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ABSTRACT

The wide adoption of open source third-party libraries can propa-
gate vulnerabilities that originally exist in third-party libraries through
dependency chains to downstream projects. To mitigate this secu-
rity risk, vulnerability exploitation analysis has been proposed to fur-
ther reduce false positives of vulnerability reachability analysis. How-
ever, existing approaches work less effectively when the vulnerable
function of the vulnerable library is indirectly invoked by a client
project through a call chain of multiple steps.

To address this problem,we propose a step-wise approach, named
Magneto, to exploit vulnerabilities in dependent libraries of a client
project through LLM-empowered directed fuzzing. Its core idea is
to decompose the directed fuzzing for the whole call chain (from
the client project to the vulnerable function) into a series of step-
wise directed fuzzing for each step of the call chain. To empower di-
rected fuzzing, it leverages LLM to facilitate the initial seed genera-
tion. Our evaluation has demonstrated the effectiveness of Mag-
neto over the state-of-the-art; i.e., Magneto achieves an improve-
ment of at least 75.6% in successfully exploiting the vulnerability.
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1 INTRODUCTION

Open source third-party libraries play a crucial role in modern soft-
ware development, providing a wealth of foundational functionali-
ties. Developers can reuse these functionalities by declaring third-
party libraries as dependencies, significantly reducing development
time and labor cost [23, 27, 30, 39, 45]. Therefore, more and more de-
velopers adopt third-party libraries in their projects. Maven Central,
as the most widely used library repository in the Java ecosystem,
records an average of 37.8 billion downloads per month [38].

In fact, 3.97 of the 37.8 billion monthly downloads consume vul-
nerable libraries [38]. Therefore, this practice can propagate vulner-
abilities that originally exist in third-party libraries through depen-
dency chains to downstream projects, which exposes these projects
to security threat of these vulnerabilities. For example, the Log4Shell
vulnerability (CVE-2021-44228) in the Apache Log4j library affected
35,863 Java libraries as of December 16, 2021, amounting to over 8%
of all libraries on Maven Central [20]. Besides, it is often difficult for
downstream projects to timely remediate these vulnerabilities as
vulnerable libraries can be transitively depended on. The deeper the
vulnerability is in a dependency chain, themore steps are needed for
it to be fixed. For example, only around 7,000 (19.5%) of the affected
libraries of the Log4Shell vulnerability are direct dependencies [20].
Moreover, after the vulnerabilities are fixed by releasing a new li-
brary version, developers often neglect timely dependency upgrade,
due to the potentially introduced compatibility issues [32, 45]. This
leaves their projects exposed to the security risk of exploitation.

Problem. Various approaches have been proposed to analyze
and mitigate the security risk of vulnerabilities in dependencies. In
particular, vulnerability existence analysis employs software com-
position analysis to extract a project’s dependency tree, and then
checks the presence of vulnerable dependencies [22, 31, 56]. How-
ever, they do not consider whether the project invokes the vulnera-
ble functions, and hence incur high false positives. To resolve this
problem, vulnerability reachability analysis adopts call graph gener-
ation to build a project’s call graph, and then checks the presence of
call chains through which to reach the vulnerable functions [24, 33,
37, 50, 53, 57]. However, they fail to consider whether the project
triggers the vulnerabilities, and thus still cause false positives.
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To address this issue, vulnerability exploitation analysis [10, 25,
28] has been recently proposed. Siege [25] uses the vulnerable code
in a vulnerable library as the goal, and guides EvoSuite [14] to gen-
erate test cases for the project to reach the vulnerable code. Differ-
ently, Transfer [28] uses the program state when the vulnerable
function is called in a vulnerable library’s vulnerability-triggering
test case as the goal, and guides EvoSuite to generate test cases for the
project to call the vulnerable function with the same program state.
Vesta [10] uses EvoSuite to generate test cases for the project to
reach the vulnerable function, and then migrates parameters from
a vulnerable library’s vulnerability-triggering test case into these
generated test cases based on predefined rules. These generated
test cases by these approaches are considered as exploits to trigger
the vulnerability in the dependent library from the project side.

These approaches work well in simple scenarios where the vul-
nerable function is directly invoked by the project (i.e., the call chain
from the project to the vulnerable function is one-step). However, in
complex scenarios where the vulnerable function is indirectly in-
voked by the project through a call chain of multiple steps, the ex-
ploitation process becomes intrinsically complex, making these ap-
proaches hard to generate an effective exploit. As reported byWu et
al.’ work [50], the majority of call chains to the vulnerable function
have multiple steps. Unfortunately, the majority of the experimental
ground-truth data set in these approaches consider simple scenarios
rather than complex scenarios, making their practical effectiveness
in complex scenarios not comprehensively evaluated.

OurApproach.To overcome the limitation of existing approaches,
we propose a step-wise approach, named Magneto, to exploit vul-
nerabilities in dependent libraries of a client project through LLM-
empowered directed fuzzing. The core idea of Magneto is to break
down the directed fuzzing for the whole call chain (from the client
project to the vulnerable function) into a series of step-wise directed
fuzzing for each step of the call chain in an reverse order. In other
words, we decompose the whole difficult exploit generation task
into a series of relatively simple exploit generation tasks.

