixing Functions (VM) in real-world projects.

• We evaluate VMud on our ground truth collected from real-world
C/C++ projects and demonstrate its effectiveness compared with
the state-of-the-art approaches.

• VMud has discovered 275 vulnerabilities in 84 C/C++ projects.
42 are confirmed by developers, 5 has been assigned with CVE
identifiers, demonstrating its effectiveness in real-world projects.

2 Motivation

We discuss the problem of Vulnerabilities with Multiple Fixing
Functions (VM) and the motivation for our design of VMud.

2.1 Problem

Vulnerabilities with Multiple Fixing Functions (VM). We con-
centrate our goal on detecting recurring vulnerabilities with multi-
ple fixing functions (VM) in the open source software (OSS). Specif-
ically, developers need to apply fixing changes in vulnerable code
to fix vulnerabilities and release new safe versions. The fixing ac-
tion for vulnerabilities follows same routines as other actions in
evolutionary software, such as general bug fixing, feature addi-
tion, and code refactoring. They usually record the corresponding
code changes by Version Control Tools (VCS). As software becomes
more complex, developers usually decouple program logic [45] to
facilitate its flexibility. Thus, the code changes are complex, and
distributed across multiple locations. e.g., classes, functions, etc.
They may have changed patterns [62], tangled changes [19] (i.e.,
unrelated or loosely related code changes), or systematic changes
[24]. Taking Big-Vul [11], a widely used vulnerability detection
dataset [44, 48, 63] for example, it comprises of 3,754 code vul-
nerabilities and 11,823 vulnerable functions collected from CVE
database and CVE-related source code repositories. Averagely, fix-
ing a vulnerability involves three fixing functions, indicating the
VM is prevalent.
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Table 1: Fixing Functions of CVE-2021-32134 and FPs in the

Target Project Matched by Vuddy, V1Scan and VMud

Fixing File Fixing Functions Vuddy V1Scan VMud
box_code_base.c mp4s_box_new 1 1 0
box_code_base.c encs_box_new 1 1 0

sample_desc.c
gf_isom_sample
_entry_init

0 0 0

media.c Media_GetESD 0 0 0

Fixing vulnerabilities exhibit various patterns such as change
patterns, tangled changes, or systematic changes. Consequently, dif-
ferent fixing functions contribute unequally in terms of importance
and characteristics to identify the vulnerability. However, existing
research often treats each function equally [25, 53, 54, 59], trigger-
ing a vulnerability alarm if any of the functions matches. Applying
uniform importance to all fixing functions would result in diverse
effectiveness per function. i.e., some functions may carry adequate
information to represent a vulnerability, resulting in high accu-
racy, while others may not. Therefore, it is not reasonable to assign
equal importance to all fixing functions. Li et al. [30] investigated
inter-procedural vulnerabilities, where the statements to be patched
and the statements triggering the vulnerability belong to different
functions. Their approaches are based on a carefully designed list
of vulnerability-trigger statements regarding popular CWE types,
hindering its effectiveness in a wide range of vulnerability types.

Challenges. It is challenging to recognize the functions that con-
tribute higher accuracy against the functions that contribute lower
accuracy about one vulnerability. The key problem lies inmeasuring
and weighing the unique fingerprints of each fixing function so that
we can prioritize the functions. We refer to the recognizing task as
selecting critical functions and filtering out less important functions.
However, discarding the less important functions would result in a
drop in recall as it would miss some vulnerabilities discovered by
these functions. Therefore, we enhance the signature generation
and matching by semantic equivalent statement matching to cope
with the recall drop and improve our detection accuracy.

2.2 Motivation

(a) The Motivating Example of CVE-2021-32134. We illustrate
our motivation using an CVE [18, 37] from the gpac/gpac project. It
is a VM that involving four fixing functions across three files (see
Table 1). We present the corresponding code and patches in Figure 1.
Notably, although there are statement deletions in mp4s_box_new
and encs_box_new (Figure 1(a)), these deletions do not alter the
overall semantics as the deleted statements are reintroduced in
gf_isom_sample_entry_init (Figure 1(b)). We employed state-of-the-
art approaches, including Vuddy [25], MVP [59], Movery [54], and
V1Scan [53] to detect VCCs regarding this vulnerability compared
with our approach. Note that we also consider VCCs within the
same but different versions of the project. We present two false
positives generated by Vuddy and V1Scan from gpac/gpac[17] in
Table. 1. We exclude MVP and Movery because they yield zero
false positives. Comparatively, our approach VMud avoids false
positives by exclusively considering gf_isom_sample_en try_init
and Media_GetESD as critical functions using Critical Function
Selection in Signature Generation (see Section 3.3.3).

1
2
3

(b) The gf_isom_sample_entry_init function sample_desc.c

void gf_isom_sample_entry_init(GF_SampleEntryBox *ent){
+    ent->internal_type = GF_ISOM_SAMPLE_ENTRY_MP4S;
}

(c) The Media_GetESD function in media.c

1

2
3
4
5
6
7
8
9
10

GF_Err Media_GetESD(GF_MediaBox *mdia, u32 sampleDescIndex, GF_ESD 
**out_esd, Bool true_desc_only) {...
    switch (type) {
    case GF_ISOM_BOX_TYPE_MP4V:
+       if (entry->internal_type != GF_ISOM_SAMPLE_ENTRY_VIDEO)
+           return GF_ISOM_INVALID_MEDIA;
        ESDa = ((GF_MPEGVisualSampleEntryBox*)entry)->esd;
        if (ESDa) esd = (GF_ESD *) ESDa->desc; ...
    }...
    if (*out_esd == NULL) return gf_odf_desc_copy((GF_Descriptor 
*)esd, (GF_Descriptor **)out_esd); ...

(a) The mp4s_box_new and encs_box_new function in box_code_base.c

1
2
3
4
5
6
7
8
9
10
11
12

GF_Box *mp4s_box_new(){
    ISOM_DECL_BOX_ALLOC(GF_MPEGSampleEntryBox, GF_ISOM_BOX_TYPE_MP4S);
    gf_isom_sample_entry_init((GF_SampleEntryBox*)tmp);
-   tmp->internal_type = GF_ISOM_SAMPLE_ENTRY_MP4S;
    return (GF_Box *)tmp;
}
GF_Box *encs_box_new(){
    ISOM_DECL_BOX_ALLOC(GF_MPEGSampleEntryBox, GF_ISOM_BOX_TYPE_ENCS);
    gf_isom_sample_entry_init((GF_SampleEntryBox*)tmp);
-   tmp->internal_type = GF_ISOM_SAMPLE_ENTRY_MP4S;
    return (GF_Box *)tmp;
}

Figure 1: A Motivating Example of Patches from gpac/gpac
for Fixing CVE-2021-32134

Table 2: Number of True Positives (TP), False Positives (FP),

False Negatives (FN) ChangedUsing Critical Function inMVP

and V1Scan. (PrecisionΔ Denotes the Precision in Changed

TPs and FPs while Precision𝑜 Denotes the Original Precision

without using Critical Functions)

Tool Numbers Changed (#) PrecisionΔ Precision𝑜
TP FP FN

MVP -39 -119 +39 0.24 0.81
V1Scan -39 -18 +39 0.68 0.71

(b) Using Critical Functions in Existing Approaches. We
utilize the critical functions generated by our apporach as vulnera-
bility signatures and apply them to MVP [59] and V1Scan [53]. We
did not apply Vuddy [25] and Movery [54] due to that both tools
did not provide the matched vulnerable functions from the original
VM in their generated output. The outcomes are detailed in Table. 2.
The origial false positives generated by existing approaches are pre-
sented in Table 4. Comparatively, it can reduce 73.01% (119/163) and
38.30% (18/47) false positives inMVP and V1Scan, respectively when
employing the critical function signatures. Although true positives
decrease by 39 for both tools, the precision in Changed TPs and FPs
are lower than the original precision for each tool. This underscores
the effectiveness of our critical function selection in reducing false
positives and enhancing precision, despite the trade-off resulting
in more true positives converting to false negatives. To address
the trade-off, we employ the program semantic-centered statement
matching to improve recall in our approach. i.e., Program Rephrasing
and Contextual Equivalent Statements Map (see Section 3).

3 Design of VMud

We first provide VMud’s overview and clarify the terminology and
definition. Then, we present the technical details of VMud.
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3.1 Overview

VMud differs from existing works in two aspects. On the one hand,
existing works don’t distinguish the different importance of func-
tions in VM, hindering the effectiveness of detecting VM. We select
the critical functions and particularly enhance the signatures for
these functions. On the other hand, existing works have imperfect
matchings of statements. The reason is that most approaches only
consider the syntactical equality of the statements (e.g., using =, ==
or strcmp). However, some syntactically identical statements serve
different contextual purposes. Although existing approaches add
new context similarity constraints using syntactically equivalent
statements, it does not perfectly resolve the semantic equality of
statements (i.e., the equality of statements’ surrounding contexts).

