Hawkeye: Towards a Desired Directed Grey-box Fuzzer

Hongxu Chen
Nanyang Technological University
Singapore, Singapore
hchen017@e.ntu.edu.sg

Bihuan Chen

Fudan University

Shanghai, China
bhchen@fudan.edu.cn

Yinxing Xue”
University of Science and Technology
of China, Hefei, China
yxxue@ustc.edu.cn

Xiaofei Xie
Nanyang Technological University
Singapore, Singapore
xfxie@ntu.edu.sg

Yuekang Li
Nanyang Technological University
Singapore, Singapore
yli044@e.ntu.edu.sg

Xiuheng Wu
Nanyang Technological University
Singapore, Singapore
wuxh@ntu.edu.sg

Yang Liu
Nanyang Technological University
Singapore, Singapore
yangliu@ntu.edu.sg

ABSTRACT

Grey-box fuzzing is a practically effective approach to test real-
world programs. However, most existing grey-box fuzzers lack
directedness, i.e. the capability of executing towards user-specified
target sites in the program. To emphasize existing challenges in
directed fuzzing, we propose Hawkeye to feature four desired prop-
erties of directed grey-box fuzzers. Owing to a novel static analysis
on the program under test and the target sites, Hawkeye precisely
collects the information such as the call graph, function and basic
block level distances to the targets. During fuzzing, Hawkeye eval-
uates exercised seeds based on both static information and the
execution traces to generate the dynamic metrics, which are then

used for seed prioritization, power scheduling and adaptive mutating.

These strategies help Hawkeye to achieve better directedness and
gravitate towards the target sites. We implemented Hawkeye as a
fuzzing framework and evaluated it on various real-world programs
under different scenarios. The experimental results showed that
Hawkeye can reach the target sites and reproduce the crashes much
faster than state-of-the-art grey-box fuzzers such as AFL and AFLGo.
Specially, Hawkeye can reduce the time to exposure for certain vul-
nerabilities from about 3.5 hours to 0.5 hour. By now, Hawkeye has
detected more than 41 previously unknown crashes in projects such
as Oniguruma, MJS with the target sites provided by vulnerability
prediction tools; all these crashes are confirmed and 15 of them
have been assigned CVE IDs.

CCS CONCEPTS

« Security and privacy — Vulnerability scanners;

“Corresponding author.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

CCS ’18, October 15-19, 2018, Toronto, ON, Canada

© 2018 Association for Computing Machinery.

ACM ISBN 978-1-4503-5693-0/18/10...$15.00
https://doi.org/10.1145/3243734.3243849

KEYWORDS
Fuzz Testing; Static Analysis

ACM Reference Format:

Hongxu Chen, Yinxing Xue, Yuekang Li, Bihuan Chen, Xiaofei Xie, Xiuheng
Wu, and Yang Liu. 2018. Hawkeye: Towards a Desired Directed Grey-box
Fuzzer. In 2018 ACM SIGSAC Conference on Computer and Communications
Security (CCS °18), October 15-19, 2018, Toronto, ON, Canada. ACM, New
York, NY, USA, 14 pages. https://doi.org/10.1145/3243734.3243849

1 INTRODUCTION

Security testing is one of the most effective vulnerability detec-
tion techniques for modern software. Among the security testing
techniques, fuzzing [30], or fuzz testing, is regarded as the most
effective and scalable, which provides various inputs to the program
under test (PUT) and monitors for abnormal behaviors (e.g., stack
or buffer overflow, invalid read/write, assertion failures, or memory
leaks) [13]. Since the proposal, fuzzing has gained the popularity in
industry and academia, and evolved into different types of fuzzers
for different testing scenarios. Fuzzers can be classified as black-box,
white-box or grey-box [10], according to their awareness of the
internal structure of the PUT. Recently, grey-box fuzzers have been
widely-used and proven to be effective [7]. Specificaly, AFL [48]
and its derivations [6, 7, 12, 15, 24, 43] receive plenty of attentions.

In general, the existing grey-boxing fuzzers (GFs) aim to cover
as many program states as possible within a limited time budget.
However, there exist several testing scenarios in which only partic-
ular program states are concerned and required to be sufficiently
tested. For example, if MJS [39](a JavaScript engine for embedded
devices) has a vulnerability discovered on MSP432 ARM platform,
similar vulnerabilities may occur in the corresponding code for the
other platforms. In such a situation, the fuzzer should be directed
to reproduce the bug at these locations. Another case is, when a
bug is patched, the programmers need to check whether the patch
completely fixes the bug. This requires the fuzzer to focus its efforts
on those patched code. In both scenarios, the fuzzer is required
to be directed to reach certain user specified locations in the PUT.
For clarity, we name such locations as target sites. Following the

https://doi.org/10.1145/3243734.3243849
https://doi.org/10.1145/3243734.3243849

definition in [6], we name the fuzzers that can fulfil the directed
fuzzing task as directed fuzzers.

As the state-of-the-art directed grey-box fuzzer (DGF for short),
AFLGo [6] casts the reachability of target sites as an optimization
problem and adopts a meta-heuristic to promote the test seeds with
shorter distances. Here, the distance is calculated according to the
average weight of basic blocks on the input seed’s execution trace
to the target basic block(s), where the weight is determined by the
edges in the call graph and control flow graphs of the program,
and the meta-heuristic is simulated annealing [22]. Based on these,
AFLGo solves the power scheduling problem for directed fuzzing
— how many new inputs (termed “energy” in AFLGo) should be
generated from the current test seed. To summarize, represented
by AFLGo, DGF achieves the goal of reaching the target sites by
combing both static analysis and dynamic analysis.

A pure dynamic execution can only get the feedback based on
the traces it has already covered without any awareness about the
predefined target sites. Thus, static analysis is required to extract
the necessary information for guiding the execution towards the
target sites for DGFs. The most widely used approach is to calculate
the distance (or weight) to the target sites for the components (e.g.,
basic blocks, functions) of the PUT, so that when executed, DGFs can
judge the affinity between current seed and the target sites from the
components in the execution traces. The major challenge is that the
distance needs to be effectively calculated without compromising
certain desired features. Particularly, it should help to retain the seed
diversity [4]. For example, the existing seed distance calculation
algorithm used in AFLGo always favors shortest path that leads
to the targets (see § 2.1), which may starve inputs that could be
more easily mutated to reach the target site and further trigger
crashes. The author of libFuzzer [26] argues that not taking into
account all possible traces may fail to expose the bugs hidden deeply
in longer paths [37]. This derives the first desired property P1.
Another challenge is that the static analysis should provide precise
information with acceptable overheads. This is because that coarse
static analyses will not benefit the dynamic fuzzing much, while
heavyweight static analyses themselves may take considerable time
before the dynamic fuzzing starts. This challenge derives the second
desired property P2. Hence, the first problem is to have a proper
static analysis which can collect necessary information for DGF.

After extracting the information with static analysis, there are
several challenges in dynamic analysis — how to dynamically ad-
just different strategies for the purpose of reaching the target sites
as fast as possible. The first challenge is how to properly allocate
energy to the inputs with different distances and how to priori-
tize the inputs closer to the targets. This derives the third desired
property P3. The second challenge is how to adaptively change the
mutation strategies, since GFs may possess various mutation oper-
ators at both coarse-grained (e.g., bulk deletion) and fine-grained
(e.g., bitwise flip) levels. This derives the fourth desired property
P4. Hence, the second problem is to make proper adjustments for
the dynamic strategies used in DGF.

To emphasize the two aforementioned problems, an ideal DGF
is expected to hold the following desired properties (§2.2):

P1 The DGF should have a robust distance-based mechanism that
can guide the directed fuzzing by considering all traces to the
targets and avoiding the bias to certain traces.

P2 The DGF should strike a balance between overheads and utilities
in static analysis.

P3 The DGF should prioritize and schedule the seeds to reach target
sites rapidly.

P4 The DGF should adopt an adaptive mutation strategy when the
seeds cover different program states.

In this paper, we propose our solutions to achieve the four desired
properties for DGF. For P1, we propose to apply the static analysis
results to augment the adjacent-function distance (§4.2); and the
function level distance and basic block level distance should be
calculated based on the augmented adjacent-function distance to
simulate the affinities between functions (§4.3). Meanwhile, during
fuzzing, we calculate basic block trace distance and covered function
similarity of the execution trace to that of the target functions (§4.4)
by integrating the static analysis results with the runtime execution
information. For P2, we propose to apply the analysis based on call
graph (CG) and control flow graph (CFG), i.e., the function level
reachability analysis, the points-to analysis for function pointers
(indirect calls), and the basic block metrics (§4.1). For P3, we propose
to combine the basic block trace distance and covered function
similarity for solving the power scheduling problem (§4.4) and the
seed priorization problem (§4.6). For P4, we propose to apply an
adaptive mutation strategy according to the reachability analysis
and covered function similarity (§4.5).

By taking these properties into account, we implemented our
DGF, Hawkeye, and conducted a thorough evaluation with various
real-world programs. The experimental results show that in most
cases, Hawkeye outperforms the state-of-the-art grey-box fuzzers
in terms of the time to reach the target sites and the time to expose
the crashes. Particularly, Hawkeye can expose certain crashes up
to 7 times faster than the state-of-the-art AFLGo, reducing the time
to exposure from 3.5 hours to 0.5 hours.

In practice, Hawkeye has been successfully discovering crashes
with the suspicious target sites reported by other vulnerability
detection tools and successfully found more than 41 previously
unknown crashes in projects Oniguruma [23], MJS[39], etc. All
these vulnerabilities have been confirmed and fixed; among them,
15 vulnerabilities have been assigned unique CVE IDs.

The main contributions of this paper are summarized as follows:

(1) We analyzed the challenges in directed grey-box fuzzing and
summarized the four desired properties for DGFs.

(2) We provided a measure of power function that can guide the
fuzzer towards the target sites effectively.

(3) We proposed a novel approach to boost the convergence speed
to the target sites by utilizing power scheduling, adaptive mu-
tation and seed prioritization.

(4) We implemented a novel fuzzing framework that organically
combines these ideas and thoroughly evaluated our results in
both crash reproduction and target site covering.

2 DESIRED PROPERTIES OF DGF

In this section, we first show an example to illustrate the difficulties
in DGF. Based on the observations from the example, we then

Functions in a Crashing Trace File & Line Symbol
main nm.c :1794 M
_bfd_dwarf2_find_nearest_line dwarf2.c :4798 a
comp_unit_find_line dwarf2.c :3686 b
comp_unit_maybe_decode_line_info dwarf2.c:3651 c
decode_line_info dwarf2.c :2265 d
concat_filename dwarf2.c :1601 T
Z

Functions in a Normal Trace File & Line Symbol
main nm.c :1794 M
_bfd_dwarf2_find_nearest_line dwarf2.c :4798 a
scan_unit_for_symbols dwarf2.c :3211 e
concat_filename dwarf2.c :1601 T
Z

Figure 1: Two execution traces related to CVE-2017-15939: M
is the main function, T is the target function, Z is the exit.

propose four desired properties for an ideal DGF. Finally, we review
the state-of-the-art DGF, namely AFLGo [6], with respect to these
four desired properties.