Specifically, given a client project and a library’s exploit (in the
form of a test case) that triggers a vulnerability in the library, Mag-
netoworks in two steps. First, it performs vulnerability reachability
analysis to identify all the call chains that statically reach the vul-
nerable function. Then, for each step (in the form of a pair ⟨𝐹𝑖 , 𝐹𝑖−1⟩
meaning that 𝐹𝑖 calls 𝐹𝑖−1) of each of the call chains in an reverse or-
der (i.e., 𝐹𝑖−1 is the vulnerable function in the library in the first step),
Magneto conducts LLM-empowered directed fuzzing to generate
the exploit. During this step-wise directed fuzzing, Magneto gen-
erates an initial seed based on the LLM’s semantic understanding of
𝐹𝑖 as well as the exploit generated in the previous step (or the given
exploit if in the first step). This initial seed is helpful to enhance the
likelihood of successful exploit generation. Using this initial seed,
Magneto runs heuristic-directed fuzzing to generate the exploit.
Magneto can be adopted by developers to discover exploitable vul-
nerabilities in project dependencies, and provide them with reach-
able call chains and exploits as confident evidences to quickly miti-
gate the security risk in dependencies.

Evaluation. We evaluate Magneto and the state-of-the-art ap-
proaches Siege [25], Transfer [28] andVesta [10].We collect 32 vul-
nerabilities (affecting 21 third-party libraries and 45 vulnerable func-
tions) and 49 GitHub projects which can exploit the vulnerabilities.
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public void testSuppressClassPropertyByDefault() throws Exception { 
   Object bean = new Object();   
   try {        
   Object clazz = PropertyUtils.getProperty(bean, "class");                
   fail("Could access class property!"); // Exploit Success
  } catch (final NoSuchMethodException ex) {        

// Exploit Fail
  }
}

Figure 1: An Exploit for CVE-2019-10086

In total, we collect 84 pairs of vulnerability and project (where the
project can exploit the vulnerability) and 182 exploitable call chains.
Magneto successfully generates an exploit for 79 pairs and 135 call
chains, while the best of the state-of-the-art successfully generates
an exploit for 45 pairs and 53 call chains. This indicates an improve-
ment of at least 75.6% and 154.7% over the state-of-the-art. Magneto
averagely takes 10.9 minutes to exploit a vulnerability for a project,
which is acceptable considering its significant effectiveness.

Contribution. This work makes the following contributions.

• We proposed a step-wise approach, namedMagneto, to generate
exploits for vulnerabilities in dependent libraries.

• We conducted extensive experiments to demonstrate the effec-
tiveness and efficiency of Magneto.

2 MOTIVATING EXAMPLE

Before version 1.9.3 of Apache commons-beanutils [15], there was a
vulnerability identified as CVE-2019-10086. It allowed attackers to
access the classloader via the class property available on all Java ob-
jects, leading to security risks [34]. Fig. 1 shows an exploit of this vul-
nerability. The exploit passes two parameters to call the vulnerable
function PropertyUtils.getProperty, a regular object bean and a
string "class" (Line 4). As bean does not have a class property, this
function call is expected to throw a NoSuchMethodException. How-
ever, this function call returns the unexpected class object of Object
(i.e., Object.class), thereby triggering the vulnerability.

Prior to version 1.7, commons-validator [16] depended on a vul-
nerable version of commons-beanutils that had CVE-2019-10086 [1].
As shown by Fig. 2, there exists a reachable call chain from a func-
tion in commons-validator to the vulnerable function in commons-
beanutils, which is Form.validate→ Field.validate→ Field.
getIndexedPropertySize → PropertyUtils.getProperty. We
denote the functions along this call chain in the reverse order as
𝐹0, 𝐹1, 𝐹2 and 𝐹3. The existence of a reachable call chain does not
mean that the vulnerability can be exploited. Therefore, we need to
conduct exploitability analysis, which brings some challenges.

Challenge 1: How to evaluate the exploitability of a vul-

nerability through a reachable call chain?

In the last function call (i.e., 𝐹1 calls 𝐹0 at Line 59), the second ar-
gument of 𝐹0 (i.e., the return value of getIndexedListProperty)
is required to be "class" to exploit the vulnerability. This means
that the value of the indexedListProperty field in the receiver ob-
ject of 𝐹1 should be "class". When this receiver object executes 𝐹1,
passing a regular instance of Object can exploit the vulnerability
in 𝐹0. Transfer mimics the program state during the vulnerability-
triggering test case execution (i.e., the test case in Fig. 1), and hence
successfully generates an exploit for 𝐹1. However, Vesta only con-
siders function arguments directly passed to vulnerable functions,
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class Form { // Form.java
 protected List<Field> lFields;   
 protected Map<String, Field> hFields; 

 ValidatorResults validate(Map<String, Object> params, ...,
int page, String fieldName) {        

 ValidatorResults results = new ValidatorResults();
 if (fieldName != null) {          
  Field field = hFields.get(fieldName);        
    if (field == null) { throw exception }       
    if (field.getPage() <= page) {             
       field.validate(params, ...); /* 1st Invocation */        
    }        
 } else {          
   Iterator<Field> fields = this.lFields.iterator();       
   while (fields.hasNext()) {             
   Field field = fields.next();                
   if (field.getPage() <= page) {            
       field.validate(params, ...); /* 1st Invocation */ 
      }           
    }      
  }      
  return results;  
 }