Differently, VMud first prioritizes and selects critical functions
among multiple fixing functions during Signature Generation (see
Section 3.3). Then, VMud designs a new semantic-centered state-
ment matching technique (see Section 3.4) to redefine the equality
of the statements from the target function and vulnerable functions.
It includes generating the semantic enhanced signature (i.e., See)
during signature generation (see Section 3.3.3), and matching the
signature via contextual equivalent statements map during signa-
ture matchting (see Section 3.4.3). Additionally, VMud leverages
program rephrasing [46] (see Section 3.3) to create semantically
equivalent transformations of the expression, thus creating new
rephrased signatures for critical functions. It allows VMud to filter
out false positives introduced by less important functions and im-
perfect matching, and find true positives using rephrased signature.

Figure 2 illustrates the workflow of VMud, comprising two main
stages: Signature Generation (see Section 3.3) and VM Detection
(see Section 3.4). In the Signature Generation stage, VMud takes a
VM patch commit as input and extracts the fixing functions. Subse-
quently, it identifies critical functions among these fixing functions.
Then, the critical functions either undergo the Abstraction and
Normalization directly or the Program Rephrasing [46] beforehand.
Next, VMud extracts the original and rephrased signatures of these
critical functions. In the VM Detection stage, VMud reduces the de-
tection space by preprocessing the target project, similar to existing
works[53, 54]. Subsequently, the preprocessed software progresses
through the Signature Matching (I) and Program Rephrasing. If
necessary, the rephrased program enters the Signature Matching
(II). Finally, VMud outputs the identified vulnerable code clones.

3.2 Terminology and Definition

• Vulnerable Code Clones (VCCs): The vulnerable code clones
[25] are reused OSS components in the target project program
that contain vulnerabilities. Typically, the granularity of VCCs
can vary at the component, file, function, or fragment level. We
focus on detecting the general type of vulnerabilities which has
multiple fixing functions. Therefore, the granularity of VCCs in
our context can be a component, multiple files, multiple functions,
or multiple fragments in multiple functions.

• Critical Function: In VM, the different fixing functions con-
tribute diverse contexts for the vulnerability. The critical func-
tions should carry the most significant fixing information to
represent the vulnerability. We denote the critical functions as F .

Signature Generation VM Detection

Target Software

PreprocessingCritical Function Selection

Signature Generation

Program 
Rephrasing

Program 
Rephrasing

Vulnerable
Code Clones

Signature Matching (II)

Signature Matching (I)

Original Signatures

Rephrased Signatures

Signature 
Generation

Signature 
Generation

VM Patch
Commit

Figure 2: The Overview of VMud

• Signature. The signatures for functions F are denoted as X.
Each entry 𝑋 in the X corresponds to the signature for a func-
tion 𝑓 ∈ F .𝑋𝑜𝑟𝑔 denotes the original signature and𝑋𝑟𝑒𝑝 denotes
the rephrased signature for 𝑓 . We use 𝑋𝑃 to denote the vulner-
ability signature and 𝑋𝑉 to denote the patched signature. For
a target project function, we use 𝑋𝑇 to denote the signature. 𝑋
is a 3-tuple ⟨𝑆𝑦𝑛, 𝑆𝑒𝑚, 𝑆𝑒𝐸⟩ where 𝑆𝑦𝑛 consists of the syntac-
tic statements of the vulnerable (resp. patched) function, 𝑆𝑒𝑚
represents the semantic relationships of the vulnerable (patch)
function, 𝑆𝑒𝑒 represents the Semantic Enhanced (See) signature
of the vulnerable (resp. patched) function.

• Rephrased Program. Program Rephrasing is a type of Program
Transformation [46]. It involves changing one program into an-
other, a practice widely used in software engineering for tasks
like compilation, optimization, refactoring, and program synthe-
sis. Program transformation can be split into program translation,
where source and target languages differ, and program rephras-
ing, where both languages are the same. In our case, we employ
program rephrasing to unify the “idioms” in vulnerable code and
the target project, thus improving syntactic consistency.

3.3 Signature Generation

We gather the patches, consisting of added and deleted lines, de-
noted as 𝐶𝑎𝑑𝑑 and 𝐶𝑑𝑒𝑙 , correspondingly, and the corresponding
fixing commit ID of the VM from a given CVE.We generate the orig-
inal signatures 𝑋𝑜𝑟𝑔 and the rephrased signatures 𝑋𝑟𝑒𝑝 for the VM.

VMud starts by giving an input as a CVE ID and traces patches to
find the vulnerability-fixing commit in two ways. First, it searches
the CVE ID in open-source software repositories’ histories with
vulnerability keywords and filters out irrelevant commits. The ir-
relevant commits include reverted commits, merging commits, etc.
Second, it leverages the National Vulnerability Database (NVD) [38]
reference pages for silent fixes (i.e., commits without explicit CVE
ID mentions). This database provides valuable metadata and refer-
encing pages related to CVE fixes. Combining the two approaches,
we gather the patches, consisting of added lines and deleted lines,
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which are denoted as 𝐶𝑎𝑑𝑑 and 𝐶𝑑𝑒𝑙 , respectively, as well as their
corresponding fixing commit ID for the given CVE ID.

3.3.1 Critical Function Selection. VMud obtains the files before
and after change using the gathered commit ID. Then, it transforms
the files into the Abstract Syntax Tree (AST). Using the added lines
(𝐶𝑎𝑑𝑑 ) and the deleted lines (𝐶𝑑𝑒𝑙 ) for each file, VMud locates the
modified, added, and deleted functions, denoted as F ∗. To identify
the critical functions, VMud first generates a local call graph for the
target project which is directly related to the vulnerabilities. Then,
VMud utilizes the PageRank algorithm [51], a widely recognized
algorithm for assessing the significance of web pages in search
engine rankings. This choice stems from the analogy between the
structural characteristics of a call graph and the linkages among
web pages, which are both represented as directed graphs. In the
PageRank, a page has high rank if the sum of the ranks of its
backlinks is high. Similarly, functions with higher caller numbers
are likely to be central to vulnerability because they tend to receive
more vulnerable paths, which are more representative of the VMs.
Therefore, we identify critical functions using their connectivity
over the surrounding call graph. The PageRank score 𝑅(𝑢) for a
function is calculated as:

𝑅 (𝑢 )=𝑐
∑︁
𝑣∈𝐵𝑢

𝑅 (𝑣)
𝑁𝑣

+ 𝑐𝐸 (𝑢 ) (1)

where 𝑢 denotes the function, 𝐵𝑢 is the set of functions that calls to
𝑢, 𝑁𝑢 is the number of outgoing links from 𝑢, 𝑐 is a normalization
factor. 𝐸 (𝑢) is some vector over the functions as a source of rank.We
use the implementation from networkx [36] where the calculation
uses power iteration with a SciPy sparse matrix representation.

Instead of processing an entire call graph, the algorithm operates
on a local graph centered around the changed functions. Li et al.
[30] suggest that vulnerabilities often involve multiple functions
spanning an average depth of 2.8 invocation levels. Accordingly,
VMud focuses on callers and callees of F ∗ within a three-level
invocation depth. It captures the local graph, comprising invocation
relationships up to three levels of invocation depth, both upstream
and downstream. The algorithm outputs a list of significance scores
for each function in the local graph. We use a threshold variable
𝑡ℎ𝑝𝑟 to filter out the functions from F with low significance scores
and keep the rest as critical functions, denoted as F ′.

3.3.2 Program Rephrasing. Previous studies [25, 53, 54, 59] do not
consider the VCCs in different syntactic forms yet equivalent in
semantic meanings, leading to potential false negatives. To address
this, we employ program rephrasing to enrich the syntactic diversity
of vulnerability signatures. Program rephrasing, a form of program
transformation [46], reshapes code while preserving its semantic
meaning. This approach allows us to detect more VCCs manifesting
in diverse syntactic structures.We primarily focus on the equivalent
rephrasing in the C/C++ language. Specifically, we refer to the C11
language standard documentation[39], which is a comprehensive
manual illustrating the syntaxes and grammar of C/C++ in C11.
We search the documentation containing the “equivalent” keyword
and find 160 locations mentioning the keyword. The three authors
annotated and resolved disagreements. 27 were removed for not
containing equivalent rules, e.g., explaining language grammar,
comments equivalence. 133 instances were categorized into 15 types.

(a) Patch Code for CVE-2021-3618
1
2
3
4
5
6
7
8
9
10
11
12
13

// Retry operation to continue completion.
#define NGX_AGAIN      -2
// Current operation completed; proceed to next step.
#define NGX_DONE       -4
// Current operation successfully completed.                      
#define NGX_OK          0
ngx_int_t ngx_http_core_access_phase(ngx_http_request_t *r, 
ngx_http_phase_handler_t *ph)
{

ngx_int_t rc;...
if (rc == NGX_AGAIN || rc == NGX_DONE) {

return NGX_OK;
...