2.1 Motivating Example

Fig. 1 shows two execution traces related to CVE-2017-15939 [36],
which is a NULL pointer dereference bug caused by an incomplete
fix in CVE-2017-15023 [35]. This vulnerability is difficult for the ex-
isting GFs to discover. For instance, AFL [48] fails to detect this
vulnerability within 24 hours in all the 10 different runs we con-
ducted. This bug is triggered in nm from GNU binutils. In function
concat_filename, a NULL pointer is assigned and used without
checking, which triggers the segmentation fault. From a patch test-
ing perspective, we would like to target concat_f'ilename (subse-
quently, we will denote this as T) and guide the fuzzing to reproduce
the crashing trace (i.e., (a,b,c,d, T, Z) in Fig. 2).

For simplicity, in Fig. 2, we illustrate only three representative
traces for the CVE-2017-15939 by omitting 1) the overlapping func-
tions before a and 2) the other traces that do not pass the target
function T. The difficulty in discovering this CVE for the general
GFs (e.g., AFL) arises from the fact that the target function T is
deeply hidden in the crashing trace. As shown in Fig. 2, the call
chain of {a, e, T, Z) is shorter than {(a, b, c,d, T, Z).

Since most of the GFs (such as AFL, LibFuzzer, etc.) are supposed
to be coverage oriented, and do not care specially about the targets,
they may not put most of their efforts in generating test seeds that
reach function T and testing the function throughly. For DGFs,
although there suppose to be some efforts to guide the fuzzing
procedure to favor some traces leading to T and focus more on
these traces, they may frequently miss all the traces. For example,
if AFLGo detects that two traces can reach the target sites, it will
highly likely favors the trace with shorter path: the distance be-
tween the seed to the target is determined by the average distance
of the components (basic blocks or functions) in the execution trace
to the targets, where the components’ distance to the target sites
are essentially determined by the number of edges between the
components to the targets. This mechanism causes AFLGo to give
more energy to the trace (a, e, T, Z) since it reaches the target T and
the induced trace distance is smaller than (a, b, c,d,T, Z); on the

@)
@

Figure 2: The fuzzing scenario modeled from Fig. 1:
(a,b,c,d, T,Z) is a crashing trace passing T, (a,e, T, Z) is anor-
mal trace passing T, and (a, e, f,Z) is a trace not passing T.

other hand, less attention is put on (a, b, c,d, T, Z), which however
causes the crash under some circumstances. Worse still, other traces
like (a, e, f, Z) may be mistakenly assigned with more energy. As
a result, AFLGo was also not able to reproduce the crash within 24
hours in any of the 10 runs we conducted.

The challenges of the existing DGF roots in the following aspects:
1) the target functions may appear in several places in PUT, and
multiple different traces may lead to the target. 2) since the call
graph majorly affects the calculation of the trace distance (the
dissimilarity with the target sites), it needs to be accurately built; in
particular, the indirect calls among functions should not be ignored.
If the above two issues are not well handled, the distance-based
guiding mechanism for DGF will get hindered and fail in such cases.

2.2 Desired Properties of Directed Fuzzing

As observed from the above example, an ideal DGF should possess
the following desired properties.

2.2.1 P1. The DGF should define a robust distance-based mecha-
nism that can guide the directed fuzzing by avoiding the bias to some
traces and considering all traces to the targets. Different from general
GFs, to reach the targets, there may exist several execution traces
towards the targets. More often than not, a target function could
appear several times in the code and be called even from different
entries of the code. Without any static information as guidance,
during the fuzzing process, the fuzzer knows nothing about the
execution traces that can cover the targets before the targets have
been executed; and even if the targets have already been covered,
the fuzzer does not know whether there are other traces that can
lead to these targets. Hence, the guiding mechanism should help
find all the traces that lead to the targets — taking Fig. 2 as an
example, in the AFL fuzzing process, trace (a, b, c,d, T, Z) may not
be ever exercised by the existing inputs due to the existence of a
strong precondition before a. Hence, the guiding mechanism could
provide the knowledge of all possible traces leading to targets and
guide the mutation towards it via gradually reducing the distance.
However, for DGF, awareness of all possible traces towards the
targets is not enough: the distance to the targets for all traces should
be properly calculated so that all traces reachable to the targets
will be assigned more energy compared to other traces. For Fig. 2,

T is the target and we would like to check the functionality of T
Intuitively, traces {(a,e, T, Z) and {a, b, ¢, d, T, Z) should be treated
without bias as both of them can lead to the target site, while
(a, e, f,Z) should be less important as it misses the target site.

2.2.2 P2. The DGF should strike a balance between overheads and
utilities in static analysis. Effective static analysis can benefit the
dynamic fuzzing procedure in two aspects: 1) In real world C/C++
programs, there are indirect function calls (e.g., passing a function
pointer as a parameter in C, or using function objects and pointers
to member functions in C++). In the presence of indirect calls, call
sites cannot be observed directly from the source code or binary
instructions. So the trade-offs between overheads and utilities need
to be made for analyzing them. 2) Not all call relations should be
treated equally. For example, some functions occur multiple times
in its calling functions, implying that they have higher chance to
be called at runtime. From the static analysis perspective, we need
to provide a way to distinguish these scenarios. As to function level
distances between functions that have immediate calling relations, it
is intuitive that callees called in multiple times in different branches
should be “closer” to the caller.

To sum up, taking Fig. 2 as an example, the desired design for
the DGF is: 1) if function a (transitively) calls T in an indirect
way (i.e., one or more calls in the chaina - b —>c—>d > T
are through function pointers), the static analysis should capture
such indirect calls, otherwise the distance from a to T will be not
available (i.e., treated as unreachable). 2) if the callee appears in
more different branches and occurs more times in its caller, a smaller
distance should be given since it may have more chance of being
called for reaching the target(s). However, modeling the actual
branch conditions in static phrase is impractical due to the inherent
limitations of static analysis. For example, given a nontrivial code
segment, it is hard to predict whether the true branch of a predicate
will be executed more often than its false branch during runtime. On
the other hand, tracking symbolic conditions dynamically would
be too time costly in a grey-box fuzzing setting.

2.2.3 P3. The DGF should select and schedule the seeds to reach
target sites rapidly. AFL determines how many new inputs should
be generated (i.e., “energy”) from a test seed to improve the fuzzing
effectiveness (i.e., increase the coverage); this is termed “power
scheduling” in [6, 7]. In directed fuzzing, the goal of fuzzing is not
to reach the upper-limit of coverage as fast as possible, but reach the
particular targets as fast as possible. Hence, power scheduling in
DGF should determine how many new inputs should be generated
from a test seed in order to get a new mutated input that leads to
the target sites [6]. Similarly, the seed prioritization in DGF is to
determine an optimized fuzzing order of test seeds to reach target
sites as fast as possible. Both of them can be guided by the distance-
based mechanism which measures the affinity between the current
seed to the target sites.

For power scheduling, the desired design is that the seed trace
with a smaller distance to targets should be assigned more energy
for fuzzing, as the trace closer to the target sites gets better chance

If we know previously that only the traces that involve d and T may cause crashes,
we can set both d and T as the target sites.

to reach there. Therefore, (a, e, T, Z) should be allocated with sim-
ilar energy with (a,b,c,d,T,Z), and (a, e, f, Z) should have less
energy than the previous two. For seed prioritization, seeds that have
smaller distance (“closer”) to the targets should be fuzzed earlier
in subsequent mutations. Therefore, {a,e,T,Z) and {a,b,c,d, T, Z)
should be put ahead of (a, ¢, f, Z).

2.2.4 P4. The DGF should adopt an adaptive mutation strategy
when the seeds cover the different program states. GFs usually ap-
ply different mutations, such as bitwise flip, byte rewrite, chunk
replacement, to generate new test seeds from the existing one. In
general, these mutators can be categorized into two levels: fine-
grained mutations (e.g., bitwise flip) and coarse-grained mutations
(e.g., chunk replacement). Although there is no direct evidence that
fine-grained mutations will likely preserve the execution traces, it
is widely accepted that a coarse-grained random mutation has a
high chance to change the execution trace greatly. Therefore, the
desired design is that when a seed has already reached the target
sites (including target lines, basic blocks or functions), it should be
given less chances for coarse-grained mutations.

For the example in Fig. 2, consider the case where the DGF has
already reached the target function via trace (a,b,c,d, T, Z), but
crash is not triggered yet. Now, the DGF should allocate less chances
for coarse-grained mutations for the input of {a, b, ¢,d, T, Z). Mean-
while, if DGF has just started up and (a, b, ¢, d, T, Z) has not been
reached yet, then the DGF should give more chances for coarse-
grained mutations.

2.3 AFLGO’s Solution

In this section, we evaluate the solution of AFLGo against the
four desired properties to demonstrate the significances of these
properties as well as some useful concepts in DGF.

For P1. For Fig. 2, based on the distance formula defined in
AFLGo the trace distances are: ds(abcdTZ) = (2+3+2+1+0)/5 =
1.6, ds(aeTZ) = (2+1+0)/3 = 1 and ds(aefZ) = (2+1)/2 = 1.52
Given these three execution traces, the energy assigned to them will
be (a,e,T,Z) > (a,e, f,Z) > (a,b,c,d,T,Z). This is problematic:
the normal trace (a, e, T, Z) is overemphasized; the crashing trace
(a,b,c,d, T,Z) is however considered the least important, even less
important than the trace (a, e, f, Z) that fails to reach the target T.

For P2. AFLGo only considers the explicit call graph information.
As aresult, all function pointers are treated as external nodes which
are ignored during distance calculation. This means that, in an
extreme case, if the target function is called via a function pointer,
its distance from the actual caller is undefined. For example, in Fig. 2,
ifd and e call T via function pointers, both d and e will be mistakenly
considered unreachable to T; consequently, all nodes except for T
will be considered unreachable to T. Therefore essentially there is
no directedness in such a case.

Besides, AFLGo counts the same callee in its callers only once,
and it does not differentiate multiple call patterns between the caller
and callee (see §4.2). The function level distance is calculated on
the call graph with the Dijkstra shortest path, assuming the weight
of two adjacent nodes (functions) in the call graph always to be 1,
which will distort the distance calculation.

2In fact, AFLGo calculates the trace distance at the basic block level with harmonic
mean of the accumulative distance; nevertheless, the essential idea is the same.