}

class Field { // Field.java
String depends;
String indexedListProperty;

public String getDepends() { 
    return this.depends;   
}    
public boolean isIndexed() {      
  return ((indexedListProperty != null 

&& indexedListProperty.length() > 0));    
}   
public ValidatorResults validate(Map<String, Object> params, ... ) {       
 if (this.getDepends() == null) {        
    return new ValidatorResults();       
 }
 ValidatorResults allResults = new ValidatorResults();
 Object bean = params.get("java.lang.Object");

 int numberOfFieldsToValidate = this.isIndexed() ? 
this.getIndexedPropertySize(bean) : 1; 

/* 2nd Invocation */
   
 for (int i= 0; i< numberOfFieldsToValidate; fieldNumber++) {...}
 return allResults; 

 }

String getIndexedListProperty() { 
    return this.indexedListProperty;    
}

int getIndexedPropertySize(Object bean){ /* 3rd Invocation */
    {...}
    Object indexedProperty = PropertyUtils.getProperty(bean, 

this.getIndexedListProperty()); /* vulnerable method */ 
    {...}    
}  

}

Figure 2: A Library Affected by CVE-2019-10086

so it cannot resolve the case where the return value of other func-
tions is used as the argument of the vulnerable function in its pre-
defined migration rules, and thus fails to generate an exploit for 𝐹1.

In the second function call (i.e., 𝐹2 calls 𝐹1 at Line 46), the argu-
ment bean passed to 𝐹1 comes from params (Line 43). params is the
first parameter of 𝐹2, which is a Map; and the key for retrieving bean
is "java.lang.Object". Therefore, to exploit the vulnerability via
𝐹2, params is required to set to {"java.lang.Object" : an instance
of Object}, while preserving the program state when 𝐹1 is called in
the exploit generated in the previous step. Since the function argu-
ment is derived from a complex object (e.g., Map) with intricate data
dependencies, and Transfer relies on similarity rules (e.g., string
edit distance) to support simple data dependencies, it is unable to
generate an exploit for 𝐹2 to trigger the vulnerability in 𝐹0.

In the first function call (i.e, 𝐹3 calls 𝐹2 at Line 12 and 19), it is
required to invoke 𝐹2 using the receiver object when 𝐹2 is called in
the exploit generated in the previous step. As this receiver object is
acquired through the lFields and hFields fields in 𝐹3, it must be
put into these two fields. Furthermore, the data flow indicates that

the parameter of 𝐹3 is directly passed as the first argument to 𝐹2.
Thus, the first argument when 𝐹2 is called in the exploit generated
in the previous step can be used to pass to 𝐹3. By this way, we can
generate an exploit for 𝐹3 to trigger the vulnerability in 𝐹0.

The above procedure reveals the transitivity of exploitability along
the call chain. Specifically, once we know the state of arguments and
field values of the receiver object for 𝐹1 to exploit a vulnerability,
we only need to ensure that when 𝐹2 executes and calls 𝐹1, 𝐹1 has
the same state. In this way, we can exploit the vulnerability through
𝐹2. Similarly, the same process applies to 𝐹3. Given this property, we
decompose a long call chain into an ordered sequence of call steps.
For each call step, we use the exploit information from the previous
call step to assist the current call step in exploiting the vulnerability,
thereby significantly enhancing the success rate of generating an
exploit in the complex scenarios.

Challenge 2: How to effectively satisfy the potentially com-

plicated control flow and data flow conditions in a reachable

call chain to exploit an vulnerability?

From the preceding analysis, we know that to generate an exploit
for 𝐹1, it is crucial to set the indexedListProperty field of the re-
ceiver object of 𝐹1 to "class". To generate an exploit for 𝐹2, it is
essential to ensure that the return values of getDepends (Line 39)
and isIndexed (Line 45) meet the conditions for invoking 𝐹1 (i.e.,
getDepends returns non-null and isIndexed returns true), while
the argument to 𝐹2 needs tomeet specific conditions (e.g., params in-
cludes {"java.lang.Object" : an instance of Object}). When con-
structing an exploit for 𝐹3, there are two branches that can lead to the
invocation of 𝐹2 (Line 8–13 and Line 14–22), but different branches
need to satisfy different control flow and data flow conditions.

Transfer obtains the program state via a vulnerability-triggering
test case. However, this program state only captures the condition at
the vulnerable function call, and does not include the program state
before calling the vulnerable function. Therefore, it heavily relies on
EvoSuite’s search algorithm to satisfy the conditions of calling the
vulnerable function. Similarly, Vesta defines search targets to guide
EvoSuite in generating test cases that call the vulnerable function.
However, EvoSuite can only handle simple path constraints. When
dealing with complex scenarios such as the invocation of vulnerable
function via functions like 𝐹2 and 𝐹3, EvoSuite fails to generate test
cases that reach the vulnerable function, resulting in false negatives.

Our initial attempt was to use symbolic execution for exploit
generation. Symbolic execution achieves more accurate results but
suffers from scalability issues with complex constraints (e.g., ob-
ject combination constraints). Recent studies [12, 29, 40, 42, 55]
have shown that large language models (LLMs) exhibit significant
potential in understanding code semantics. LLMs trained on code
can perform tasks such as program analysis, virus detection, and
vulnerability identification, indicating that LLMs can not only cap-
ture the syntactic structure of code but also deeply understand its
logic and intent (e.g., infer function states). Therefore, we attempt
to leverage LLMs, combining static and dynamic analysis, to solve
these complex constraints on the call chain.