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16

ngx_int_t ngx_mail_read_command(ngx_mail_session_t *s, 
ngx_connection_t *c)
{...

ngx_int_t rc;
- if (rc == NGX_IMAP_NEXT || rc == NGX_MAIL_PARSE_INVALID_COMMAND){
+  if (rc == NGX_MAIL_PARSE_INVALID_COMMAND) {
+       s->errors++;
+       if (s->errors >= cscf->max_errors) {
+           ngx_log_error(NGX_LOG_INFO, c->log, 0,
+                         "client sent too many invalid commands");
+           s->quit = 1;
+       }
+       return rc;
+   }
+   if (rc == NGX_IMAP_NEXT) 

return rc; 

(b) A False Alarm in Target Project
Figure 3: Examples of Program Rephrasing

8 types (105 instances) are excluded as specific to library APIs,
e.g., setbuf function is equivalent to setvbuf when using _IOFBF.
We exclude goto equivalence (1 instance), primary expressions (6
instances), and pointers (5 instances) because of discouraged usage
and their equivalence after abstraction. As a result, we identified
four equivalence types (16 instances) summarized as follows:
• Macros. Existing works [25, 53, 54, 59] regard macro as either
function calls, parameters or local variables. Given a statement 𝑠
containing a macro, we rephrase it by expanding the macro at
the statement. For example, the statement containing the macro
MAX(a,b) would be rephrased to 𝑎 > 𝑏?𝑎 : 𝑏.

• Indirection Expression: ∗&𝑎 and & ∗ 𝑎 can be rephrased to 𝑎.
• Logical NOT Expression: !𝐸 can be rephrased to 0 = 𝐸 and !!𝐸
can be rephrased to 𝐸.

• Comparison Expression: 𝑎 >= 𝑏 can be rephrased to 𝑎 >

𝑏 | |𝑎 == 𝑏.
We transform the source code of the critical functions F ′ into

the Abstract Syntax Tree (AST) representation. Then, based on
the above rephrasing rules, we transform it into the semantically
equivalent form according to the rules on the AST and convert it
back to source code. The rephrased functions are denoted as F ′

𝑟𝑒𝑝 .

Example 3.1. Figure 3 illustrates an instance of program rephras-
ing. In Figure 3(a), we depict a patch addressing the vulnerability
in ngx_mail_read_command identified in CVE-2021-3618. Figure
3(a) presented a false alarm reported by VUDDY [25], MVP [59],
Movery [54] and V1Scan [53]. The vulnerable code snippet com-
prises a variable declaration statement (Line 4), an if statement
(Line 5), and a return statement (Line 16). Notably, the if statement
incorporates two comparison expressions, a frequently encountered
construct, each involving a macro. Existing tools [25, 53, 54, 59]
abstract these macros into local variables, resulting in false alarms.
In contrast, our tool (VMud) replaces the macros with their cor-
responding expressions. For instance, the macro NGC_DONE gets
transformed into the number literal -4.
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3.3.3 Signature Generation. VMud generate the original signatures
X𝑜𝑟𝑔 for functions F ′ and rephrased signatures X𝑟𝑒𝑝 for F ′

𝑟𝑒𝑝 . It
consists of Program Slicing, Abstractions and Normalization, and
Semantic Enhanced Signature Generation.

Program Slicing. VMud generates the Program Dependence
Graph (PDG) for the critical functions F . It utilizes the deleted lines
𝐶𝑑𝑒𝑙 and added lines 𝐶𝑎𝑑𝑑 and conducts forward and backward
slicing on the PDG similar to MVP[59]. Specifically, VMud first
perform backward slicing for 𝐶𝑑𝑒𝑙 and 𝐶𝑎𝑑𝑑 in the PDG. i.e., for
any of the statement 𝑠 in 𝐶𝑑𝑒𝑙 and 𝐶𝑎𝑑𝑑 , it scans backforwardly
and collects any preceding statements that have data or control
dependencies over 𝑠 . Second, VMud conducts forward slicing 𝐶𝑑𝑒𝑙
and 𝐶𝑎𝑑𝑑 in the PDG. For an assignment statement, it collects the
following statements of 𝑠 on the PDG. For a conditional statement
or function call statement, it searches backwardly for initial vari-
able declarations of the variables used in 𝑠 , and then collects the
following statements on the PDG. For a return statement, it directly
outputs 𝑠 as it reaches the end of the PDG.

Abstraction and Normalization. The reused code may un-
dergo parameter renaming, variable renaming, or code style changes.
We abstract and normalize the original functions 𝑓𝑜𝑟𝑔 as well as
rephrased functions 𝑓𝑟𝑒𝑝 . For each statement in 𝑆𝑦𝑛, 𝑆𝑒𝑚, and 𝑆𝑒𝑒 ,
we apply abstraction and normalization. We abstract function pa-
rameters, type declaration, local variables, function calls, and string
literals in the code into “FPARAM”, “DTYPE”, “LVAR”, “FUNC-
CALL”, and “STRING”, respectively[25]. In string literals, we retain
format specifiers which have semantic meaning for specific place-
holders. For example, we abstract “protos=%s” to “%s”. We also
remove comments, braces, spaces, and tab characters [59].

Semantic Enhanced Signature Generation. 𝑆𝑦𝑛 is a list com-
prising of the code statements 𝑠 in the function, denoted as ⟨𝑠⟩.
Each statement is a 2-tuple ⟨𝑙, 𝑡⟩, where 𝑙 is the line number and
𝑡 is the statement’s text. 𝑆𝑒𝑚 includes the semantic relationship
of the statements, denoted as a 3-tuple ⟨𝑠1, 𝑠2, 𝑡𝑦𝑝𝑒⟩. The type can
either be 𝑐𝑜𝑛𝑡𝑟𝑜𝑙 or 𝑑𝑎𝑡𝑎 dependency. Existing work [59] compares
the similarity based on 𝑆𝑦𝑛 and 𝑆𝑒𝑚. Differently, VMud creates
Semantic Enhanced (SeE) signature 𝑆𝑒𝑒 to obtain the Contextual
Equivalent Statements Map (see Section 3.4.3).

To this end, VMud extract the semantic enhanced sets 𝑆𝑒𝑒 for
vulnerability signatures 𝑉 and patched signatures 𝑃 . Specifically,
for each statement 𝑠 ∈ 𝑆𝑦𝑛, we iterate the entries in 𝑆𝑒𝑚. For each
entry ⟨𝑠1, 𝑠2, 𝑡𝑦𝑝𝑒⟩, if 𝑠 either equals 𝑠1 or 𝑠2, we put ⟨𝑠1, 𝑠2, 𝑡𝑦𝑝𝑒⟩
into 𝑆𝑒𝑒 . 𝑋𝑠𝑟𝑐 can either be 𝑋𝑜𝑟𝑔 or 𝑋𝑟𝑒𝑝 .

𝑆𝑒𝑒 = {⟨𝑙, ⟨𝑠𝑖 , 𝑠 𝑗 , 𝑡𝑦𝑝𝑒 ⟩⟩ | ∀𝑠.𝑙 ∈ 𝑋𝑠𝑟𝑐 .𝑆𝑦𝑛,

(𝑠𝑖 , 𝑠 𝑗 , 𝑡𝑦𝑝𝑒 ) ∈ 𝑋𝑠𝑟𝑐 .𝑆𝑒𝑚, 𝑖 𝑓 𝑠.𝑙 ∈ {𝑠𝑖 .𝑙, 𝑠 𝑗 .𝑙 }}
(2)

To accelerate the comparison, we leverage the MD5 hash to
compute the hash value for each statement 𝑠 after abstraction and
normalization. Finally, we obtain ⟨𝑆𝑦𝑛, 𝑆𝑒𝑚, 𝑆𝑒𝑒⟩ for vulnerable
function𝑉 and patched functions 𝑃 regarding the original signature
𝑋𝑜𝑟𝑔 and the rephrased signature 𝑋𝑟𝑒𝑝 .

3.4 VM Detection

VMud detects the VM in the target project using 𝑋𝑜𝑟𝑔 and 𝑋𝑟𝑒𝑝 .

3.4.1 Preprocessing. We conduct preprocessing for efficient detec-
tion. Similar to search space reduction in Movery[54] and code

classification of reused and vulnerable code in V1Scan[53], the
purpose of the preprocessing is to reduce the search space, focus
on relevant clones, and filter out the functions that are less likely to
be code clones. We leverage SAGA[27], an effective clone detection
tool. We conduct snippet-level clone detection with the minimum
token of snippet set as 20 token by default to ensure high recall
rates. Specifically, the length of the snippet is determined by the
number of tokens. SAGA finds a cloning snippet if there is one
snippet equal in functions from F𝑠𝑟𝑐 and F𝑡𝑔𝑡 . Finally, we obtain
the functions that may contain the VCCs, denoted as F𝑡𝑔𝑡 .

3.4.2 Signature Generation. Given input as candidate functions
from target project F𝑡𝑔𝑡 , we generate a signature for each function
and its semantically equivalent functions, denoted as 𝑋𝑡𝑔𝑡_𝑜𝑟𝑔 and
𝑋𝑡𝑔𝑡_𝑟𝑒𝑝 . For each 𝑋𝑡𝑔𝑡_𝑜𝑟𝑔 and 𝑋𝑡𝑔𝑡_𝑟𝑒𝑝 , we generate a syntactic
signature 𝑆𝑦𝑛, semantic signature 𝑆𝑒𝑚, and semantic enhanced
signature 𝑆𝑒𝑒 following same signature generation in Section 3.3.3.