Target
Sites

Initial
Seeds

Target Function
Trace Closure

Call Graph
Control
Flow Graph

Directedness Utility
Computation

Static Analysis

Compilation and
Instrumentation
o_
8z
FRE
383
L]

52
58

<

Fuzzing Loop

Figure 3: Approach Overview of Hawkeye

For P3. AFLGo applies a simulated annealing based power
scheduler: it favors those seeds that are closer to the targets by
assigning more energy to them for mutation; the applied cooling
schedule initially assigns smaller weight on the effect of “distance
guidance”, until it reaches the “exploitation” phrase. It solves the
“exploration vs exploitation” problem [8] and mitigates the impre-
cision issue brought by the statically calculated basic block level
distance. In our opinion, this is an effective strategy. The problem
is that there is no prioritization procedure so the newly generated
seeds with smaller distance may wait for a long to be mutated.

For P4. The mutation operators of AFLGo come from AFL’s two
non-deterministic strategies: 1) havoc, which does purely randomly
mutations such as bit flips, chunk replacement, etc; 2) splice, which
generates seeds from some random byte parts of two existing seeds.
Notably, during runtime AFLGo excludes all the deterministic mu-
tation procedures and relies purely on the power scheduling on
havoc/splice strategies. The randomness of these two strategies can
indeed favor those with smaller distances to the targets. However,
it may also destroy the existing seeds that are close to the targets.
In fact, some subtle vulnerabilities can only be reached with some
special preconditions. In reality, an incomplete fix may still leave
some concern cases to be vulnerable; for example, CVE-2017-15939
is caused by an incomplete fix for CVE-2017-15023. Hence, AFLGo
lacks the adaptive mutation strategies, which will mutate arbitrarily
even when the current seeds are close to the targets enough.

Summary. Taking AFLGo as example, we can summarize the
following suggestions to improve DGFs:

(1) For P1, a more accurate distance definition is needed to retain
trace diversity, avoiding the focus on short traces.

(2) For P2, both direct and indirect calls need to be analyzed; vari-
ous call patterns need to be distinguished during static distance
calculation.

(3) For P3, a moderation to the current power scheduling is re-
quired. The distance-guided seed prioritization is also needed.

(4) For P4, the DGF needs an adaptive mutation strategy, which
optimally applies the fine-grained and coarse-grained mutations
when the distance between the seed to the targets is different.

3 APPROACH OVERVIEW

In this section, we briefly introduce the workflow of our proposed
approach, named Hawkeye. An overview of Hawkeye is given in
Fig. 3, which consists of two major components, i.e., static analysis
and fuzzing loop.

3.1 Static Analysis

The inputs of static analysis are the program source code and the tar-
get sites (i.e., the lines of code that the fuzzer is directed to reach). We
derive the basic blocks and functions where the target sites reside in,
and call them target basic blocks and target functions, respectively.
The main output of static analysis is the instrumented program bi-
nary with the information of basic block level distance.

First, we precisely construct the call graph (CG) of the target pro-
gram based on the inclusion-based pointer analysis [3] to include all
possible calls. Besides, for each function, we construct the control
flow graph (CFG) (§4.1).

Second, we compute several utilities that are used to facilitate
the directedness in Hawkeye based on CG and CFG (§4.3).

(1) Function level distance is computed based on CG by aug-
menting adjacent-function distance (§4.2). This distance is uti-
lized to calculate the basic block level distance. It is also used
during the fuzzing loop to calculate the covered function simi-
larity (§4.4).

Basic block level distance is computed based on the function

level distance, together with the CG and the functions’ CFGs.

This distance is statically instrumented for each basic block that

is considered to be able to reach one of the target sites. During

the fuzzing loop, it is also used to calculate the basic block trace
distance (§4.4).

(3) Target function trace closure is computed for each target
site according to the CG to obtain the functions that can reach
the target sites. It is used during the fuzzing loop to calculate
the covered function similarity (§4.4).

@

~

Finally, the target program is instrumented to keep track of the
edge transitions (similar to AFL), the accumulated basic block trace
distance (similar to AFLGo), and the covered functions.

3.2 Fuzzing Loop

The inputs of fuzzing loop are the instrumented program binary, the
initial test seeds, the target sites as well as the information of function
level distance and target function trace closure. The outputs of fuzzing
loop are the test seeds that cause abnormal program behaviors such
as crashes or timeouts.

During fuzzing, the fuzzer selects a seed from a priority seed
queue. The fuzzer applies a power scheduling against the seed
with the goal of giving those seeds that are considered to be “closer”

to the target sites more mutation chances, i.e., energy (§4.4). Specif-
ically, this is achieved through a power function, which is a combi-
nation of the covered function similarity and the basic block trace
distance. For each newly generated test seed during mutation, after
capturing its execution trace, the fuzzer will calculate the covered
function similarity and the basic block trace distance based on the
utilities (§3.1). For each input execution trace, its basic block trace
distance is calculated as the accumulated basic block level distances
divided by the total number of executed basic blocks; and its cov-
ered function similarity is calculated based on the overlapping of
current executed functions and the target function trace closure, as
well as the function level distance.

After the energy is determined, the fuzzer adaptively allocates
mutation budgets on two different categories of mutations accord-
ing to mutators’ granularities on the seed (§4.5). Afterwards, the
fuzzer evaluates the newly generated seeds to prioritize those that
have more energy or that have reached the target functions (§4.6).

4 METHODOLOGY

In this section, we will elaborate the key components in Fig. 3
featuring the four desired properties.

4.1 Graph Construction

To calculate the accurate distance from a test seed to the oracle seed
executing the target sites, we first build up the CG and CFG, then
combine them to construct the final inter-procedural CFG. Note
that CG is used to compute the function level distance in §4.2 and
§4.3, CFG together with CG (i.e., inter-procedural CFG) is used to
compute the basic block distance in §4.3.

To identify the indirect call in call graph, we propose to apply the
inclusion-based pointer analysis [3] against the function pointers
of the whole program. The core idea of this algorithm is to translate
the input program with statements of the form p := g to constraints
of the form “¢’s points-to set is a subset of p’s points-to set”. Es-
sentially, the propagation of the points-to set is applied with four
rules namely address-of, copy, assign, dereference. This analysis is
context-insensitive and flow-insensitive, meaning that it ignores
both the calling context of the analyzed functions and the statement
ordering inside functions, and eventually only computes a single
points-to solution that holds for all the program points. Usually, a
fixed point of the points-to sets will be reached at the end of the
analysis. Among these, points-to sets of the function pointers inside
the whole program are calculated, resulting in a relatively precise
call graph including all the possible direct and indirect calls. The
complexity of this pointer analysis is ©(n®). The reason that we do
not apply context-sensitive or flow-sensitive analyses lies in the
fact that they are computationally costly and not scalable to large
projects. Despite that, our call graph is still much more precise than
the one generated by LLVM’s builtin APIs, which does not contain
any explicit nodes that represent indirect calls.

The control flow graph of each function is generated based on
LLVM’sIR. The inter-procedure flow graph is constructed by collect-
ing the call sites in all the CFGs and the CG of the whole program.
By applying these static analyses, we achieve P2.

void fa(int i) { void fa(int i) {
if (i > 0) { if (i > 0) {
fb(i); fb(i);
} else { fb(ix2);
fb(i«2); } else {
fc (); fc ();
} }
} }
(a) (b)

Figure 4: An example illustrating different call patterns

4.2 Adjacent-Function Distance Augmentation

To achieve P1, we propose to implement a lightweight static analy-
sis that considers the patterns of the (immediate) call relation based
on the generated call graph. As discussed in §2.2.2, under different
context, the distances from the calling function to the immediately
called function may not be exactly the same. Given functions f,
fp, fe, there may exist several different call patterns in the call
graph. For example, in Fig. 4a and Fig. 4b, there are calls f;, — f;
and f; — fc in both cases. However, in Fig. 4a f, is bound to call
fp (since f;, appears in both if and else branches in fy), but not
necessary to call f;; in Fig. 4b, both f}, and f. are not necessary
to be called by f,. From a probability perspective, we would think
that in both cases the distance from f; to f}, should be smaller than
the distance from f; to f;, and the distance from f, to f}, in Fig. 4a
should be smaller than that in Fig. 4b.

Therefore, we propose two metrics to augment the distance that
is defined by immediate calling relation between caller and callee.

(1) Call site occurrences C of a certain callee for a given caller.
More occurrences of callee could incur more chance that callee
will be dynamically executed with more different (actual) pa-
rameters, and in return the distance between the caller to the

callee will be smaller. We apply a factor ®(Cy) = ¢¢Cg; *to

denote this effect, where ¢ is a constant value (usually, ¢ = 2).
(2) The number of basic blocks Cp in the caller that contains at
least one call site of the callee. The rationale is that, with more
branches that have a call site, more different execution traces
will include the callee. The factor function ¥(Cp) = z/xfg&
denotes this effect, and ¢ is a constant value (usually, ¢ = 2).

Note that both factor functions are monotone decreasing func-
tions; also, ® converges to 1 when Cy — oo and ¥ converges to 1
when Cg — 1. Given a (direct or indirect) immediate function call
pair (fi, f2) where fi is the caller and f3 is the callee, the original
distance between fi and f3 is 1 (see AFLGo [6]). Now, with the two
metrics mentioned above, we can define the augmented distance
between the function pairs that holds an immediate call relation.
The final adjustment factor will be a multiplication of ® and ¥, and
the augmented adjacent-function distance is

dp(fi. fa) = ¥(fi. f2) - ©(fr. f2) 1)

where d }(f1, f2) refers to the augmented direct function distance.

As an example, in Fig. 4a, for f},, CN(fa, fp) = 2, CB(fa, fp) = 25
and for fc, CN(fa, fc) = 1, C(fa, fc) = 1. Assume ¢ = 2 and
¥ = 2 and assume the original distance df(fa, fp) = df(fa. fo) = 1,

the augmented distances will be d}(fa,fc) = % . % = 2.25, and

di(fa- fy) = § - § = 1.56.

A special case not shown in the above examples is that some
branches form cycles (i.e., loops). Indeed, these functions may be
called multiple times at runtime. However, it is uncertain that how
many times they will be executed across different runs when fed
with different seeds. Fortunately, actual execution on one call site
of a callee inside one loop typically has similar effect — the loop
explores the similar program states and benefits less in covering new
paths. Hence, the function call inside the loop does not bring many
execution trace diversities like the scenario where the same callee
occurs in multiples branches with significantly different parameters.

The applied approach aims to make a trade-off between the
efficiency and the utility of the static analysis. Therefore, we do
not consider the solution space of any branch condition that may
affect the runtime reachability in the CFG. For example, in Fig. 4a, if
we change the condition check i>0 to be i==0, the true branch will
be executed only when the input value of i is 0. It is tempting to
assign a smaller distance to the code segments in the false branch.
However, since the PUT is usually nontrivial, it is impractical to
statically formulate the exact constraint set of the preconditions
before reaching function f, and predicate the branches’s actual
execution probabilities. One common scenario is that the branch
condition i==0 is used for checking the return status code of an
external function call, at runtime it may actually execute the true
branch more often than the false branch.