3 APPROACH

Inspired by our motivating example in Sec. 2, we propose Magneto
to automatically exploit vulnerabilities in dependent libraries.
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Figure 3: Approach Overview of Magneto

3.1 Approach Overview

Fig. 3 presents the approach overview of Magneto. It takes a client
project as the input. Magneto works in five steps to exploit vulner-
abilities in dependent libraries of the client project. First, it conducts
a lightweight vulnerability reachability analysis to identify all call
chains from the client project that can reach vulnerable functions
(Sec. 3.2). Next, it conducts exploitability analysis on each reachable
call chain 𝐹𝑛 → 𝐹𝑛−1 → ...→ 𝐹0, where 𝐹𝑛 is a function in the client
project, and 𝐹0 is the vulnerable function in the dependent library. It
breaks down the call chain into a sequence of call steps in the reverse
order, and conducts our step-wise LLM-empowered directed fuzzing
on each call step ⟨𝐹𝑖 , 𝐹𝑖−1⟩ (𝑖 = 1, ..., 𝑛) individually. The final goal
is to generate an exploit for 𝐹𝑛 to trigger the vulnerability in 𝐹0.

For each call step ⟨𝐹𝑖 , 𝐹𝑖−1⟩, the exploit for 𝐹𝑖−1 is either gener-
ated in the previous call step analysis (when 𝑖 > 1) or directly pro-
vided by a vulnerability database (when 𝑖 = 1). Given 𝐹𝑖−1 and the
exploit for 𝐹𝑖−1, Magneto extracts the exploit contextwhich records
the required program state for 𝐹𝑖−1 to exploit the vulnerability in 𝐹0
(Sec. 3.3). This program state includes the receiver object on which
𝐹𝑖−1 is called as well as the arguments passed to call 𝐹𝑖−1. Mean-
while, given 𝐹𝑖 and 𝐹𝑖−1, Magneto uses prompt engineering tomake
LLM infer the seed template which records the required program
state for 𝐹𝑖 to call 𝐹𝑖−1 (Sec. 3.4). This program state includes the
receiver object on which 𝐹𝑖 is called and the arguments passed to
call 𝐹𝑖 as well as their data flows to 𝐹𝑖−1. Subsequently, Magneto
combines the exploit context and the seed template to synthesize a
seed which is expected to execute 𝐹𝑖 while preserving the required
program state for 𝐹𝑖−1 to exploit the vulnerability in 𝐹0 (Sec. 3.5).

Due to the potentially complicated data flows to 𝐹𝑖−1, the synthe-
sized seed may fail to preserve the required program state for 𝐹𝑖−1.
Therefore, given the synthesized seed as the initial seed, Magneto

finally leverages a directed fuzzer to mutate seeds such that the re-
quired program state for 𝐹𝑖−1 becomes satisfied (Sec. 3.6). Our di-
rected fuzzer utilizes hybrid feedback from the seed execution path
to make better selections and mutations of seeds, ultimately exploit-
ing the vulnerability in 𝐹0. Then, the currently generated exploit
assists in the exploitability analysis of the next call step.

Similar to existing approaches [10, 25, 28], Magneto is currently
implemented for Java projects. However, our approach is generaliz-
able, and we will extend it to support other programming languages.

3.2 Vulnerability Reachability Analysis

Given a client project, the goal of vulnerability reachability analysis
is to identify reachable call chains to vulnerable functions through a
lightweight dependency tree and call graph analysis.

VulnerabilityDatabase.The vulnerability database provides the
fundamental knowledge about vulnerabilities in dependent libraries
[48, 49, 52]. It is required by all existing vulnerability existence, reach-
ability and exploitation analysis methods. Many companies, includ-
ing GitHub, GitLab, Veracode and Snyk, provide publicly available
vulnerability databases. For each vulnerability, we collect the vul-
nerable dependencies (denoted as a 3-tuple of groupId, artifactId
and version in Maven), the vulnerable function in each vulnerable
dependency, the exploit for each vulnerable function, and the oracle
for each exploit (which is used to validate whether the vulnerability
is exploited). In summary, our database consists of a set of vulnera-
ble dependencies 𝑉𝑑𝑒𝑝 , a set of vulnerable functions 𝑉𝑓 , and a set
of exploits 𝑉𝑒𝑥𝑝 with their corresponding oracles 𝑉𝑜𝑟𝑎𝑐𝑙𝑒 . Here, we
leverage 𝑉𝑑𝑒𝑝 and 𝑉𝑓 in our vulnerability reachability analysis.

Vulnerability-AwareDependencyTreeConstruction.Given
the client project, Magneto uses the functionality provided by de-
pendency managers to construct the dependency tree. Specifically,
Magneto uses the Maven command mvn dependency:tree to ob-
tain the dependency tree of the client project. To only consider de-
pendencies that are used in the production environment [36], Mag-
neto filters out dependencies with the scope test. Then, Magneto
prunes the generated dependency tree by performing a depth-first
search (DFS) starting from the root (i.e., the client project). When
a vulnerable dependency in 𝑉𝑑𝑒𝑝 is encountered, the dependency
chain from the root to this vulnerable dependency is recorded. After
the DFS is complete, we only keep the dependencies in the recorded
dependency chains and remove all other dependencies unrelated to
the vulnerabilities. The resulting dependency tree is regarded as a
vulnerability-aware dependency tree 𝑉𝑡𝑟𝑒𝑒 .