3.4.3 Signature Matching. The signature matching process com-
prises two phases (see Figure 2). In Phase I, the signatures 𝑋𝑡𝑔𝑡_𝑜𝑟𝑔
of target project functions are matched against the original vulnera-
bility signatures 𝑋𝑜𝑟𝑔 . In Phase II, the Rephrased target signatures
𝑋𝑡𝑔𝑡_𝑟𝑒𝑝 are comparedwith rephrased vulnerability signatures𝑋𝑟𝑒𝑝 .
In each phase, VMud evaluates syntactic similarity (𝑋𝑡𝑔𝑡 .𝑆𝑦𝑛 vs.
𝑋𝑉
𝑠𝑟𝑐 .𝑆𝑦𝑛 and 𝑋𝑃

𝑠𝑟𝑐 .𝑆𝑦𝑛) as well as semantic similarity (𝑋𝑡𝑔𝑡 .𝑆𝑒𝑚

vs. 𝑋𝑉
𝑠𝑟𝑐 .𝑆𝑒𝑚 and 𝑋𝑃

𝑠𝑟𝑐 .𝑆𝑒𝑚), where 𝑋𝑠𝑟𝑐 can be either 𝑋𝑜𝑟𝑔 or 𝑋𝑟𝑒𝑝
and 𝑋𝑡𝑔𝑡 can be either 𝑋𝑡𝑔𝑡_𝑜𝑟𝑔 or 𝑋𝑡𝑔𝑡_𝑟𝑒𝑝 . We refine the similarity
assessment using 𝑋𝑡𝑔𝑡 .𝑆𝑒𝑒 , 𝑋𝑉

𝑠𝑟𝑐 .𝑆𝑒𝑒 , and 𝑋𝑃
𝑠𝑟𝑐 .𝑆𝑒𝑒 (see Eq. 7). We

incorporate the Contextual Equivalent Statement Map (CESM) to
ensure that only contextually and semantically equivalent state-
ments contribute to the similarity metric.

We run Phase I and Phase II under four conditions. The rationale
is rooted in the principle that a signature of a VCC should be sim-
ilar to the vulnerable function signature while different from the
patched function signature. False negatives occur when the target
function signature is different from the vulnerable function’s signa-
ture. Therefore, Phase II is executed under the condition that the
target function signature 𝑋𝑡𝑔𝑡 aligns with the vulnerable function
signature 𝑋𝑉

𝑜𝑟𝑔 while differing from the patched function signature
𝑋𝑃
𝑜𝑟𝑔 . We describe the conditions using the following rules:

• RunPhase I: If sim(𝑋𝑡𝑔𝑡_𝑜𝑟𝑔, 𝑋𝑉
𝑜𝑟𝑔) is true and sim(𝑋𝑡𝑔𝑡_𝑜𝑟𝑔, 𝑋𝑃

𝑜𝑟𝑔)
is false, report a positive vulnerability alarm for the target func-
tion and skip Phase II.

• RunPhase I: If sim(𝑋𝑡𝑔𝑡_𝑜𝑟𝑔, 𝑋𝑉
𝑜𝑟𝑔) is true and sim(𝑋𝑡𝑔𝑡_𝑜𝑟𝑔, 𝑋𝑃

𝑜𝑟𝑔)
is true, report a negative result for the target function, skipPhase II.

• RunPhase I: If sim(𝑋𝑡𝑔𝑡_𝑜𝑟𝑔, 𝑋𝑉
𝑜𝑟𝑔) is false, thenRunPhase II:

- If sim(𝑋𝑡𝑔𝑡_𝑟𝑒𝑝 , 𝑋𝑉
𝑟𝑒𝑝 ) is true and sim(𝑋𝑡𝑔𝑡_𝑟𝑒𝑝 , 𝑋𝑃

𝑟𝑒𝑝 ) is false,
report a positive vulnerability alarm for the target function.
- If sim(𝑋𝑡𝑔𝑡_𝑟𝑒𝑝 , 𝑋𝑉

𝑟𝑒𝑝 ) is true and sim(𝑋𝑡𝑔𝑡_𝑟𝑒𝑝 , 𝑋𝑃
𝑟𝑒𝑝 ) is true,

report a negative result for the target function.

The similarity function sim is defined in Eq. 3. Literally, it means
that the signature of the target function should be syntactically
(i.e., syn()) and semantically (i.e., sem()) similar to the source
function (i.e., V or P). Meanwhile, the deleted statements at the
source function should exist in the target function (i.e., exist()).
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The similarity function sim is formalized in Eq. 3. It denotes that
the target function’s signature 𝑋𝑡𝑔𝑡 should have both syntactic and
semantic similarity to the vulnerability function 𝑋𝑠𝑟𝑐 . Additionally,
it also requires that any statements deleted in the source function
should be present in the target function.

sim(𝑋𝑡𝑔𝑡 , 𝑋𝑠𝑟𝑐 ) = syn(𝑋𝑡𝑔𝑡 , 𝑋𝑠𝑟𝑐 )
& sem(𝑋𝑡𝑔𝑡 , 𝑋𝑠𝑟𝑐 )
& exist(𝑋𝑡𝑔𝑡 )

(3)

The syn() function measures the syntactic similarity between
the syntax signatures of𝑋𝑡𝑔𝑡 .𝑆𝑦𝑛 and𝑋𝑠𝑟𝑐 .𝑆𝑦𝑛. The sem() function
evaluates their semantic similarity between𝑋𝑡𝑔𝑡 .𝑆𝑒𝑚 and𝑋𝑠𝑟𝑐 .𝑆𝑒𝑚.
The exist() function verifies the presence of deleted statements
𝑆𝑑𝑒𝑙 from𝑋𝑠𝑟𝑐 in the target project𝑋𝑡𝑔𝑡 . They are defined as follows:

syn(𝑋𝑡𝑔𝑡 , 𝑋𝑠𝑟𝑐 ) =1 if
| cesm.keys |
𝑋𝑠𝑟𝑐 .𝑆𝑦𝑛

> 𝑡ℎ𝑠𝑦𝑛,

and 0 otherwise
(4)

sem(𝑋𝑡𝑔𝑡 , 𝑋𝑠𝑟𝑐 ) = 1 if
𝑆𝑒𝑚𝑝𝑓 𝑡 ∩ 𝑆𝑒𝑚𝑝𝑓 𝑣

𝑆𝑒𝑚𝑝𝑓 𝑣

> 𝑡ℎ𝑠𝑒𝑚 and 0 otherwise

(5)

exist(𝑋𝑡𝑔𝑡 ) = 1 if ∀𝑠 ∈ 𝑆𝑑𝑒𝑙 , 𝑠 ∈ 𝑋𝑡𝑔𝑡 .𝑆𝑦𝑛 and 0 otherwise (6)

The computation of syn() involves generating the Contextual
Equivalent Statements Map (CESM) through the CESM() function,
as defined in Eq. 7. This function produces a CESM output denoted
as a tuple ⟨𝑠 𝑗 , ⟨𝑠𝑖 ⟩⟩, where 𝑠 𝑗 represents a statement in 𝑋𝑠𝑟𝑐 and 𝑠𝑖
denotes a statement in 𝑋𝑡𝑔𝑡 . It implies that for a given statement 𝑠 𝑗
in 𝑋𝑠𝑟𝑐 , there are several statements 𝑠𝑖 in 𝑋𝑡𝑔𝑡 that are contextually
equivalent to 𝑠 𝑗 . Unlike traditional equality comparisons (i.e., using
= or ==), the CESM() function determines the equivalence between
statements based on their contextual equivalence.

For any given 𝑠𝑖 ∈ 𝑋𝑡𝑔𝑡 and 𝑠 𝑗 ∈ 𝑋𝑠𝑟𝑐 , VMud first obtains se-
mantic relationships. i.e., 𝑋𝑡𝑔𝑡 .𝑆𝑒𝑒 [𝑠𝑖 .𝑙] for 𝑠𝑖 and 𝑋𝑠𝑟𝑐 .𝑆𝑒𝑒 [𝑠 𝑗 .𝑙] for
𝑠 𝑗 . It then computes the intersection of these sets and divides it
by 𝑋𝑠𝑟𝑐 .𝑆𝑒𝑒 [𝑠 𝑗 .𝑙]. If the intersection ratio exceeds the threshold
𝑡ℎ𝑐𝑒 , VMud considers the two sets as contextually similar, thus con-
cluding that the 𝑠 𝑗 and 𝑠𝑖 are contextually equivalent. cesm.keys
denotes the keys of the cesm output (see cesm.keys in Eq. 4).

cesm = CESM(𝑋𝑡𝑔𝑡 , 𝑋𝑠𝑟𝑐 ) = {⟨𝑠 𝑗 , ⟨𝑠𝑖 ⟩⟩ | ∀𝑠𝑖 ∈ 𝑋𝑡𝑔𝑡 , 𝑠 𝑗 ∈ 𝑋𝑠𝑟𝑐 ,

𝑋𝑡𝑔𝑡 .𝑆𝑒𝑒 [𝑠𝑖 .𝑙 ] ∩𝑋𝑠𝑟𝑐 .𝑆𝑒𝑒 [𝑠 𝑗 .𝑙 ]
𝑋𝑠𝑟𝑐 .𝑆𝑒𝑒 [𝑠 𝑗 .𝑙 ]

> 𝑡ℎ𝑐𝑒 }
(7)

In computing sem(), we utilize partial functions, which are a
subset of statements from 𝑋𝑠𝑟𝑐 or 𝑋𝑡𝑔𝑡 . Specifically, with the con-
textual equivalent statements identified from the target and source
functions (see Eq. 7), our goal is to identify the subset of statements
within the target function that exhibits the strongest semantic rela-
tionship with the source function. To this end, it involves the search
problem where for each entry ⟨𝑠 𝑗 , ⟨𝑠𝑖 ⟩⟩, we need to find an optimal
statement 𝑠𝑖 from ⟨𝑠𝑖 ⟩ for each 𝑠 𝑗 , such that the semantic relation-
ship between 𝑋𝑡𝑔𝑡 and 𝑋𝑠𝑟𝑐 is maximized. We use the argmax()
function denoted in Eq. 8.