4.3 Directedness Utility Computation

In §4.2, the augmented function distance is calculated on two ad-
jacent functions according to their call patterns. By assigning the
adjacent-function distance as the weight of the edges in the call
graph, we can calculate the function level distance for any two
functions with the Dijkstra shortest path algorithm, beyond which
we can further derive the basic block level distance. Besides, we
also compute the target function trace closure which will be used
to calculate the covered function similarity in §4.4.

Function Level Distance. This distance is calculated according
to CG. It tells the (average) distance from the current function
to target functions. Given a function n, its distance to the target
function set Ty is defined as:
undefined. if R(n,Tp) = 0
otherwise

1 @

dr(n,TF) =
1) {[theR(n,Tf)df(an)1]

where R(n, Ty) = {tf|reachable(n, tf)}, which is the set of tar-
get functions that can be statically reached from n in CG, and
dp(n. tr) is the dijkstra shortest path based on augmented function
distance from n to a given target function ¢ in CG.

Basic Block Level Distance. Given a function n and two basic
blocks m1 and my inside, the basic block level distance dZ(ml, my) is
defined as the minimal number of edges from m; to my in the CFG
G(n). The set of functions called inside basic block m is denoted as
Cy(m), then C}(m) = {n|R(n, Tf)#0,n € Cf(m)}, and Transp, =

{mlEIG(n), m € G(n),n € F, ij(m) # (D}, where F is the set of all

functions. Given a basic block m, its distance to the target basic

blocks T}, are defined as:

0 ifmeT,
dp(m,Tp) = {¢" minneC}(m)(df(n’ Tf))
[ZteTransb (dZ(m, t) +dy(t, Tb))_l]_l otherwise

©)

if m € Transy,

where c is a constant that magnifies function level distance.

Note that Equation 2 and 3, on their own, are the same as those
in AFLGo [6]. However, dy(n, tf) for these equations in AFLGo is
simply the Dijkstra shortest distance on a CG where the weight of
edges (i.e., adjacent function distance) is 1.

Target Function Trace Closure. This utility, §f(Tf), is calcu-
lated by collecting all the predecessors that can statically lead to the
target functions Ty, until the entry function main has been reached.
We choose not to exclude those that are considered unreachable
from entry function due to the limitations of static analysis. In the
example in Fig. 2, §f(Tf) ={a,b,c,d,e,T}.

4.4 Power Scheduling

During dynamic fuzzing, we apply power scheduling on a selected
seed based on two dynamically-computed metrics: basic block trace
distance and target function trace similarity.

Basic Block Trace Distance. The distance between the seed s
to the target basic blocks Ty, is defined as:

Zmety(s)dp(m, Tp)
1€, (5)]

where &}, (s) is the execution trace of a seed s and contains all the
basic blocks that are executed. Hence, the basic idea of Equation 4 is
that: for all the basic blocks in the execution trace of s, we calculate
the average basic block level distance to the target basic blocks Tp.
Note that Equation 4 is also the same as the one in AFLGo [6].

It then applies a feature scaling normalization to get the final
distance d (s, Tp) = % where minD (or maxD) is the
smallest (or largest) distances ever met.

Covered Function Similarity. This metric measures the simi-
larity between the execution trace of the seed and the target exe-
cution trace on the function level. We do not track the basic block
level trace similarity since that would introduce considerable over-
heads. The similarity is calculated based on the intuition that seeds
covering more functions in the “expected traces” will have more
chances to be mutated to reach the targets. This similarity is cal-
culated by tracking the function sets the current seed covered (de-
noted as £ (s)) and comparing it with the target function trace clo-
sure £7(Tr). In the example in Fig. 2, &r(abedTZ) = {a,b,c,d, T},
{r(aeTZ) = {a,e, T} and {r(aefZ) = {a, e}.

The covered function similarity is then determined by the fol-
lowing formula:

ds(s, Tp) = 4)

Sresp(singpdr (fi Tp) ™
16 (s) U & (Tp)l

dr(f, Tr) is the function level distance calculated with Equation 2.
Similar to d, a feature scaling normalization is also applied and
the final similarity is denoted as ;. Note that this similarity metric
is uniquely proposed in our approach.

CS(Ss Tf) = (5)

Scheduling. Scheduling deals with the problem how many mu-
tation chances will be assigned to the given seed. The intuition is
that if the trace that the current seed executes is “closer” to any of
the expected traces that can reach the target site in the program,
more mutations on that seed should be more beneficial for gener-
ating expected seeds. A scheduling purely based on trace distance
may favor certain patterns of traces. For AFLGo, as mentioned in
§2.2.2, the shorter paths will be assigned more energy, which may
starve longer paths that are still reachable to the target sites. To mit-
igate this, we propose the power function that considers both trace
distance (based on basic block level distance) and trace similarities
(based on covered function similarity):

(. Tp) = &s(s. Tp) - (1 — ds(s. Ty)) (6)

It is obvious that the value of p(s, Tp,) fits into [0, 1] since both
the multipliers are in [0, 1].

Compared to AFLGo’s approach, which only considers basic
block trace distance (ds, or Js), our power function balances the
effect of shorter paths and the longer paths that can reach the target.
Logically, there are some differences between c; and ds:

(1) ds considers both the effects of CG and the CFGs; ¢s considers
only the effects of CG. For ds, the major effect is still CG due to
the magnification factor ¢ used in Equation 2.

(2) ds does not penalize traces that do not lead to the targets, while
¢s penalizes them via a union of £¢(s) (by tracking function
level traces) and &¢(Ty).

(3) Given multiple traces that can lead to the targets, ds favors
those that have short lengths, but ¢ favors those with longer
lengths of common functions in expected trace.

In this sense, p(s, Tp) strives a balance between shorter traces and
longer traces that can reach the target sites with two heterogeneous
metrics. Admittedly, there may still exist some bias. One of the
scenarios is that the power function may assign more energy to a
seed that covers many functions in the target function trace closure.
For example, assume two traces that can reach the target function
T:(a,b,c,d,T,Z) and (a,e, f,g, T, Z); and the target function trace
closureis{(a,b,c,d, e, f,g,T). The power function may assign much
energy to a seed with trace {a,b,c,d,e, f,g,Z) which does not
reach the target function T. This is not an issue in our opinion:
since this seed has covered many “expected” functions, it has high
chance to be “close” to the target; with proper mutations, it is likely
to be flipped to mutants that can indeed touch the target.

In Hawkeye, the power function determines the number of mu-
tation chances to be applied on the current seed (i.e., energy); it is
also used during the seed prioritization to determine whether the
mutated seeds should be favored.

4.5 Adaptive Mutation

In §4.4, for each seed, the output of power scheduling is the energy
(a.k.a. the times of applied mutations), which will be the input of
the step of our adaptive mutation. The problem is that, given the
total energy available for a seed, we still need to assign the number
of mutations for each type of mutators.

In general, two categories of mutators are used in GFs. Some are
coarse-grained in the sense that they change bulks of bytes during
the mutations. Others are fine-grained since they only involve a few

Algorithm 1: adaptiveMutate(): Adaptive Mutation

input :s, the seed to be fuzzed after power scheduling

output: M, the map to store the new mutated seed, whose key is
the seed and whole value is the energy of the seed

const. :y, the constant ratio to do fine-grained mutation

const. :J, the constant ratio to be adjusted

Ms = 02
p < s.getScore();

1
2
3 if reachTarget(s) == false then

4 S’ « coarseMutate(s, p (1 —7y));
5

6

for s’ in 8’ do
L Ms — Ms U {(s", s’.getScore())}
7 S” « fineMutate(s, p * y);
for s” in S” do
9 L Ms — Ms U {(s”, s”.getScore())}

10 else
11 8§’ « coarseMutate(s, p (1 -y — 5));
12 for s’ in S’ do

13 | Ms — MsU{(s',s".getScore())}

1 S” « fineMutate(s, p = (y + 5));
15 for s” in S” do

16 L Ms — Ms U {(s”, s”.getScore())}

byte-level modifications, insertions or deletions. For coarse-grained
mutations, we consider them to be:

(1) Mixed havoc. This includes several bulk mutations, namely
deleting a chunk of bytes, overwriting the given chunk with
other bytes in the buffer, deleting a certain lines, duplicating
certain lines multiple times, etc. The actual mutation involves
their combinations.

(2) Semantic mutation. This is used when the target program is
known to process semantic relevant input files such as javascript,
xml, css, etc. In detail, this follows Skyfire [43], which includes
three meta mutations, inserting another subtree into a random
AST position, deleting a given AST, and replacing the given
position with another AST.

(3) Splice. This includes a crossover between two seeds in the
queue and subsequent mixed havocs.

Algo. 1 shows the workflow of our adaptive mutation, given
a seed s. The basic idea is to give less chance of coarse-grained
mutations when the seed s can reach the target functions (at line
10 in Algo. 1). Once the seed reaches targets, the times of doing
fine-grained mutations increase from p * y (line 7) to p * (y + §) (line
14), but the times of doing coarse-grained mutation decrease from
p*(1—y) (atline 4) to p * (1 — y — &) (line 11). Here, s.getScore()
at line 2 is to get the energy assigned to the seed according to the
the power function value calculated in Equation 6.

fineMutate() in Algo. 1 simply applies a random fine-grained
mutation (e.g., bit/byte flippings, arithmetics on some bytes) for the
seed. Algo. 2 shows the details for coarse-grained mutation strategy
coarseMutate(). Given a seed s and the iteration times of mutations
i, the basic idea is to apply semantic mutations (line 2) only when it
is necessary (line 3). The constraints needSemMutation(s) returns
true if the following conditions are satisfied: 1) our fuzzer detects
that the input file is a semantic-relevant input file such as javascript,
xml, css, etc; 2) The previous semantic mutations have not failed. If
not necessary (line 6), mixed havoc mutations will get more times

Algorithm 2: coarseMutate(): Coarse-Grained Mutation

input :s, the seed to be fuzzed after power scheduling
input :i, the number of iterations to do mutation on the seed
output: S, the set to store the new mutated seed
const. :o, the constant ratio to do semantic mutations
const. :{, the constant ratio to do mixed havoc mutations
S=0;
if needSemMutation(s) == true then
S «— SUsemMutate(s,i*o);
S «— SUcoarseHavoc(s, i *(1— o) *{);
S «— SUsplice(s,i*(1-0)x(1-{));

[Z NI SN

¢ else
7 S « SUcoarseHavoc(s, i * {);
s S « SUsplice(s,i*(1-{));

Algorithm 3: seedPrioritize(): Seed Prioritization

input :s, the seed to be processed

output: @y, the tier 1 queue to store the most important seeds

output: Q,, the tier 2 queue to store the important seeds

output: Qs, the tier 3 queue to store the least important seeds

const. :7, the threshold of energy value for accepting important
seeds

1 Q=Q==0;

2 if seedIsNew(s) == true then

3 if seedWithNewEdge(s) == true then
4 L Q — QU {s}

5 else if s.powerEnergy() > n then

6 L Q — QU {s};

7 else if reachTarget(s) == true then
8 | @ —a@u{ish
9 else

10 | @« Qu{s)

11 else

12 L Qs — Q3 U {s};

(i = ¢, at line 7) than the necessary case (i % (1 — o) * {, at line 4),
and meanwhile splice mutations will also get more times (i % (1 — {)
line 8) than necessary (i * (1 — o) % (1 — {), at line 5).