Call Graph Generation. Magneto downloads the correspond-
ing JAR files for the dependencies in 𝑉𝑡𝑟𝑒𝑒 from the Maven reposi-
tory, and generates the JAR file for the client project. Given these
JAR files,Magneto leverages the class hierarchy analysis (CHA) [11]
in Soot [19] to generate the call graph which contains call relations
among the client project and the dependencies in 𝑉𝑡𝑟𝑒𝑒 .

Reachable Call Chain Identification.Given the generated call
graph,Magneto identifies the call chains that reach vulnerable func-
tions in𝑉𝑓 . Specifically, Magneto conducts a DFS on the generated
call graph, starting from each public function in the client project.
When a vulnerable function in 𝑉𝑓 is encountered during the DFS,
the call chain from the public function in the client project to this
vulnerable function is recorded as a reachable call chain. After the

4
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DFS is complete,Magneto identifies all the reachable call chains.We
denote each reachable call chain as 𝐹𝑛 → 𝐹𝑛−1 → ...→ 𝐹0, where 𝐹𝑛
is the public function in the client project, and 𝐹0 is the vulnerable
function in 𝑉𝑓 in the vulnerable dependency in 𝑉𝑑𝑒𝑝 .

3.3 Exploit Context Extraction

During our step-wise LLM-empowered directed fuzzing on each call
step ⟨𝐹𝑖 , 𝐹𝑖−1⟩, the first step of Magneto is to extract the exploit con-
text of 𝐹𝑖−1 from the exploit for 𝐹𝑖−1 (this exploit can be obtained
from𝑉𝑒𝑥𝑝 in vulnerability database). This exploit context records the
required program state for 𝐹𝑖−1 to exploit the vulnerability in 𝐹0
through the call chain 𝐹𝑖−1 → ...→ 𝐹0. Formally, we denote the ex-
ploit context of 𝐹𝑖−1 as 𝐶𝐹𝑖−1 , which is a 3-tuple ⟨𝐹𝑖−1, 𝐴𝐹𝑖−1 , 𝑅𝐹𝑖−1 ⟩.
Here,𝐴𝐹𝑖−1 denotes the arguments that are passed to call 𝐹𝑖−1 in its
exploit, and 𝑅𝐹𝑖−1 denotes the receiver object on which 𝐹𝑖−1 is called
in its exploit. Specifically, if 𝐹𝑖−1 is a constructor or a static function,
𝑅𝐹𝑖−1 is ∅. Therefore, as long as we call 𝐹𝑖−1 on 𝑅𝐹𝑖−1 and pass 𝐴𝐹𝑖−1
to its arguments, we can successfully exploit the vulnerability in 𝐹0.

To extract the exploit context𝐶𝐹𝑖−1 , Magneto uses ASM [2] to au-
tomatically instrument code at the beginning of the function body of
𝐹𝑖−1. If 𝐹𝑖−1 is a constructor or a static function, the instrumented
code only records the passed arguments during the execution of
𝐹𝑖−1; otherwise, the instrumented code records both the passed ar-
guments and the receiver object during the execution of 𝐹𝑖−1. Then,
Magneto executes the exploit for 𝐹𝑖−1, and collects the arguments
and receiver object when 𝐹𝑖−1 is executed in the exploit.

Example. For the motivating example in Sec. 2, before perform-
ing fuzzing on the call step ⟨𝐹2, 𝐹1⟩, we first need to obtain the con-
text𝐶𝐹1 of 𝐹1. By executing the exploit for 𝐹1 which is generated in
the analysis of the previous call step ⟨𝐹1, 𝐹0⟩, we can obtain𝐶𝐹1 .𝐴𝐹1 ,
which is an instance of Object, and 𝐶𝐹1 .𝑅𝐹1 , which is a receiver
object of 𝐹1, with its indexedListProperty field set to "class".

3.4 Seed Template Generation

During our step-wise LLM-empowered directed fuzzing on each call
step ⟨𝐹𝑖 , 𝐹𝑖−1⟩, the second step of Magneto is to utilize LLM to infer
how to set the the fields of the receiver object on which 𝐹𝑖 is called
and the arguments passed to call 𝐹𝑖 so as to ensure that 𝐹𝑖−1 is in-
voked in 𝐹𝑖 . Theoretically, the receiver object and arguments to call
𝐹𝑖 is are expressions over the receiver object and arguments to call
𝐹𝑖−1 based on data flows from 𝐹𝑖 to 𝐹𝑖−1, which is referred to as seed
template, denoted as 𝑇⟨𝐹𝑖 ,𝐹𝑖−1 ⟩ . It is challenging to scalably derive
𝑇⟨𝐹𝑖 ,𝐹𝑖−1 ⟩ by static analysis. Instead, we propose a prompt to instruct
LLM to approximate this process and partially derive 𝑇⟨𝐹𝑖 ,𝐹𝑖−1 ⟩ .