𝑎𝑟𝑔𝑚𝑎𝑥 (
𝑆𝑒𝑚𝑝𝑓 𝑡 ∩ 𝑆𝑒𝑚𝑝𝑓 𝑣

𝑆𝑒𝑚𝑝𝑓 𝑣

) (8)

Table 3: Statistics of Our Collected VM

Fixing Functions (#) VM (#) Percentage of VM
2 333 41.11%

3 146 18.02%

4 97 11.98%

5 56 6.91%

6 42 5.19%

7 32 3.95%

8 20 2.47%

9 10 1.23%

10 14 1.73%

>10 60 7.41%

Total 810 100.00%

𝑆𝑒𝑚𝑝𝑓 𝑠 denotes the semantic signature of the partial function
of the source function (see Eq. 9). 𝑆𝑦𝑛𝑝𝑓 𝑡 and 𝑆𝑒𝑚𝑝𝑓 𝑡 denote the
syntactic and semantic of the partial function of the target function.

𝑆𝑒𝑚𝑝𝑓 𝑠 = {⟨𝑠1, 𝑠2, 𝑡𝑦𝑝𝑒 ⟩ | 𝑠1 𝑜𝑟 𝑠2 𝑖𝑛 cesm.keys}
𝑆𝑦𝑛𝑝𝑓 𝑡 = {𝑠𝑖 | ∃𝑠𝑖 ∈ cesm[𝑠 𝑗 ], ∀𝑠 𝑗 ∈ cesm.keys}
𝑆𝑒𝑚𝑝𝑓 𝑡 = {𝑡𝑢𝑝 | 𝑡𝑢𝑝.𝑠1 𝑜𝑟 𝑡𝑢𝑝.𝑠2 ∈ 𝑆𝑦𝑛𝑝𝑓 𝑡 , ∀𝑡𝑢𝑝 ∈ 𝑆𝑒𝑚𝑡𝑔𝑡 }

(9)

4 Implementation

We implemented VMud using 1,900 lines of Python code. To gener-
ate the call graph for the project before vulnerability fixing commits,
we utilized Doxygen [9]. Due to Doxygen’s scalability limit in an-
alyzing large amounts of files, we prioritized neighboring source
code files based on their path relativity to the changed files in the
vulnerability fixing commit. Then, we limited Doxygen’s analysis
input to a maximum of 5,000 files. The threshold score of PageRank
[51], denoted as 𝑡ℎ𝑝𝑟 , was set at 0.018 based on our sensitivity eval-
uation (see Section 5.5). We extracted patch statements using the git
show command and leveraged Joern [42] to generate a comprehen-
sive code property graph, including Abstract Syntax Trees, Control
Flow Graphs, and Program Dependence Graphs. We employed the
GCC compiler [13] for program rephrasing on macros.

To collect CVEs, we accessed the official API [38] in 2023, con-
taining the data in the recent decade. We obtained corresponding
fixing commits on 1,782 CVEs, filtering out 972 whose fixing func-
tions are less than 2. As a result, we obtained 810 VM with 4,551
fixing functions. The statistics of the VM are presented in Table 3.

5 Evaluation

We evaluate VMud based on the following research questions.

• RQ1. Effectiveness Evaluation. How is the effectiveness of
VMud compared to the state-of-the-art tools?

• RQ2. Robustness Evaluation. How is the robustness VMud in
detecting VM?

• RQ3. Ablation Study. How does each component contribute to
VMud’s effectiveness?

• RQ4. Threshold Sensitivity. How do the thresholds contribute
to the effectiveness of VMud?

• RQ5. Performance Evaluation.How is the efficiency of VMud?
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Figure 4: Number of Files and Lines of Code (LOC) on Our

Evaluated Dataset

5.1 Setup

Target Project Selection.We established three criteria for project
selection. Firstly, projects should be written in C/C++. Secondly,
they should be popular in popularity and span diverse domains.
Thirdly, they should be actively maintained. Subsequently, we col-
lected 972 projects from GitHub by querying the Top 1000 popular
projects ranked by their stars[16]. These projects encompass areas
such as databases, operating systems, image processing, reverse
development, etc. Figure 4 depicts the number of files and lines of
code (LOC) across our selected projects using box plots.

Comparison Tools.We chose four clone-based tools, namely
Vuddy [25], MVP [59], Movery [54], and V1Scan [53], recognized
as state-of-the-art in VCC detection. Additionally, we included two
learning-based tools, SySeVR [32] and DeepDFA [43], to assess their
effectiveness compared with VMud. We used the default configura-
tions outlined in the original papers for all selected tools.

Ground Truth Construction. To identify VM comprehensively,
we executed all tools on the target projects. Subsequently, we con-
ducted manual validation on all positive results to confirm the
presence of VM. This process involved two authors independently
classifying each positive result. i.e., whether it is a true positive or a
false positive. Any discrepancies were resolved through discussion,
as well as a third author consulted if necessary. Two annotators and
one mediator have over three years’ expertise in security and C/C++
development. Two annotators have experiences in submitting CVEs
previously. The validation process took 3 rounds. In the first and
second rounds, they had 16 and 5 disagreements, steming from
different understanding in vulnerability context and triggering con-
ditions. We use Cohen’s Kappa coefficient to measure agreement,
and it reached 0.951. This process led to the creation of a ground
truth dataset containing 329 confirmed true VM.

Configuration andMetrics.We used a machine equipped with
a 2.10GHz Intel Xeon processor and 256GB of RAM. We employed
true positives (TP), false positives (FP), false negatives (FN), preci-
sion, recall, and F1-Score [52] to measure the tools’ effectiveness
and accuracy. Specifically, we define one TP when the tool reports a
vulnerability warning due to a match with at least one of its fixing
functions of a VM. We record one FP when the tool reports false
vulnerability warnings based on matching its fixing functions to
one VM. We denote one FN when the project contains a VM, but
the tool fails to identify any of its matching functions as vulnerable.

RQ Setup. To study RQ1, we ran all tools on our ground truth
dataset (see Section 4). However, As Movery does not provide

open-source code for signature generation, we intersected our col-
lected CVEs with their dataset to ensure a fair evaluation, which
resulted in a Diminished VM Dataset of 144 VM signatures. There-
fore, Movery is not included in the comparisons shown in Figure
5 and Figure 6. Furthermore, we assessed each clone-based tool
under two settings to explore the relationship between fixing func-
tions. A superscript ∗ denotes a tool reporting a VM upon matching
any fixing function signature (i.e., the matching-one-function-in-
all approach), while a superscript & denotes reporting a VM only
when matching all fixing function signatures (i.e., the matching-all-
functions approach). Additionally, we compared two learning-based
tools using precision and recall w.r.t vulnerable functions. To study
RQ2, we observed VMud’s robustness by evaluating its accuracy
across VM with varying numbers of fixing functions. To inves-
tigate RQ3, an ablation study was conducted to assess VMud’s
effectiveness in critical function selection (w/o CFS), and semantic
equivalence (w/o SE). The semantic equivalence includes program
rephrasing (w/o PR), and contextual equivalent statement mapping
(w/o CESM). Besides, we also created ablated versions in critical
function selection by replacing PageRank with either pre-defined
heuristics (i.e., matching all changed functions in one of the invoca-
tion paths) and HITS algorithm (i.e., a link analysis algorithm that
usually used for rating web pages) [50]. RQ4 involved evaluating
the sensitivity of thresholds in VMud, while RQ5 focused on its
overall performance.

5.2 Effectiveness Evaluation (RQ1)

We evaluate the accuracy and effectiveness of VMud with the state-
of-the-arts using our ground truth and analyze the inaccuracies. Ad-
ditionally, we compare VMud against learning-based approaches.

5.2.1 Accuracy Results. Table 4 presents the effectiveness and ac-
curacy results of VMud and the clone-based tools on our ground
truth. Overall, VMud achieves a precision, recall, and F1-Score of
0.84. Comparatively, Vuddy∗ achieves a highest precision of 0.87
but only reaches a recall of 0.51. Movery∗ reaches a highest re-
call of 0.75 and an F1-Score of 0.66. Notably, VMud outperforms
Movery with an F1-Score increase of 30.30%. Additionally, using
the matching-all-functions approach (denoted by &) significantly
boosts precision while lowering recall, which is impractical in most
scenarios.

Accuracy Per Project We calculated the accuracies of each
tool’s results on every project containing VM. Figure 5 displays
the distribution of projects based on precision, recall, and F1-Score
thresholds. The metrics with NaNs (i.e., either TP+FP=0 or TP+FN
=0) are not included. Notably, VMud detects more projects with
precision ranging from 0.2 to 0.9 compared to other tools. It reports
2 fewer projects than Vuddy and V1Scan with a precision of 1.0.
Additionally, VMud demonstrates significant advantage across the
evaluated projects in terms of recall and F1-Score, surpassing other
tools in any recall or F1-Score values.