In practice, we assign the empirical values to the constants: y =
0.1,§=04,0=0.2,{=0.38.

Note that all these new generated seeds in M, together with

the original seeds, will be put into the seed queue for future fuzzing.

Actually, before fuzzing them, we will prioritize them to improve
the efficiency of directed fuzzing (see §4.6).

4.6 Seed Prioritization

Not all the seeds have equal or similar priorities, ideally the queue

that stores the seeds to be mutated should be a priority queue.

However the scoring may be biased (due to the limitations of static
analyses, etc.), and the insertion operations on priority queue take a
complexity of ©(log n), which is costly since the queue can be quite
long and the insertion operation can be frequent. Therefore it is
not beneficial in practice.? Instead, we provide a three-tiered queue
which appends newly generated seeds into different categories
according to their scores. Seeds in the top-tiered queue (tier 1) will
be picked firstly, then the second-tiered (tier 2), and finally the

3In fact, the well-known AFL fuzzer only maintains a linked list with some probabilistic
to skip seeds that do not cover new edges; the complexity of the insertion is ©(1).

lower-tiered (tier 3). This imitates a simplified priority queue with
constant time complexity.

Algo. 3 shows the seed prioritization strategy for a new seed
mutated from the previous step of adaptive mutation. The basic
idea is: we should prioritize the newly generated seeds that 1) cover
new traces 2) have bigger similarity values with the target seeds
(i.e., power function values) 3) cover the target functions. We favor
the seeds that cover the new traces since we still have to explore
more execution paths that have the potential to lead to the target
sites; this is necessary when the initial seeds are quite far from
the targets. The other two prioritization strategies, i.e., comparing
similarity values and checking whether the target function have
been reached, are specific to directed fuzzing. Note that although
these two strategies are relevant, neither of them can be deduced
from the other. For the other newly generated seeds, they are put
in the second-tiered queue. On the other hand, seeds that have
(just) been mutated are assigned with the least priority. In practice,
Hawkeye also applies AFL’s loop bucket approach (see [49]) to filter
out a large number of “equivalent” seeds that do not bring new
coverage in terms of loop iterations. The prioritization strategies
will be applied on the remaining seeds. Therefore, there will not be
too many seeds filling up the top-tier queue.

By combining all the static and dynamic techniques mentioned
above, for the CVE exampled in §2.1, Hawkeye successfully repro-
duced the crash with a time budget of 24 hours in 3 out of the 10
runs we conducted when fed with the same initial seeds, which is
a significantly improvement on both AFL and AFLGo for this case.

5 EVALUATION

We implemented our static instrumentation on top of AFL’s LLVM
mode and the pointer analysis is based on the interprocedural static
value-flow analysis tool called SVF [41]; this part takes about 2000
lines of C/C++ code. The dynamic fuzzer is implemented based
on our Rust implementation of AFL. The fundamental framework,
called Fuzzing Orchestration Toolkit[11], is written in about 14000
lines of code. We follow exactly AFL’s practice [49] by using fork-
server, shared memory based basic block transition (edge) tracing,
deterministic/non-deterministic mutators, etc., and provide a simi-
lar user interface as AFL’s. The differences, however, are that we
design the fuzzer with considerations of modularization and extensi-
bility without sacrifying performance. For directed fuzzing purpose,
we add another 4000 lines of code for tracing functions, calculating
power function for seeds, distinguishing graininess of mutators, and
so on 4. See our website https://sites.google.com/view/ccs2018-fuzz
for more details.

For each program with the given target sites, the instrumentation
of Hawkeye consists of three parts: 1) basic block IDs that track the
execution traces 2) basic block distance information that determines
basic block trace distance and 3) function IDs that track functions
that have been covered.

5.1 Evalution Setup
In the experiments, we aim to answer the following questions:
4The semantic mutation part is implemented with Antlr [31] in Java (~4800 lines of

code) that is called from Rust via JNI. We didn’t enable this mutation strategy in the
experiments since this is not tightly relevant to DGF.

https://sites.google.com/view/ccs2018-fuzz

Table 1:

Program statistics for our tested programs.

Project Program | Size ics cs | ics/cs | #of Cp>1 | # of Cn>1 ts
Binutils cxxfilt 2.8M | 3232 | 12117 | 26.67% 8813 8879 | 735s
Oniguruma testcu 1.3M 556 2065 | 26.93% 3037 3101 5s
mjs mjs 277K 130 3277 3.97% 309 334 3s
libjpeg libjpeg | 810K | 749 | 1827 | 41.00% 144 152 | 2s
libpng libpng 228K | 449 | 1018 | 44.11% 61 61 2s
freetype2 | freetype | 1.6M | 627 | 5681 | 11.30% 6784 7117 4s

ROQ1 Is the static analysis really worth the effort?

RQ2 How good is Hawkeye’s performance in terms of reproducing
the target crashes?

RQ3 How effective are the dynamic strategies in Hawkeye?

RQ4 How good is the ability of Hawkeye for reaching the specific
target sites?

Evaluation Dataset. We evaluated Hawkeye with diverse real-
world programs:

(1) GNU Binutils [5] is a collection of binary analysis tools used
in GNU/Linux platform. This benchmark is also used in several
other works such as [6, 7, 24].

(2) MJS [39] is an embedded JavaScript engine for C/C++ and used
in IoT development. It is used to compare Hawkeye directly
with AFLGo due to implementation limitations of the latter.

(3) Oniguruma [23] is a versatile regular expression library used
by multiple world famous projects such as PHP [33].

(4) Fuzzer Test Suite [18] is a set of benchmarks for fuzzing en-
gines. It contains several representative real-world projects.

Evalution Tools. We compare Hawkeye with the following
three fuzzers:

(1) AFL is the current state-of-the-art GF. It ignores all the tar-
get information for the PUT and only does the “basic block
transition” instrumentation.

(2) AFLGo is the state-of-the-art DGF based on AFL. Compared to
AFL, it also instruments basic block distance information.

(3) HE-Go is the fuzzer where the basic block level distance is
generated with our static analysis procedure (Fig. 3), but the
dynamic fuzzing is conducted by AFLGo.

Here we mainly follow AFLGo’s practice to only use AFL as
the baseline for coverage oriented GFs. Other techniques do not
focus on directed fuzzing, and they are either orthogonal (e.g.,
CollAFL [15]) or may sometimes perform worse than AFL (e.g.,
AFLFast, as observed by [38]), or not publicly available (e.g., An-
gora [12]). The detailed reason is available at our website; in §6, we
also provide a more detailed comparison between Hawkeye and
these techniques.

In the experiments, all AFL based fuzzers (AFL, AFLGo and
HE-Go) are run in their “fidgety” mode [50]. For both AFLGo and
HE-Go, “time-to-exploitation” is set to 45 minutes for the fuzzer.
Except for the experiments against GNU Binutils (Table 2) , where
we follow exactly the setup in AFLGo’s paper [6] , all the other
experiments are repeated 8 times, with a time budget of 4 hours. We
use “time-to-exposure” (TTE) to measure the length of the fuzzing
campaign until the first test input is generated that triggers a given
error (in §5.3) or reaches a target site (in §5.4). We use hitting round
to measure the number of runs in which a fuzzer triggers the error

or reaches the target. For all the experiments, if the fuzzer cannot
find the target crash within the time budget in one run, TTE is set
to the time budget value.

Our experiments are conducted on an Intel(R) Xeon(R) CPU E5-
2697 v3 @ 2.60GHz with 28 cores, running a 64-bit Ubuntu 16.04
LTS system; during experiments, we use 24 cores and retain 4 cores
for other processes.

5.2 Static Analysis Statistics

In Table 1, the first three columns denote the projects, programs
and the sizes in their LLVM bitcode form. ics denotes the number
of indirect call sites in the binary, which is calculated by counting
those call sites without explicitly known callees; cs is the number
of call sites; ics/cs denotes the percentage of indirect calls among all
call sites. The next two columns denote the number where Cg > 1
and Cn > 1 (§ 4.2), respectively. The last column denotes the time
cost of call graph generation, which takes the majority of the time
among all the directedness utility computation.

We can see from the table that the chosen targets have fair di-
versities in terms of different metrics. It is also noticeable that the
number of indirect function calls may contribute a large portion
to the total number of function calls. Specifically, in libpng, 44.11%
function calls are indirect function calls. This clearly shows the
importance of building precise call graphs. Furthermore, the num-
ber of occurrences of Cpy > 1 and the number of occurrences of
Cp > 1 are also large, which shows the importance of taking into
consideration the different patterns of call relations.

As to the overhead of the static directedness utility computation,
except for cxxfilt, which requires approximately 12.5 minutes to
generates the call graph, call graphs of most other projects can be
generated in seconds. For cxxfilt, the performance degradation lies
in the inherent complexity of the project itself. From the program
statistics in Table 1), it is obvious that the code base is bigger and
the program structures are more complicated than the others. In
fact, the bottleneck of the analysis is inside the pointer analysis
implemented in SVF tool. We believe that it is worth the effort due
to the fact that this procedure is done purely statically. And as long
as the source code does not change, the call graph can be reused.

5.3 Crash Exposure Capability

The most common application of directed fuzzing is to try to expose
the crash with some given suspicious locations that are supposed to
be vulnerable, where the suspicious locations can be detected with
the help of other static or dynamic vulnerability detection tools. In
this experiment, we directly compare Hawkeye with other fuzzers
on some known crashes to evaluate its crash exposure capability.

Table 2: Crash reproduction in Hawkeye, AFLGo and AFL
against Binutils.