Figure 4 illustrates the prompt for generating the seed template
𝑇⟨𝐹𝑖 ,𝐹𝑖−1 ⟩ . Specifically, [%CODE%] indicates the focal code that facil-
itates the understanding of how 𝐹𝑖 calls 𝐹𝑖−1. [%CALLER%] denotes
the name of the caller function (i.e., 𝐹𝑖 ), while [%CALLEE%] denotes
the name of the callee function (i.e., 𝐹𝑖−1). [%ARGS%] and [%RO%]
refers to the arguments and receiver object required to call 𝐹𝑖−1. In
fact, [%ARGS%] and [%RO%] are extracted in Sec. 3.3, but to relieve
the burden on LLM,we symbolize them, using [⟨0⟩, ⟨1⟩, ..., ⟨𝑛−1⟩] to
represent these arguments (where 𝑛 is the number of arguments to
call 𝐹𝑖−1) and ⟨𝑅𝑂⟩ to represent the receiver object. In addition, the
JSON format of the returned 𝑇⟨𝐹𝑖 ,𝐹𝑖−1 ⟩ is defined in detail, which
facilitates the subsequent processing of LLM’s result.

Prompt Template

System: You are a professional Java code master. Just return
the JSON body without additional explanation or comment.

Prompt Content:

[%CODE%]

In the provided code snippet, [%CALLER%] calls [%CALLEE%].
The objective is to set the fields of the receiver object and the
arguments for [%CALLER%] to ensure that [%CALLEE%] is
invoked with [%ARGS%] by [%RO%]. Note that [%ARGS%]
and [%RO%] is just a list of symbol, representing the arguments
and receiver object of [%CALLEE%]. You should use these
symbols for the analysis.
The returned JSON must satisfy the following format:
{

"FieldProperties" : {
"${filed name}" : ${state},
// Additional field properties as needed

},
"Arguments" : {

"0" : ${state},
// Additional argument as needed

}
}
FieldProperties describes the conditions that must be satisfied by
the fields of the receiver object of [%CALLER%], andArguments
describes the conditions that must be satisfied by the arguments
of [%CALLER%].
FieldProperties and Arguments correspond to a JSON structure.
${field name} represents the name of the field of the receiver ob-
ject. "0" represents the first argument. ${state} represents the
value of the corresponding field or argument, which is in a JSON
format of { type : "${type}", value : "${value}" }. ${type} would be
a primitive type or the class name of an object.
If the type is a primitive type, such as int, char, ..., ${value} di-
rectly holds its value or symbol.
If the type is a reference type or Map type, ${value} is in a JSON
format of a map.
If the type is an Array, Set or List type, ${value} corresponds to
a JSON format of an array.

Figure 4: Prompt for Generating Seed Template

[%CODE%] plays a crucial role in the prompt, determining LLM’s
understanding of the data flow logic of calling 𝐹𝑖−1 in 𝐹𝑖 . Therefore,
we propose an algorithm for generating focal code, aimed at maxi-
mally preserving the processing logic involved in the procedure of
calling 𝐹𝑖−1 in 𝐹𝑖 , while trimming away unrelated code. It helps LLM
avoid distractions from non-relevant code as well as token limit vio-
lations. We denote the focal code as the functions and fields of each
class used during the procedure of calling 𝐹𝑖−1 in 𝐹𝑖 . Specifically, to
avoid introducing classes not closely related to 𝐹𝑖 , we only consider
classes in the same dependency as the residing class of 𝐹𝑖 .

First, Magneto uses JD-Core [18] to decompile the JAR file of the
dependency which 𝐹𝑖 belongs to, and then uses JavaParser [26] to
trim 𝐹𝑖 ’s code, only keeping the statements before the last call (as 𝐹𝑖
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Response of LLM

"FieldProperties" : {
"indexedListProperty" : {

"type" : "java.lang.String",
"value" : "Any non-empty string"

}
},
"Arguments" : {

"0" : {
"type" : "java.util.Map",
"value" : {
"java.lang.Object" : {

"type" : "java.lang.Object",
"value " : "<0>"

}
...

}

Figure 5: Response of the LLM in Generating Seed Template

may call 𝐹𝑖−1 multiple times) to 𝐹𝑖−1 and trimming the statements
after the last call to 𝐹𝑖−1. We denote the resulting 𝐹𝑖 as 𝐹𝑖 .

Next, Magneto leverages the functions and fields used in 𝐹𝑖 for
searching. We define two sets, 𝑃𝐹 and 𝑃𝐴, denoting the functions
and fields of the classes to be included in the focal code, respectively.
Magneto first uses ASM [2] to extract the functions𝑈𝐹

𝐹𝑖
and fields

𝑈𝑃
𝐹𝑖

used in 𝐹𝑖 , and adds them to 𝑃𝐹 and 𝑃𝐴, respectively. At the
same time,𝑈𝐹

𝐹𝑖
is used to initialize the search queue𝑄 . Then, Mag-

neto runs a breadth-first search (BFS) using 𝑄 . If 𝑄 is not empty, a
function 𝐹𝑘 is dequeued from𝑄 , Magneto uses ASM to extract func-
tions𝑈𝐹𝐹𝑘 and fields𝑈𝐴𝐹𝑘 used in 𝐹𝑘 (only if 𝐹𝑘 resides in the same
dependency as 𝐹𝑖 ), adds them to 𝑃𝐹 and 𝑃𝐴, and enqueues𝑈𝐹𝐹𝑘 into
𝑄 . If 𝑄 is empty, our search process is complete. Notice that we set
the maximum BFS search depth to 2. Specifically, each time a new
𝑈𝐹𝐹𝑘 is added to 𝑄 , the depth from 𝐹𝑖 increases by one. As long as
the depth does not exceed 2, our BFS continues; otherwise, our BFS
stops. This prevents introducing massive classes that exceed the
token limit of LLM, and keeps the relevance of identified code.