5.2.2 Effectiveness Results. VMud identified 275 true VM across
84 projects where developers confirmed 42 VM from 25 projects,
28 VM from 20 projects have been resolved, and 14 VM from 5
projects await resolution in the next version. In contrast, Vuddy
detected 168 true VM across 63 projects, MVP detected 226 true
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Figure 5: The Numbers of Projects w.r.t the Precision, Recall, and F1-Score and Above
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Figure 6: The Number of True Positives, False Positives, and False Negatives Detected by VMud and Clone-based Tools

VM across 74 projects, Movery detected 82 true VM across 36
projects, and V1Scan detected 113 true VM across 43 projects.
Besides, we selected signatures of the critical functions identified
by VMud, excluded signatures of non-critical functions, and applied
them in those tools. The results are reported in Section 2.2(b). Table
5 details the projects with confirmed or resolved VM of VMud.
Additionally, 5 VM are assigned with 5 CVE identifiers.

Effectiveness Per Project Figure 6 illustrates the number of
true positives (TPs), false positives (FPs), and false negatives (FNs)
detected by VMud and clone-based tools across projects with VM.
To equally compare effectiveness per project, we choose projects
that contain at least one TP, FP, or FN in the results across all four
tools. The project Id. corresponds to the project names listed in
the appendix table (see Table 9). We excluded Movery due to the
diminished VM dataset. Specifically, VMud identifies more correct

VM(i.e. identifies more true positives) than any other tool in 29
projects, accounting for 87.9% of the projects with VM. Moreover,
VMud reports fewer false positives than other tools in 19 projects
and fewer false negatives in 14 projects, representing 57.6% and
42.4% of the projects with VM, respectively.

5.2.3 Comparison with Learning-based Approaches. We conducted
a comparative analysis of VMud’s accuracy with DeepDFA [43] and
SySeVR [32], two leading learning-based approaches. We directly
utilized the trained models of DeepDFA and SySeVR on their respec-
tive datasets and used our ground truth as the testing dataset. Table
6 presents their results. The precision and recall metrics in their
context are measured concerning reporting vulnerable functions,
which differs from our definition. Therefore, we present VMud’s
precision and recall based on their definition to facilitate compari-
son, denoted by a superscript 𝐹 . Consequently, SySeVR achieves
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Table 4: Effectiveness and Accuracy Results of VMud and

Clone-Based Tools (∗ denotes the Matching-one-function-

in-all Approach and & Denotes the Matching-all-functions

Approach)

Dataset Tool TP
(#)

FP
(#)

FN
(#) Precision Recall F1-

Score

Complete
VM Dataset

Vuddy∗ 168 25 161 0.87 0.51 0.64
MVP∗ 226 163 103 0.58 0.69 0.63
V1Scan∗ 113 47 216 0.71 0.34 0.46

VMud ∗ 275 51 54 0.84 0.84 0.84

Vuddy& 47 2 282 0.96 0.14 0.25

MVP& 48 3 281 0.94 0.15 0.25

V1Scan& 32 1 297 0.97 0.10 0.18

VMud & 59 2 270 0.97 0.18 0.30

Diminished
VM Dataset

Movery∗ 82 56 27 0.59 0.75 0.66

VMud ∗ 90 10 19 0.90 0.83 0.86

Movery& 17 3 94 0.85 0.16 0.26

VMud & 29 1 80 0.97 0.27 0.42

Table 5: Target Projects with the Confirmed or Fixed VM

Target Project TP
(#)

FP
(#)

FN
(#) Precision Recall Confirmed

(#)
Fixed
(#)

seemoo-lab/
nexmon 4 0 2 1.00 0.67 4 0

panda-re/panda 4 0 1 1.00 0.80 4 0
rizinorg/rizin 6 0 1 1.00 0.86 3 3
Cisco-Talos/
pyrebox 3 0 1 1.00 0.75 3 0

freebsd/freebsd-src 4 1 0 0.80 1.00 2 2
civetweb/civetweb 3 0 0 1.00 1.00 2 2
nodemcu/nodemcu-
firmware 2 0 0 1.00 1.00 2 2

radareorg/radare2 2 0 0 1.00 1.00 2 2
gpac/gpac 2 0 0 1.00 1.00 2 2
catboost/catboost 2 0 0 1.00 1.00 2 0
TelegramMessenger/
Telegram-iOS 4 0 0 1.00 1.00 2 2

ravynsoft/ravynos 4 0 0 1.00 1.00 1 1
mridgers/clink 1 0 0 1.00 1.00 1 1
eduard-permyakov/
permafrost-engine 1 0 0 1.00 1.00 1 1

ntop/PF_RING 1 0 0 1.00 1.00 1 0
wireshark/wireshark 1 0 0 1.00 1.00 1 1
libretro/RetroArch 1 1 0 0.50 1.00 1 1
ApsaraDB/PolarDB-for-
PostgreSQL 2 0 0 1.00 1.00 1 1

momotech/MLN 1 0 0 1.00 1.00 1 1
slact/nchan 1 0 0 1.00 1.00 1 1
Proxmark/proxmark3 1 0 0 1.00 1.00 1 1
sdlpal/sdlpal 1 0 0 1.00 1.00 1 1
openzfs/zfs 1 0 0 1.00 1.00 1 1
ImageMagick/
ImageMagick 1 1 0 0.50 1.00 1 1

alibaba/tengine 1 1 0 0.50 1.00 1 1
Total 54 4 5 0.93 0.92 42 28

Table 6: Accuracy Results of Learning-Based Approaches

Tool Precision𝐹 Recall𝐹 F1-Score𝐹

SySeVR 0.58 0.05 0.10
DeepDFA 0.68 0.81 0.74
VMud 0.83 0.79 0.81

a precision of 0.58 and a recall of 0.05, while DeepDFA achieves a
precision of 0.68 and a recall of 0.81. In comparison, VMud achieves
a precision of 0.83 a recall of 0.79, and an F1-Score of 0.81, marking
a 7.5% F1-Score improvement over DeepDFA.

5.2.4 Inaccuracy Analysis. False Positives Analysis VMud gen-
erated 51 false positives, caused by two primary factors. Firstly,

Table 7: VMud’s Robustness in Detecting VM with Multiple

Numbers of Fixing Functions (GT Denotes the Number of

VM and its Ratio in the Ground Truth Dataset)

Fixing
Function
(#)

GT (#, %) TP (#) FP (#) FN (#) Precision Recall F1-
Score

2 152, 46.2% 134 15 18 0.90 0.88 0.89

3 38, 11.6% 33 11 5 0.75 0.87 0.80
4 45, 13.7% 35 8 10 0.81 0.78 0.80
5 22, 6.7% 19 4 3 0.83 0.86 0.84
6 12, 3.6% 9 0 3 1.00 0.75 0.86
7 19, 5.8% 18 5 1 0.78 0.95 0.81
8 5, 1.5% 5 3 0 0.63 1.00 0.77
9 4, 1.2% 1 0 3 1.00 0.25 0.40
10 4, 1.2% 3 1 1 0.75 0.75 0.75
>10 28, 8.5% 18 4 10 0.82 0.64 0.72
Total 329 275 51 54 - - -

some statements have limited semantic relationships, such as func-
tion invocations lacking input parameters (e.g., invoke()) or return
statements with literals (e.g., return 0). In these cases, matching se-
mantic similarity is less effective than matching syntactic similarity.
Consequently, VMud relies more heavily on syntactic similarity
despite their contextual differences, resulting in 29 false positives.
Secondly, for vulnerable functions already been patched, down-
stream developers proceeded with customizations by altering the
patched statements. Typically, the patched statements are concise,
comprising a small number of statements. Consequently, a single al-
ternation can cause a significant drop in similarity with the original
patched statements, leading to 22 false positives.

False Negatives Analysis. VMud encountered 54 false nega-
tives, primarily due to three reasons. First, in the preprocessing
(see Section 3.4.1), we utilized a fragment-level clone detection tool
SAGA[27]. While this preprocessing helped eliminate numerous
unnecessary detections while preserving VCCs in most cases, it re-
sulted in 4 false negatives. Secondly, VMud labels a vulnerable func-
tion as safe if its signature matches both the vulnerable and patched
functions from the VM. However, certain patches are trivial, leading
to a significant resemblance in the signatures of vulnerable and
patched functions. The high resemblance causes VMud to mistak-
enly categorize the vulnerable function as the patched, classifying
the vulnerable function as safe, which results in 22 false negatives.
Thirdly, similar to false positives caused by downstream customiza-
tions, there are instances where vulnerable functions have been
patched, but downstream customizations have affected the vulnera-
ble statements. It causes the functions to exhibit lower similarity to
the vulnerable function signature, resulting in 28 false negatives.

5.3 Robustness Evaluation (RQ2)

To assess VMud’s robustness, we examine its accuracy across VM
with varying numbers of fixing functions. Table 7 depicts VMud’s
precision and recall concerning VM with the number of fixing
functions. VMud achieves maximum precision and recall of 1.00 for
VM and a minimum precision of 0.63 and recall of 0.25 for VM with
different fixing function numbers. Nevertheless, certain categories
may have a limited number of VM, which could impact the accuracy
assessment. Overall, VMud maintains an F1-Score over 0.8 across
fixing function numbers from 2 to 7, indicating its robustness for
VM with different number of fixing functions.