CVE-ID Tool Runs | yTTE(s) | Factor
Hawkeye 20 177 -
3812:2:2 AFLGo 20 390 | 2.20
AFL 20 630 3.56
Hawkeye 20 206 -
2016-4489 AFLGo 20 180 0.87
AFL 20 420 2.04
Hawkeye 20 103 B
2016-4490 AFLGo 20 93 0.90
AFL 20 59 0.57
Hawkeye 9 18733 -
2016-4491 AFLGo 5 23880 1.27
AFL 7 20760 1.11
2016-4492 Hawkeye 20 477 -
2016-4493 AFLGo 20 540 1.21
AFL 20 960 2.01
Hawkeye 9 17314 -
2016-6131 AFLGo 6 21180 1.22
AFL 2 26340 1.52

5.3.1 Crash Reproduction against Binutils. In the beginning, we
intended to compare GNU Binutils directly with AFLGo in our ex-
periments since it is an important benchmark in [6] to demonstrate
AFLGo’s directedness. However, we found that the actual implemen-
tation of AFLGo has a few issues [2] in generating static distances.
Most importantly, it takes too long to calculate the distances. As a
result, when we tried AFLGo’s static analysis on GNU Binutils 2.26,
it failed to generate “distance.cfg.txt” which contains the distance
information for instrumentation within 12 hours>. Although AFLGo
can still perform fuzzing without distance information instrumenta-
tion, the fuzzing process is no longer directed without any distance
input. Therefore, we reclaimed the results in [6] to compare with
ours for the GNU Binutils benchmark °. We follow exactly the
evaluation setup in [6] where each experiment is conducted for 20
times, with the time budget set as 8 hours; the initial input seed file
only contains a line break (generated by echo "" > in/file). The
target sites we specified are based on their CVE descriptions and the
backtraces of the crashes. We compare Hawkeye with AFLGo and
AFL; the results are shown in Table 2. In AFLGo’s paper, the Aj3
metric [42] is used to show the possibility that one fuzzer is better
than the other according to all the runs. It is ignored in Table 2
since we cannot get the result of each run in their experiments.
We can observe the following facts: 1) For CVE-2016-4491 and
CVE-2016-6131, Hawkeye achieves the best results, with the most
hitting rounds (both are 9 rounds) and the shortest 4 TTE (18773s
and 17314s). Compared with other tools, on average for both cases,
Hawkeye’s improvements are significant in term of hitting rounds
(> 20%) and yTTE (> 20%). 2) For CVE-2016-4487/4488 and CVE-
2016-4492/4493, all tools reproduce the crashes in 20 runs, and
Hawkeye achieves the best yTTE. Specifically, on these two cases,

5Besides the performance issue of AFLGo, another reason to reclaim AFLGo’s results
in Table 2 is that the hardware environments are similar. The reason is supported by
the similar results produced by AFL in [6] and our experiments.

%Since CVE-2016-4487/CVE-2016-4488 and CVE-2016-4492/CVE-2016-4493 share the
same target sites, we treat them as the same; the reclaimed value for CVE-2016-
4487/CVE-2016-4488 are also average values.

Table 3: Crash reproduction in Hawkeye, AFLGo and AFL
against MJS.

Bug ID Tool Runs | yTTE(s) | Factor | Aj
Hawkeye 5 5469 - -
#1 AFLGo 2 12581 2.30 0.77
AFL 2 13084 2.39 0.77
Hawkeye 7 1880 - -
#2 AFLGo 2 12753 6.78 0.95
AFL 2 12294 6.54 0.95
Hawkeye 8 178 - -
#3 AFLGo 8 819 4.60 0.91
AFL 8 1269 7.13 0.95
Hawkeye 8 5519 - -
#4 AFLGo 8 5878 1.07 0.57
AFL 8 5036 0.91 0.48

Hawkeye’s improvement in terms of yTTE is significant — reduc-
ing at least 20% than other tools. 3) For CVE-2016-4489 and CVE-
2016-4490, all tools reproduce the crashes in all runs within 7 min-
utes since these bugs are relatively easy to find. Apparently, in such
cases, directed fuzzers have no significant advantage — in other
words, when the crashes are shallow or easy to trigger, Hawkeye’s
merits cannot show and fuzzing randomness matters for yTTE.
To summarize, Hawkeye has the real potential to fulfill directed
fuzzing tasks where the target crashes are not easy to be detected.

5.3.2 Crash Reproduction on MJS. In order to directly compare the
performance between Hawkeye and AFLGo, we chose a project
called M7JS, which contains a single source file and the results are
in Table 3. We used this project for direct comparison with AFLGo
since AFLGo took too much time or failed to generate the distance
information for other projects such as Oniguruma, libpng, etc. On
M7S, AFLGo took an average of 13 minutes to generate the basic
block distance for different targets. During experiments, the initial
input seed files are all from the project’s tests directory. The targets
are selected from the crashes reported in the project’s GitHub pages,
which correspond to four categories of vulnerabilities, namely inte-
ger overflow (#1), invalid read (#2), heap buffer overflow (#3), and use
after free (#4). We can observe the following facts : 1) On #1 and #2,
Hawkeye achieves the best results, with the most hitting rounds
and the shortest yTTE for both cases. In terms of hitting rounds,
Hawkeye found #1’s bug in 5 runs and #2’s bug in 7 runs, while
for the other two tools they only detected both crashes in 2 runs.
Notably, this case is nontrivial and Hawkeye reduces the yTTE
from about 3.5 hours to 0.5 hours. 2) On #3, for which all the tools
reproduce the crash in 8 rounds. Still, Hawkeye has the highly sig-
nificant improvement on yTTE, using less than one fourth 4 TTE
of other tools. 3) On #4, all the tools reproduce the crash in all
rounds, and the yTTE differences among them are not significant.
As to Aqz, we can see that Hawkeye exhibits really good results,
for example, the values in #2 are both 0.95, which means Hawkeye
has 95% confidence to perform better than both other tools.

5.3.3 Crash Reproduction on Oniguruma. Here we compare Hawkeye
with HE-Go on Oniguruma to show the advantage of dynamic anal-
ysis strategies in Hawkeye. Therefore, the major differences be-
tween Hawkeye and HE-Go is mainly the dynamic part. Due to the
aforementioned performance issues of AFLGo in static analysis on

Table 4: Crash reproduction on Hawkeye, HE-Go and AFL
against Oniguruma.

Bug ID Tool Runs | yTTE(s) | Factor | Aj
Hawkeye 8 139 - -
#1 HE-Go 8 149 1.07 0.58
AFL 8 135 0.97 0.54
Hawkeye 8 186 - -
#2 HE-Go 8 228 1.23 0.88
AFL 8 372 2.00 1.0
Hawkeye 2 13768 - -
#3 HE-Go 1 14163 1.03 0.56
AFL 1 14341 1.04 0.57
Hawkeye 7 6969 - -
#4 HE-Go 3 12547 1.80 0.82
AFL 1 14375 2.06 0.88

Oniguruma and other big projects, hereinafter, we will used HE-Go
as an alternative to AFLGo in the subsequent experiments. We
therefore compare Hawkeye with HE-Go to show the effectiveness
of our dynamic strategies.

In Table 4, we compare Hawkeye with HE-Go and AFL against
the Oniguruma regex library. The first three bugs come from the
reported CVEs which occur on version 6.2.0, and Bug #4 is an newly
fixed vulnerability issue on its GitHub pages. Some observations are:
1) For #3 and #4, Hawkeye achieves the best results among the three
tools. Especially, for #4, the improvements in both hitting rounds
and pTTE are highly significant. For #3, Hawkeye can find the bug
in one more round, but the yTTE is similar for the three tools. 2)
For #1 and #2, all the tools reproduce the crash in 8 rounds. On the
other hand, Hawkeye and HE-Go have no significant differences in
#TTE. From the results, we can conclude that the dynamic analysis
strategies used in Hawkeye are effective.

5.4 Target Site Covering

Certain locations in the PUTs are hard to reach, though they may
not trigger crashes. In practice, the generated seeds that can cover
the such locations can also be used as initial seeds for CGFs to boost
their coverage. Therefore, this criterion is an important factor for
measuring DGFs’ capabilities.

Google’s fuzzing test suite contains three projects that specially
focus on testing fuzzers’ abilities of discovering hard to reach loca-
tions, namely libjpeg-turbo-07-2017 (#1), libpng 1.2.56 (#2, #3) and
freetype2-2017 (#4). In these benchmarks, the target sites are speci-
fied by file names with line numbers in the source files. Here we
manually added some additional “sentinel” code in the target sites
(“exit(n)”, where the values of ‘n‘ distinguish these sites) to indicate
that the relevant targets have been reached.

Table 5 shows the results on these benchmarks. Case #1 and #4
show that Hawkeye exhibits good capability in terms of rapidly
covering the target sites, according to yTTE and the factor columns;
considering A1, the behaviors are also steady. In case #2 and #3,
it takes little time to reach these target sites for all the fuzzers.
While on the relevant project page [14], it is mentioned clearly
that they “currently require too much time to find”. We actually
tried this benchmark on libFuzzer with the default scripts in 2
machines, indeed it failed to reach the target sites. This root cause
of the inconsistency may lie in the fact that the inner mechanisms

Table 5: Target site covering results in Hawkeye, HE-Go
and AFL against Fuzzer Test Suite (libjpeg-turbo, libpng,
freetype2).

ID Project Tool Runs | pTTE(s) | Factor | Aj
Hawkeye 8 1955 - -
#1 | jdmarker.c:659 HE-Go 8 2012 1.03 | 0.53
AFL 8 4839 2.48 0.95
Hawkeye 8 23 - B
#2 | pngread.c:738 HE-Go 8 16 | 0.70 | 0.43
AFL 8 130 5.65 1.00
Hawkeye 8 1 - -
#3 | pngrutil.c:3182 HE-Go 8 66 | 66.00 | 0.56
AFL 8 3 3.00 0.51
Hawkeye 7 4283 - -
#4 ttgload.c:1710 HE-Go 7 4443 1.04 0.55
AFL 6 5980 1.40 0.60

may affect the actual fuzzing effectiveness (In fact, libFuzzer is
known to be quite different from AFL and its derivations). The
other observation is that HE-Go has a rather big value in terms of
UTTE compared to other tools. It turns out that in one of the runs,
the TTE is 524s, much larger than all the other runs.

It is worth noting that the yTTE to cover the target sites (Table
5) is quite different from the yTTE to trigger real-world crashes
(Table 4): the TTEs of the former are calculated based on the du-
ration to cover the specific line at the first time; while the TTEs
of the latter are tightly relevant to branch coverage or even path
coverage since typically bugs in widely used software can only be
triggered with special path conditions and it requires covering a
few execution traces. Although Table 5 shows that Hawkeye’s im-
provements against HE-Go in covering target sites are not obvious
(and for a few cases, it performs worse), we can observe in Table 4
the acceleration on crash reproduction is significant specially for
#4 (1.80x, nearly 2 hours off) and #2 (1.23x). This actually indicates
that dynamic strategies are quite effective in detecting crashes.

5.5 Answers to Research Questions

With the experiments conducted in Tables 2, 3, 4 and 5, we are able
to answer the research questions.

RQ1 We consider it is worth to apply static analysis. As shown
in Table 1, the time cost of our static analysis is generally
acceptable compared to the runtime cost during fuzzing. Even
for the cxxfilt cases in Table 2, which takes on average 735
seconds, Hawkeye outperforms the vanilla AFL in most of
the cases. Two notable results are CVE-2016-4491 and CVE-
2016-6131, it saves roughly 2000s and 9000s to detect the
crash; as shown from the Ay metric, the results are also
consistent in all the 20 runs. On the other hand, Hawkeye
also demonstrates some boosts for fuzzing.