Finally, Magneto trims the code of the classes where the func-
tions in 𝑃𝐹 and fields in 𝑃𝐴 reside, keeping only the functions in
𝑃𝐹 and the fields in 𝑃𝐴. Then, Magneto concatenates them with 𝐹𝑖
to form the focal code, and utilizes LLM with the complete prompt.
LLM’s response is the derived seed template 𝑇⟨𝐹𝑖 ,𝐹𝑖−1 ⟩ .

Example. For the motivating example in Sec. 2, Fig. 5 shows the
inferred seed template for the call step ⟨𝐹2, 𝐹1⟩. In FieldProperties,
LLM correctly infers that the indexedListProperty field of the re-
ceiver object of 𝐹2 must be set to a non-empty string to ensure that
isIndexed at Line 45 returns true, which is a prerequisite for in-
voking 𝐹1 at Line 46. However, the depends field is not inferred by
LLM, which must be set to non-null as required by the code at Line
39. This will be resolved by our directed fuzzer in Sec. 3.6. In Argu-
ments, LLM correctly infers that the first argument of 𝐹2 should be
a map that contains a key-value instance. The key of this instance is
"java.lang.Object", and the value is an object that will be passed
to 𝐹1 as the first argument (represented by its symbol ⟨0⟩).

3.5 Initial Seed Synthesis

After getting𝐶𝐹𝑖−1 and𝑇⟨𝐹𝑖 ,𝐹𝑖−1 ⟩ , the third step of Magneto is to syn-
thesize a seed that will be used as the inital seed for our directed
fuzzing for the call step ⟨𝐹𝑖 , 𝐹𝑖−1⟩. We define the seed of 𝐹𝑖 as 𝑆𝐹𝑖 ,
which is a 4-tuple ⟨𝐹𝑖 , 𝐴𝐹𝑖 , 𝑅𝐹𝑖 , 𝑆𝑐𝑜𝑟𝑒⟩, where 𝐹𝑖 represents the tar-
get function that will be executed and fuzzed, 𝐴𝐹𝑖 is the arguments
passed to call 𝐹𝑖 , 𝑅𝐹𝑖 is the receiver object on which 𝐹𝑖 is called, and
𝑆𝑐𝑜𝑟𝑒 denotes the fitness score that will be introduced in Sec 3.6.

In fact, the seed template𝑇⟨𝐹𝑖 ,𝐹𝑖−1 ⟩ which is inferred by LLM in a
JSON format (e.g., Fig. 5) can be considered as a kind of serialization
result of the expected 𝑆𝐹𝑖 .𝐴𝐹𝑖 and 𝑆𝐹𝑖 .𝑅𝐹𝑖 . In that sense, we can use a
kind of deserialization on𝑇⟨𝐹𝑖 ,𝐹𝑖−1 ⟩ to instantiate 𝑆𝐹𝑖 .𝐴𝐹𝑖 and 𝑆𝐹𝑖 .𝑅𝐹𝑖 .
Specifically, Magneto uses FieldProperties in𝑇⟨𝐹𝑖 ,𝐹𝑖−1 ⟩ to instantiate
𝑆𝐹𝑖 .𝑅𝐹𝑖 . For fields listed in FieldProperties, it parses their inferred
values and assigns them to the corresponding fields in 𝑆𝐹𝑖 .𝑅𝐹𝑖 . Simi-
larly,Magneto usesArguments in𝑇⟨𝐹𝑖 ,𝐹𝑖−1 ⟩ to instantiate 𝑆𝐹𝑖 .𝐴𝐹𝑖 . For
the 𝑖-th argument, it parses the inferred value and assigns it to the
𝑖-th argument in 𝑆𝐹𝑖 .𝐴𝐹𝑖 . During the value parsing and assignment,
the symbols ⟨0⟩, ⟨1⟩, ..., ⟨𝑛 − 1⟩, ⟨𝑅𝑂⟩ in𝑇⟨𝐹𝑖 ,𝐹𝑖−1 ⟩ is replaced by the
corresponding objects in 𝐶𝐹𝑖−1 ; i.e., ⟨𝑖⟩ is replaced by the 𝑖-th argu-
ment in 𝐶𝐹𝑖−1 .𝐴𝐹𝑖−1 , and ⟨𝑅𝑂⟩ is replaced by 𝐶𝐹𝑖−1 .𝑅𝐹𝑖−1 .

The currently synthesized 𝑆𝐹𝑖 .𝐴𝐹𝑖 and 𝑆𝐹𝑖 .𝑅𝐹𝑖 are inferred by LLM
to expect that after seed execution, the receiver object and argu-
ments passed to call 𝐹𝑖−1 could satisfy the required program state
(i.e., 𝐶𝐹𝑖−1 .𝐴𝐹𝑖−1 ) for exploiting the vulnerability. However, we ob-
serve that LLM is often not effective in handling [%RO%], and thus
we use static analysis to complement 𝑆𝐹𝑖 .𝐴𝐹𝑖 and 𝑆𝐹𝑖 .𝑅𝐹𝑖 .