VMud: Detecting Recurring Vulnerabilities with Multiple Fixing Functions CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA

Table 8: Results of the Ablation Study (CFS denotes the Criti-

cal Function Selection, SE denotes the semantic equivalence,

PR denotes the Program Rephrasing, and CESM denotes the

Contextual Equivalent Statement Matching)

TP (#) FP (#) FN (#) Precision Recall ΔPrecision ΔRecall
w/o CFS 305 216 24 0.59 0.93 -0.25 0.09
w/o SE 187 44 142 0.81 0.57 -0.03 -0.27
w/o PR 249 46 80 0.84 0.76 -0.00 -0.08
w/o CESM 270 81 59 0.77 0.82 -0.07 -0.02
w/ Rules 210 71 119 0.75 0.64 -0.09 -0.20
w/ HITS 265 95 64 0.74 0.81 -0.10 -0.03

5.4 Ablation Study (RQ3)

To assess the impact of key components in VMud, we conducted
the ablation study. Table 8 summarizes the effectiveness results of
the ablated versions. Notably, the Signature Matching in Phase II
relies on the rephrased signature generated by Program Rephrasing.
Therefore, in the ablated version VMud w/o PR, both the Signature
Matching in Phase II and Program Rephrasing are jointly removed.
The ablated versions of VMud show decreases in precision and
recall compared to the original VMud. Specifically, VMud without
Critical Function Selection experiences a precision drop of 0.25,
with a 0.09 increase in recall. The increase in recall is due to the
inclusion of recovered functions thus helping in VM detection. For
VMud without Program Rephrasing and Signature Matching in
Phase II, the precision remains unchanged, and recall drops by
0.09. For VMud without Contextually Equivalent Statements Map
(CESM), the precision drops by 0.07, with a 0.02 decrease in recall.
The results indicate that the three components of VMud all con-
tribute to the effectiveness of VMud. For VMud without semantic
equivalence (i.e., without program rephrasing and contextual equiv-
alent statement mapping), it obtains a precision decrease of 0.03
and recall decrease of 0.27. Additionally, replacing PageRank in
critical function selection with heuristic rules (w/ Rules) resulted
in a 0.09 decrease in precision and 0.20 decrease in recall, while
using the HITS algorithm (w/ HITS) resulted in a 0.10 decrease in
precision and 0.03 decrease in recall.

5.5 Threshold Sensitivity (RQ4)

We conducted a sensitivity analysis to assess the impact of various
thresholds (𝑡ℎ𝑝𝑟 , 𝑡ℎ𝑉𝑠𝑦𝑛 , 𝑡ℎ𝑉𝑠𝑒𝑚 , 𝑡ℎ𝑃𝑠𝑦𝑛 , 𝑡ℎ𝑃𝑠𝑒𝑚 , 𝑡ℎ𝑐𝑒 ) on VMud’s per-
formance. Figure 7 illustrates how each threshold influences the
recall, precision, and F1-Score of VMud. The optimal performance
for VMud is achieved when the thresholds are set as 0.018, 0.7, 0.6,
0.3, 0.4, 0.6, respectively.

5.6 Performance Evaluation (RQ5)

We evaluated the time cost of VMud and several clone-based tools
across a set of 972 target projects in VM detection. Figure 8 il-
lustrates the time spent on VM detection in each project. On av-
erage, VMud takes a median of 227 seconds to detect VM in a
project, which is 173, 45, 142, 178 seconds longer than Vuddy, MVP,
Movery, and V1Scan. The time cost of VMud primarily stems from
call graph generation and semantic equivalent statement match-
ing, which are computationally intensive. However, we consider
this additional time cost acceptable given VMud’s effectiveness in
detecting VM in real-world projects compared to other tools.

5.7 Discussion

Implication.We propose VMud to discriminate fixing functions
and leverage critical functions in VMud. We utilize semantic equiv-
alence to identify more VMs. VMud achieves a precision, recall,
and F1-score of 0.84, significantly outperforming state-of-the-art
approaches. This result highlights the effectiveness of our proposed
features. VMud has successfully detected 275 new VM from 84
projects, with 42 confirmed cases and 5 assigned CVE identifiers.
These outcomes demonstrate the effectiveness of VMud. Our ro-
bustness evaluation shows that VMud maintains consistent effec-
tiveness regardless of the number of fixing functions in VMs. The
ablation study indicates that critical function selection and semantic
equivalence can significantly improve precision and recall. To the
best of our knowledge, no existing works address both critical func-
tion selection and semantic equivalence. Our results demonstrate
the potential of using critical function selection, which can guide
future research further on critical function selection techniques
and semantic-equivalent transformations and comparisons.

Threats. First, concerning our ground truth, it’s constructed
based on the manual analysis of detected vulnerabilities fromVMud
and other clone-based tools. This approach may introduce bias as
not all vulnerabilities may be detected by these tools, impacting the
accuracy of our ground truth dataset. However, we have utilized
existing tools comprehensively to cover a broad range of vulnerabil-
ities. Second, in our effectiveness evaluation, we compared Movery
on a smaller scale, which may not provide a complete comparison
of precision and recall between Movery and other tools. Nonethe-
less, our evaluation of the small-scale dataset demonstrates VMud’s
advantages over Movery fairly. Third, in our robustness evaluation,
the distribution of VM concerning the number of fixing functions
is uneven, with some categories having a small number of VM.
This may not fully reflect VMud’s effectiveness in those categories.
However, VMud has consistently shown strong performance across
most categories, highlighting its robustness.

Limitations. First, VMud relies on several tools, limited by their
accuracy and performance. For instance, Doxygen may generate
incomplete call graphs, and Joern may produce incomplete CPGs,
impacting critical function selection, signature generation, and sig-
nature matching. To address this, VMud is designed to incorporate
with other state-of-the-art tools to enhance its accuracy and per-
formance. Second, VMud is designed for detecting vulnerabilities
with multiple functions. We plan to collect and generate signa-
tures for vulnerabilities with a single function, and adopt program
rephrasing and contextual equivalent statement map to observe
the effectiveness of VMud. Third, VMud does not maintain the
knowledge of code clone evolution or customizations in the target
project, potentially resulting in false negatives or false positives if
significant modifications occur. However, we implement semantic-
centered statement matching to ensure consistent semantics even
amid code changes. We also plan to obtain evolutionary knowledge
on code clones to enhance the effectiveness of VMud. Fourth, our
semantic equivalence currently focuses on C/C++ and supports
equivalent types based on documentation. We plan to expand our
semantic equivalence transformations using a data-driven approach
and extend support to additional programming languages.
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Figure 7: Results on Threshold Sensitivity
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Figure 8: Results of Performance Evaluation

6 Related work

Vulnerability Detection within a Function. The function serves
as the fundamental unit for vulnerability detection, as it is the
most common granularity level. Existing research usually trans-
forms the task of detecting vulnerabilities across an entire program
into individual tasks within each function. Many approaches em-
ploy clone detection techniques to identify vulnerable code clones
(VCCs) within each function. For instance, Kim et al. [25] introduced
VUDDY, which identifies VCCs by matching their clone signatures.
Xiao et al. proposed MVP [59], leveraging program slicing to ex-
tract partial functions and match patching clone signatures, thus
reducing false positives in VCC detection. Woo et al. [54] used the
knowledge of the oldest vulnerable function to overcome the syntax
diversity of vulnerable code. They further proposed V1Scan [53] to
filter out unused vulnerable functions, thus reducing false alarms.

Feng et al. [12] utilizes multi-stage filtering and differential taint
paths to achieve precise clone vulnerability scanning.

Additionally, learning-based approaches have been explored to
classify vulnerable functions [5, 8, 41, 47, 65]. For example, Rus-
sell et al. [41] utilized CNN and DNN with Word2Vec embeddings
for function-level code, while Zhou et al. introduced Devign [65]
that encodes various function representations (i.e., AST, CFG, DFG,
NCS) into graph neural networks. Cui et al.[8] proposes a weighted
feature graph (WFG) to compare functions in graph representation.
Similarly, Wang et al. proposed GraphSPD [47] for multi-attributed
graph convolution in vulnerability detection. However, for a vul-
nerability with multiple fixing functions, the vulnerability char-
acteristics carried in each fixing function can vary depending on
its surrounding context. Assigning equal importance to all fixing
functions for a vulnerability may lead to over-representation, which
brings false alarms. To this end, our approach applies critical func-
tion selection (see Section 3.3.1) to choose a subset of the fixing
functions that are more significant, thus reducing false alarms.

Vulnerability Detection beyond a Function. Several stud-
ies have introduced methods for detecting vulnerabilities that go
beyond the scope of individual functions. Software composition
analysis (SCA) is instrumental in identifying vulnerabilities [21,
56, 57, 61]. By maintaining a database of vulnerable third-party li-
braries, SCA flags corresponding vulnerabilities based on instances
of reused vulnerable libraries. However, it suffers from limitations
in both precision and recall. This is because SCA primarily aims
to characterize third-party libraries, which have a coarse-grained
granularity compared to specific vulnerability characteristics.