RQ2 Hawkeye performs quite well in detecting crashes. From the
results in Tables 2, 3 and 4, we can clearly see that Hawkeye
can detect the crashes more quickly than all the other tools;
the results are even steady among different runs as shown by
different A1, results.

RQ3 The dynamic strategies used in Hawkeye are quite effective. It
is obvious that in all the experiments we conducted, Hawkeye

outperforms the others. In particular, the experiments in com-
parison with HE-Go (Table 4 and 5) show that our combi-
nation of power scheduling, adaptive mutation strategies,
and seed prioritization make Hawkeye converge faster than
AFLGo’s simulated annealing based scheduling.

RQ4 From the results in Table 5, we are confident that Hawkeye
has the capability to reach the target sites rapidly.

In practice, Hawkeye also demonstrates its power in exposing
crashes with the help of other vulnerability detection tools. For
example, for Oniguruma and MJS projects, with the Clang Static
Analyzer [27] (the built-in and our customized checkers) reporting
suspicious vulnerability locations (i.e., target sites) in the programs,
Hawkeye successfully detected the crashes by directing the fuzzing
to those locations. Interestingly, for MJS, we marked several of
the authors’ newly patched program locations, and detected a few
other crashes even further. As a result, Hawkeye has reported more
than 28 crashes in projects Oniguruma and MJS. We have also
found multiple vulnerabilities in other projects such as Intel XED
x86 encoder decoder (4 crashes), Espruino JavaScript interpreter (9
crashes). All these crashes have been confirmed and fixed, and 15
of them have been assigned with CVE IDs.

5.6 Threats to Validity

The internal threats of validity are twofold: 1). Several components
of Hawkeye (e.g., Algo. 1 and 2) utilize the predefined thresholds
to make decision. Currently, these thresholds (e.g., y = 0.1, § = 0.4,
o = 0.2, { = 0.8) are configured according to our preliminary ex-
periments and previous experience in fuzzing. Systematic research
will be planned to investigate the impact of these thresholds and
figure out the best configurations. 2). As we rely on the lightweight
program analysis tools like LLVM and SVF [41] to calculate the
distance, possible issues of these tools may affect the final results.
As Hawkeye is well modularized and can easily integrate with other
static analysis tools, enhancing Hawkeye with other tools will be
another alternative solution.

The external threats rise from the choice of evaluation dataset
and the CVEs for crash reproduction. Despite we adopt the program
Binutils that is used in AFLGo [6], the evaluation results still need
to be generalized with an empirical study on more projects in future.
Besides, the tested CVEs in MJS and Oniguruma are not selectively
chosen for the purpose to show the advance of Hawkeye— we pick
them since they are reported within a recent period.

6 RELATED WORK

Our study is related to the following lines of research:

Directed Grey-box Fuzzing. Some other DGF techniques have
been proposed besides Hawkeye. AFLGo [6] is the state-of-the-art
directed grey-box fuzzer which utilizes a simulated annealing-based
power schedule that gradually assigns more energy to inputs that
hold the trace closer to the target sites. In AFLGo, the authors
proposed a novel idea of calculating the distance between the in-
put traces and the target sites. This is a good starting point by
combining such target distance calculation with grey-box fuzzer.
Hawkeye is inspired from AFLGo however provides significant im-
provements on both the static analysis and dynamic fuzzing. As
shown in §5, Hawkeye generally outperforms AFLGo in terms of
reaching the targets and reproducing crashes, thanks to embedding

in-depth consideration about the four desired properties into the
design. SeededFuzz [45] uses various program analysis techniques
to facilitate the generation and selection of initial seeds which
helps to achieve the goal of directed fuzzing. Equipped with the
improved seed selection and generation techniques, SeededFuzz
can reach more critical sites and find more vulnerabilities. The core
techniques of SeededFuzz are orthogonal to Hawkeye because Seed-
edFuzz focuses on the quality of initial seed inputs while Hawkeye
focuses on the four desirable properties regardless of initial seeds.
Note that our proposed four properties can also be applied for
DGF on programs where the source code is unavailable. In fact,
we are extending Hawkeye to be able to work on the binary-only
fuzzing scenarios. Technically, the target sites can be determined
by binary-code matching techniques on attack surface identifica-
tion [9, 47]; the static analysis can be achieved with binary analysis
tools such as IDA [20]; and the instrumentation can be done by
dynamic binary instrumentators such as Intel Pin [1]. We envision
the extended Hawkeye can piggyback on these techniques and
demonstrate its effectiveness even further.
Directed Symbolic Execution. Directed Symbolic Execution (DSE)
is one of the most related techniques to DGF as it also aims to exe-
cute target sites of the PUT. Several works have been proposed for
DSE [17, 19, 21, 28, 29]. These DSE techniques rely on heavyweight
program analysis and constraint-solving to reach the target sites
systematically. A typical example of DSE is Katch [29], which relies
on symbolic execution, augmented by several synergistic heuristics
based on static and dynamic program analysis. Katch can effectively
find bugs in incomplete patches and increase the patch coverage
comparing to manual test suite. However, as discussed in [6], DGF is
generally more effective on real-world programs as DSE techniques
suffer from the infamous path-explosion problem [40]. In contrast
to DSE, Hawkeye relies on lightweight program analysis, which
ensures its scalability and execution efficiency.
Taint Analysis Aided Fuzzing. Taint analysis is also widely used
to facilitate directed white-box testing [12, 16, 24, 34, 44]. The key
intuition of using taint analysis in fuzzing is to identify certain
parts of the input which should be mutated with priority. In such a
way, the fuzzer can drastically reduce the search space for reaching
certain desired locations. Taint based approaches are more scalable
than the DSE techniques and can help the fuzzer to reach certain
preferable locations such as rare branches in Fairfuzz [24] or check-
sum related code in TaintScope [44]. Different from Hawkeye, these
techniques are not fed with given target sites (e.g., file name and
line numbers in our scenario) but based on source-sink pairs. Thus,
such techniques do not have advantages in scenarios where the
targets are clear, such as patch testing and crash reproduction.
Coverage-based Grey-box Fuzzing. The purposes of coverage-
based grey-box fuzzing (CGF) and DGF are different. However, some
techniques proposed to boost the performance of CGF could also
be adopted by Hawkeye. For example, CollAFL [15] utilizes a novel
hash algorithm to solve AFL’s instrumentation collision problem.
Skyfire [43] learns a probabilistic context sensitive grammar (PGSG)
to specify both syntax features and semantic rules, and then the
second step leverages the learned PCSG to generate new test seeds.
Xu et al. [46] proposed a set of new operating primitives to improve
the performance of grey-box fuzzers. Another important topic in
CGF is about guiding the fuzzer through path constraints. [12, 25,

32, 34, 40] aim to help the CGFs to break through path constraints.
Moreover, Orthrus [38] applies static analysis on AST, CFG, and CG
to extract complicated tokens via customizable queries. Hawkeye
can benefit through combining with the aforementioned techniques.

7 CONCLUSIONS

In this paper, we propose a novel directed grey-box fuzzer, Hawkeye.
The design of Hawkeye embeds four desired properties for directed
fuzzing by combining static analysis and dynamic fuzzing in an
effective way. Equipped with a better evaluation of the distance
between input execution traces and the user specified target sites,
Hawkeye can precisely and adaptively adjust its seed prioritiza-
tion, power scheduling as well as mutation strategies to reach the
target sites rapidly. A thorough evaluation showed that Hawkeye
can reach the target sites and reproduce the crashes much faster
than existing state-of-the-art grey-box fuzzers. The promising re-
sults indicate that Hawkeye can be effective in patch testing, crash
exposure and other scenarios.

ACKNOWLEDGMENT

This work is supported by the National Research Foundation, Prime
Ministers Office, Singapore under its National Cybersecurity R&D
Program (Award No. NRF2016NCR-NCR002-026) and administered
by the National Cybersecurity R&D Directorate; the research of Dr
Xue is also supported by CAS Pioneer Hundred Talents Program.

REFERENCES

[1] 2018. Pin - A Dynamic Binary Instrumentation Tool. https://software.intel.com/
en-us/articles/pin-a-dynamic-binary-instrumentation-tool

[2] AFLGo. 2018. GitHub - AFLGo. https://github.com/aflgo/aflgo/issues

[3] Lars Ole Andersen. 1994. Program Analysis and Specialization for the C Program-
ming Language. Technical Report. DIKU, University of Copenhagen.

[4] Jean-Yves Audibert, Rémi Munos, and Csaba Szepesvari. 2009. Exploration-
exploitation tradeoff using variance estimates in multi-armed bandits. Theoretical
Computer Science 410, 19 (2009), 1876 — 1902. http://www.sciencedirect.com/
science/article/pii/S030439750900067X Algorithmic Learning Theory.

] GNU Binutils. 1990. GNU Binutils. https://www.gnu.org/software/binutils/

[6] Marcel Bshme, Van-Thuan Pham, Manh-Dung Nguyen, and Abhik Roychoudhury.

2017. Directed Greybox Fuzzing (CCS ’17). ACM Press, New York, NY, USA, 2329-

2344.

[7] Marcel Bohme, Van-Thuan Pham, and Abhik Roychoudhury. 2016. Coverage-
based Greybox Fuzzing As Markov Chain (CCS ’16). ACM Press, New York, NY,
USA, 1032-1043.

[8] Denny Britz. 2014. Exploitation vs Exploration.
@dennybritz/exploration-vs-exploitation-f46afdcf62fe

[9] Mahinthan Chandramohan, Yinxing Xue, Zhengzi Xu, Yang Liu, Chia Yuan Cho,
and Hee Beng Kuan Tan. 2016. BinGo: Cross-architecture cross-OS Binary Search
(FSE ’16). ACM Press, New York, NY, USA, 678-689.

[10] Chen Chen, Baojiang Cui, Jinxin Ma, Runpu Wu, Jianchao Guo, and Wengian
Liu. 2018. A systematic review of fuzzing techniques. Computers & Security 75
(2018), 118-137.

[11] Hongxu Chen, Yuekang Li, Bihuan Chen, Yinxing Xue, and Yang Liu. 2018. FOT:
A Versatile, Configurable, Extensible Fuzzing Framework (FSE °18 tool demo).
ACM Press, (to appear).

[12] Peng Chen and Hao Chen. 2018. Angora: Efficient Fuzzing by Principled Search.
CoRR abs/1803.01307 (2018). arXiv:1803.01307 https://arxiv.org/abs/1803.01307v2

[13] J. B. Crawford. 2018. A survey of some free fuzzing tools. https://lwn.net/
Articles/744269/

[14] fuzzer-test suite. 2018. libpng-1.2.56/test-libfuzzer.sh. https://github.com/google/
fuzzer-test-suite/blob/master/libpng- 1.2.56/test-libfuzzer.sh

[15] Shuitao Gan, Chao Zhang, Xiaojun Qin, Xuwen Tu, Kang Li, Zhongyu Pei, and
Zuoning Chen. 2018. CollAFL: Path Sensitive Fuzzing (SP '18). IEEE Press, 1-12.