Moreover, many approaches represent vulnerabilities at the file
level or take the file-level program to analyze [23, 29, 35, 49].Wi et al.
[49] constructs a Control Flow Graph (CPG) for a PHP application
and performs subgraph isomorphism analysis on it with a target
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PHP snippet to detect vulnerabilities across functions. Similarly,
Khodayari et al. [23] create a Hybrid Property Graph (HPG) for each
JavaScript file and identify CSRF vulnerabilities using declarative
traversals. Mirsky et al. [35] customize an LLVM compiler toolchain
to generate enriched ProgramDependency Graphs (PDGs) for input
files and apply program slicing and graph neural networks to iden-
tify vulnerabilities and their CWE types. While these methods are
effective at detecting vulnerabilities within a single file, they may
overlook vulnerabilities that span multiple files. Inter-procedural
vulnerability detection methods, on the other hand, can identify
vulnerabilities where the statements to be patched and the state-
ments triggering the vulnerability belong to different functions [30].
These methods utilize inter-procedural program slicing [32, 33] or
employ inter-procedural analyses to detect various vulnerability
types [4, 10, 15, 22, 28, 34]. However, they require prior knowledge
of specific CWE types and sophisticated inter-procedural analysis.
In contrast, our approach can detect vulnerabilities with multiple
functions without prior knowledge of CWE types.

Vulnerability Abstraction and Normalization. Vulnerability
abstraction and normalization aim to create an intermediate repre-
sentation for comparing original vulnerabilities with their instances
in the target program. Learning-based approaches perform implicit
abstraction and normalization in high-dimensional spaces, which
makes it hard to interpret the manifestation of abstracted and nor-
malized vulnerabilities. In contrast, clone-based methods explicitly
encode the abstraction and normalization. For instance, Li et al. [31]
address missing code parts (e.g., missing }) by analyzing diff hunks
from unpatched code pieces. Kim et al. [25] replace occurrences of
parameter variables, local variables, data types, and function calls
with symbols to adapt the intermediate representation for type-2
clones. The abstracted code is then normalized by standardizing
formatting elements such as comments, spaces, tabs, and line feeds,
and converting all characters to lowercase. Similar normalization
techniques are also applied in Woo et al.’s work [53, 55]. Woo et al.
[54] also used the knowledge of the oldest vulnerable function to
diversify the representation of vulnerable code.

Xiao et al. [59] employ a similar approach to abstraction and
normalization but exclude format strings from abstraction due to
their association with certain vulnerabilities. Additionally, Cui et al.
[8] propose preserving identifiers using the K-means algorithm and
manual selection of representative ones, such as buf and len, as
they are often involved in vulnerabilities. Mirsky et al. [35] utilize
LLVM to generate a customized LLVM IR, reducing syntactic-level
differences. However, these methods compare similarity based on
the equality of abstracted and normalized statements without con-
sidering their contextual semantic equivalence. Our approach ad-
dresses this by employing semantic equivalent statement matching
for vulnerability signature matching.

7 Conclusions

In this paper, we focus on the vulnerabilities due to code reuse in
OSS, known as vulnerable code clones (VCCs) or recurring vul-
nerabilities. we introduce VMud, a novel approach for detecting
“Vulnerabilities withMultiple Fixing Functions” (VM). VMud selects
the critical functions from VM for signature generation which are
a subset of the fixing functions. To deal with the potential decrease

in recall due to excluding the remaining fixing functions, VMud
employs semantic equivalent statement matching. It aims to un-
cover more VM by duplicating signatures of the critical functions
and match precisely by contextual semantic equivalent statement
mapping on the duplicated signatures. Our evaluation has demon-
strated that VMud surpasses state-of-the-art vulnerability detection
approaches by 17.6% in terms of F1-Score. VMud has successfully
detected 275 new VM from 84 projects, with 42 confirmed cases
and 5 assigned CVE identifiers.
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Table 9: The Number of True Positives, False positives, Detected by VMud and the False Negatives VMud Missed

Id. Project Name TP
(#)

FP
(#)

FN
(#) Id. Project Name TP

(#)
FP
(#)

FN
(#) Id. Project Name TP

(#)
FP
(#)

FN
(#)

1 hanwckf/rt-n56u 25 2 4 36 flatpak/flatpak 0 1 0 71 slact/nchan 1 0 0

2 ravynsoft/ravynos 4 0 0 37 AdAway/AdAway 21 0 4 72 ImageMagick/ImageMagick 1 1 0

3 Stichting-MINIX-Research-
Foundation/minix 26 2 5 38 microsoft/WSL2-Linux-Kernel 0 7 0 73 momotech/MLN 1 0 0

4 seemoo-lab/nexmon 4 0 2 39 catboost/catboost 2 0 0 74 nodemcu/nodemcu-firmware 2 0 0

5 alibaba/tengine 1 1 0 40 mridgers/clink 1 0 0 75 saki4510t/UVCCamera 1 0 0

6 fastos/fastsocket 20 1 7 41 gpac/gpac 2 0 0 76 libretro/RetroArch 1 1 0

7 panda-re/panda 4 0 1 42 spotify/linux 0 8 0 77 wireshark/wireshark 1 0 0

8 tanersener/mobile-ffmpeg 6 0 0 43 emscripten-core/emscripten 1 0 0 78 ejoy/ejoy2d 1 0 0

9 premake/premake-core 3 1 1 44 Sunzxyong/Tiny 1 0 0 79 jart/cosmopolitan 1 0 0

10 civetweb/civetweb 3 0 0 45 lavabit/magma 1 0 0 80 arendst/Tasmota 1 0 0

11 madeye/proxydroid 1 0 0 46 ossec/ossec-hids 1 0 0 81 flipperdevices/flipperzero-
firmware 1 0 0

12 y123456yz/reading-code-of-nginx-
1.9.2 2 0 1 47 moby/hyperkit 1 0 0 82 nmap/nmap 0 1 0

13 freebsd/freebsd-src 4 1 0 48 Proxmark/proxmark3 1 0 0 83 RedisGraph/RedisGraph 1 0 0

14 CloverHackyColor/CloverBootloader 8 0 3 49 cesanta/mongoose 1 0 0 84 rofl0r/proxychains-ng 1 0 0

15 damonkohler/sl4a 10 1 6 50 alibaba/LVS 23 1 4 85 darktable-org/darktable 1 0 0

16 joncampbell123/dosbox-x 3 0 0 51 F-Stack/f-stack 8 1 0 86 antirez/sds 0 1 0

17 alibaba/AliOS-Things 5 1 5 52 OpenAtomFoundation/TencentOS-
tiny 1 0 0 87 openssl/openssl 0 1 0

18 zlgopen/awtk 2 0 0 53 NetBSD/src 2 0 0 88 mabeijianxi/small-video-record 1 0 0

19 sumatrapdfreader/sumatrapdf 2 0 0 54 sdlpal/sdlpal 1 0 0 89 espressif/ESP8266_RTOS_SDK 1 0 0

20 nginx/nginx-releases 0 1 1 55 b4winckler/macvim 0 1 0 90 ctfs/write-ups-2016 1 0 0

21 peng-zhihui/ElectronBot 1 0 0 56 veracrypt/VeraCrypt 0 1 0 91 nginx/nginx 0 1 0

22 TelegramMessenger/Telegram-iOS 4 0 0 57 openzfs/zfs 1 0 0 92 jiangdongguo/AndroidUSBCamera 1 0 0

23 Tencent/xLua 1 1 0 58 antirez/disque 1 0 0 93 ntop/PF_RING 1 0 0

24 Cisco-Talos/pyrebox 3 0 1 59 rizinorg/rizin 6 0 1 94 h2o/h2o 1 0 0

25 aws/amazon-freertos 1 0 0 60 reactos/reactos 1 0 0 95 gozfree/gear-lib 0 0 1

26 yangchaojiang/yjPlay 2 0 0 61 nicolasff/webdis 1 0 0 96 omnirom/android_bootable_recovery 1 0 0

27 rogerclarkmelbourne/Arduino_STM32 1 0 0 62 FreeRDP/FreeRDP 0 4 0 97 TeamWin/Team-Win-Recovery-
Project 1 0 0

28 rmtheis/tess-two 3 0 0 63 radareorg/radare2 2 0 0 98 coolwanglu/vim.js 0 1 0

29 eduard-permyakov/permafrost-
engine 1 0 0 64 ApsaraDB/PolarDB-for-

PostgreSQL 2 0 0 99 vifm/vifm 1 0 0

30 leixiaohua1020/simplest_ffmpeg_mobile 2 0 0 65 swaywm/sway 0 3 0 100 mattrajca/sudo-touchid 0 0 1

31 peng-zhihui/Dummy-Robot 1 0 0 66 mjolnirapp/mjolnir 1 1 0 101 micropython/micropython 1 0 0

32 armink/EasyLogger 1 0 0 67 greenplum-db/gpdb 0 1 0 102 InfiniTimeOrg/InfiniTime 1 0 0

33 Ralim/IronOS 1 0 0 68 systemd/systemd 0 1 0

34 kbengine/kbengine 8 1 0 69 RediSearch/RediSearch 1 0 0

35 endrazine/wcc 1 0 0 70 ultrajson/ultrajson 0 1 0
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