[16] Vijay Ganesh, Tim Leek, and Martin Rinard. 2009. Taint-based Directed Whitebox
Fuzzing (ICSE 09). IEEE Computer Society, Washington, DC, USA, 474-484.

[17] Patrice Godefroid, Nils Klarlund, and Koushik Sen. 2005. DART: Directed Auto-
mated Random Testing (PLDI "05). ACM Press, New York, NY, USA, 213-223.

https://medium.com/

@
=

[33
[34]

[35

'S
o

[37

[38

~
sl

=
i)

N
)

‘o
=

Google. 2017. Fuzzer Test Suite. https://github.com/google/fuzzer-test-suite
Istvan Haller, Asia Slowinska, Matthias Neugschwandtner, and Herbert Bos. 2013.
Dowsing for Overflows: A Guided Fuzzer to Find Buffer Boundary Violations
(SEC ’13). USENIX Association, Berkeley, CA, USA, 49-64.

Hex-Rays. 2013. IDA. https://www.hex-rays.com/index.shtml

Wei Jin and Alessandro Orso. 2012. BugRedux: Reproducing Field Failures for
In-house Debugging (ICSE ’12). IEEE Press, Piscataway, NJ, USA, 474-484.
Scott Kirkpatrick, C Daniel Gelatt, and Mario P Vecchi. 1983. Optimization by
simulated annealing. science 220, 4598 (1983), 671-680.

K. Kosako. 2002. Oniguruma. https://github.com/kkos/oniguruma

C. Lemieux and K. Sen. 2017. FairFuzz: Targeting Rare Branches to
Rapidly Increase Greybox Fuzz Testing Coverage. ArXiv e-prints (Sept. 2017).
arXiv:cs.SE/1709.07101

Yuekang Li, Bihuan Chen, Mahinthan Chandramohan, Shang-Wei Lin, Yang Liu,
and Alwen Tiu. 2017. Steelix: Program-state Based Binary Fuzzing (ESEC/FSE
’17). ACM Press, New York, NY, USA, 627-637.

LLVM. 2015. libFuzzer. https://llvm.org/docs/LibFuzzer.html

LLVM/Clang. 2013. Clang Static Analyzer. https://clang-analyzer.llvm.org/
Kin-Keung Ma, Khoo Yit Phang, Jeffrey S. Foster, and Michael Hicks. 2011. Di-
rected Symbolic Execution (SAS’11). Springer-Verlag, Berlin, Heidelberg, 95-111.
Paul Dan Marinescu and Cristian Cadar. 2013. KATCH: High-coverage Testing
of Software Patches (ESEC/FSE 2013). ACM Press, New York, NY, USA, 235-245.
Barton P. Miller, Louis Fredriksen, and Bryan So. 1990. An Empirical Study of
the Reliability of UNIX Utilities. Commun. ACM 33, 12 (Dec. 1990), 32-44.
Terence Parr. 2018. ANTLR (ANother Tool for Language Recognition). http:
/[www.antlr.org/

Hui Peng, Yan Shoshitaishvili, and Mathias Payer. 2018. T-Fuzz: Fuzzing by
Program Transformation (SP ’18). 697-710.

PHP. 1994. PHP: Hypertext Preprocessor. http://www.php.net/

Sanjay Rawat, Vivek Jain, Ashish Kumar, Lucian Cojocar, Cristiano Giuffrida,
and Herbert Bos. 2017. VUzzer: Application-aware Evolutionary Fuzzing (NDSS
'17). 1-14.

Agostino Sarubbo. 2017. binutils: NULL pointer dereference in con-
cat_filename (dwarf2.c). https://blogs.gentoo.org/ago/2017/10/03/
binutils-null-pointer-dereference-in-concat_filename-dwarf2-c

Agostino Sarubbo. 2017. binutils: NULL pointer dereference in concat_filename
(dwarf2.c) (INCOMPLETE FIX FOR CVE-2017-15023). https://blogs.
gentoo.org/ago/2017/10/24/binutils-null-pointer-dereference-in-concat_
filename- dwarf2- c-incomplete-fix-for-cve-2017-15023

Konstantin Serebryany and Marcel Bohme. 2017. AFLGo: Directing AFL to reach
specific target locations. https://groups.google.com/forum/#!topic/afl-users/
qcqFMJa2yn4

Bhargava Shastry, Markus Leutner, Tobias Fiebig, Kashyap Thimmaraju, Fabian
Yamaguchi, Konrad Rieck, Stefan Schmid, Jean-Pierre Seifert, and Anja Feldmann.
2017. Static Program Analysis as a Fuzzing Aid. In Research in Attacks, Intrusions,
and Defenses, Marc Dacier, Michael Bailey, Michalis Polychronakis, and Manos
Antonakakis (Eds.). Springer International Publishing, 26-47.

Cesanta Software. 2016. mjs. https://github.com/cesanta/mjs

Nick Stephens, John Grosen, Christopher Salls, Andrew Dutcher, Ruoyu Wang,
Jacopo Corbetta, Yan Shoshitaishvili, Christopher Kriigel, and Giovanni Vigna.
2016. Driller: Augmenting Fuzzing Through Selective Symbolic Execution (NDSS
’16). 1-16.

Yulei Sui and Jingling Xue. 2016. SVF: Interprocedural Static Value-flow Analysis
in LLVM (CC ’16). ACM Press, New York, NY, USA, 265-266.

Andras Vargha, Andras Vargha, and Harold D. Delaney. 2000. A critique and
improvement of the CL common language effect size statistics of McGraw and
Wong. Journal of Educational and Behavioral Statistics 25, 2 (2000), 101-132.
Junjie Wang, Bihuan Chen, Lei Wei, and Yang Liu. 2017. Skyfire: Data-Driven
Seed Generation for Fuzzing (SP ’17). 579-594.

T. Wang, T. Wei, G. Gu, and W. Zou. 2010. TaintScope: A Checksum-Aware
Directed Fuzzing Tool for Automatic Software Vulnerability Detection (SP '10).
497-512.

Weiguang Wang, Hao Sun, and Qingkai Zeng. 2016. SeededFuzz: Selecting and
Generating Seeds for Directed Fuzzing. 49-56.

Wen Xu, Sanidhya Kashyap, Changwoo Min, and Taesoo Kim. 2017. Designing
New Operating Primitives to Improve Fuzzing Performance (CCS ’17). ACM Press,
New York, NY, USA, 2313-2328.

Yinxing Xue, Zhengzi Xu, Mahinthan Chandramohan, and Yang Liu. 2018. Accu-
rate and Scalable Cross-Architecture Cross-OS Binary Code Search with Emula-
tion. IEEE Trans Software Engineering (2018), (to appear).

Michal Zalewski. 2014. American Fuzzy Lop. http://lcamtuf.coredump.cx/afl/
Michal Zalewski. 2014. Technical "whitepaper” for afl-fuzz. http://lcamtuf.
coredump.cx/afl/technical_details.txt

Michal Zalewski. 2016. "FidgetyAFL" implemented in 2.31b. https://groups.
google.com/forum/#!topic/afl-users/1PmKJC-EKZ0

https://software.intel.com/en-us/articles/pin-a-dynamic-binary-instrumentation-tool
https://software.intel.com/en-us/articles/pin-a-dynamic-binary-instrumentation-tool
https://github.com/aflgo/aflgo/issues
http://www.sciencedirect.com/science/article/pii/S030439750900067X
http://www.sciencedirect.com/science/article/pii/S030439750900067X
https://www.gnu.org/software/binutils/
https://medium.com/@dennybritz/exploration-vs-exploitation-f46af4cf62fe
https://medium.com/@dennybritz/exploration-vs-exploitation-f46af4cf62fe
http://arxiv.org/abs/1803.01307
https://arxiv.org/abs/1803.01307v2
https://lwn.net/Articles/744269/
https://lwn.net/Articles/744269/
https://github.com/google/fuzzer-test-suite/blob/master/libpng-1.2.56/test-libfuzzer.sh
https://github.com/google/fuzzer-test-suite/blob/master/libpng-1.2.56/test-libfuzzer.sh
https://github.com/google/fuzzer-test-suite
https://www.hex-rays.com/index.shtml
https://github.com/kkos/oniguruma
http://arxiv.org/abs/cs.SE/1709.07101
https://llvm.org/docs/LibFuzzer.html
https://clang-analyzer.llvm.org/
http://www.antlr.org/
http://www.antlr.org/
http://www.php.net/
https://blogs.gentoo.org/ago/2017/10/03/binutils-null-pointer-dereference-in-concat_filename-dwarf2-c
https://blogs.gentoo.org/ago/2017/10/03/binutils-null-pointer-dereference-in-concat_filename-dwarf2-c
https://blogs.gentoo.org/ago/2017/10/24/binutils-null-pointer-dereference-in-concat_filename-dwarf2-c-incomplete-fix-for-cve-2017-15023
https://blogs.gentoo.org/ago/2017/10/24/binutils-null-pointer-dereference-in-concat_filename-dwarf2-c-incomplete-fix-for-cve-2017-15023
https://blogs.gentoo.org/ago/2017/10/24/binutils-null-pointer-dereference-in-concat_filename-dwarf2-c-incomplete-fix-for-cve-2017-15023
https://groups.google.com/forum/#!topic/afl-users/qcqFMJa2yn4
https://groups.google.com/forum/#!topic/afl-users/qcqFMJa2yn4
https://github.com/cesanta/mjs
http://lcamtuf.coredump.cx/afl/
http://lcamtuf.coredump.cx/afl/technical_details.txt
http://lcamtuf.coredump.cx/afl/technical_details.txt
https://groups.google.com/forum/#!topic/afl-users/1PmKJC-EKZ0
https://groups.google.com/forum/#!topic/afl-users/1PmKJC-EKZ0

	Abstract
	1 Introduction
	2 Desired Properties of DGF
	2.1 Motivating Example
	2.2 Desired Properties of Directed Fuzzing
	2.3 AFLGo's Solution

	3 Approach Overview
	3.1 Static Analysis
	3.2 Fuzzing Loop

	4 Methodology
	4.1 Graph Construction
	4.2 Adjacent-Function Distance Augmentation
	4.3 Directedness Utility Computation
	4.4 Power Scheduling
	4.5 Adaptive Mutation
	4.6 Seed Prioritization

	5 Evaluation
	5.1 Evalution Setup
	5.2 Static Analysis Statistics
	5.3 Crash Exposure Capability
	5.4 Target Site Covering
	5.5 Answers to Research Questions
	5.6 Threats to Validity

	6 Related Work
	7 Conclusions
	References