Specifically, if 𝐹𝑖 and 𝐹𝑖−1 belong to the same class, Magneto
traverses each field in 𝐶𝐹𝑖−1 .𝑅𝐹𝑖−1 . If a field is not null, it assigns its
value to the corresponding field in 𝑆𝐹𝑖 .𝑅𝐹𝑖 . This is because such fields
in the receiver object of 𝐹𝑖−1 often participate in the vulnerabil-
ity exploitation, and thus these fields need to be passed to the re-
ceiver object of 𝐹𝑖 . However, when the exploitation requires the field
to be null, this strategy might miss assigning the correct value to
the field in 𝑆𝐹𝑖 .𝑅𝐹𝑖 . To mitigate this issue, we rely on our directed
fuzzing in Sec. 3.6 to correct such missed fields.

If 𝐹𝑖 and 𝐹𝑖−1 do not belong to the same class, in order to ensure
that 𝐹𝑖 can call 𝐹𝑖−1 through𝐶𝐹𝑖−1 .𝑅𝐹𝑖−1 during execution, we need to
determine how𝐶𝐹𝑖−1 .𝑅𝐹𝑖−1 is obtained in 𝐹𝑖 . It might be obtained from
a field of the receiver object of 𝐹𝑖 or be one of 𝐹𝑖 ’s arguments. Thus,
Magneto marks the receiver object of 𝐹𝑖−1 in 𝐹𝑖 as tainted and uses
inter-procedural field-sensitive backward taint analysis to identify
the source of 𝐹𝑖−1’s receiver object in 𝑆𝐹𝑖 .𝐴𝐹𝑖 and 𝑆𝐹𝑖 .𝑅𝐹𝑖 (e.g., it may
come from a field of 𝑆𝐹𝑖 .𝑅𝐹𝑖 ), and assigns 𝐶𝐹𝑖−1 .𝑅𝐹𝑖−1 to the corre-
sponding source in 𝑆𝐹𝑖 .𝐴𝐹𝑖 and 𝑆𝐹𝑖 .𝑅𝐹𝑖 .

Example. During the process of synthesizing the seed for the
call step ⟨𝐹2, 𝐹1⟩ in the motivating example in Sec. 2, Magneto syn-
thesizes 𝑆𝐹2 .𝑅𝐹2 and 𝑆𝐹2 .𝐴𝐹2 by parsing the response from LLM (i.e.,
Fig. 5). When FieldProperties is parsed, the indexedListProperty
field in 𝑆𝐹2 .𝑅𝐹2 is set to "Any non-empty string". WhenArguments
is parsed, the first argument of 𝑆𝐹2 .𝐴𝐹2 is a Map, and one of its key-
value instances is composed of "java.lang.Object" and ⟨0⟩. Here,
⟨0⟩ is the first argument of𝐶𝐹1 .𝐴𝐹1 , and is replaced by this argument.
Moreover, as 𝐹2 and 𝐹1 belong to the same class (i.e., Field), the
value of the non-null fields in𝐶𝐹1 .𝑅𝐹1 is assigned to the correspond-
ing field in 𝑆𝐹2 .𝑅𝐹2 . As an another example, for the call step ⟨𝐹3, 𝐹2⟩,
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as 𝐹3 and 𝐹2 belong to different classes, Magneto identifies that 𝐹2’s
receiver object comes from the lFields field. Thus, 𝐹2’s receiver
object is assigned to the lFields field of 𝐹3’s receiver object.

3.6 Hybrid Feedback Directed Fuzzing

Given the synthesized seed 𝑆𝐹𝑖 as the initial seed, Magneto per-
forms directed fuzzing for the call step ⟨𝐹𝑖 , 𝐹𝑖−1⟩ to generate an ex-
ploit for 𝐹𝑖 , i.e., to call 𝐹𝑖−1 in 𝐹𝑖 and exploit the vulnerability in 𝐹0.

To improve the effectiveness and efficiency of directed fuzzing, we
classify the variables (i.e., the receiver object𝐴𝐹𝑖 and the arguments
𝑅𝐹𝑖 ) in a seed into the following three categories.

• Exploit-RelatedVariable.These variables have a data flow to the
receiver object and the arguments of the call to 𝐹𝑖−1 during exe-
cution. We denote this set of variables as𝑀𝑒𝑥𝑝 .

• Control-Flow-Related Variable. These variables control the
program’s execution path and branch decisions, thereby affecting
the reachability of 𝐹𝑖−1. We denote this set of variables as𝑀𝑐𝑡𝑙 .

• Other Variable. These variables are irrelevant to branch condi-
tions and exploitation. We denote this set of variables as𝑀𝑜𝑡ℎ𝑒𝑟 .

For exploit-related variables, we mark the receiver object and ar-
guments of the call to 𝐹𝑖−1 in 𝐹𝑖 as tainted, and use inter-procedural
field-insensitive backward taint analysis to identify the tainted vari-
ables in a seed and put them into𝑀𝑒𝑥𝑝 . For control-flow-related vari-
ables, we mark all variables involved in control flows (e.g., variables
used in if or switch statements) before calling 𝐹𝑖−1 in 𝐹𝑖 as tainted,
and track the tainted variables in a seed and put them into 𝑀𝑐𝑡𝑙 .
Then, the remaining variables in a seed belong to𝑀𝑜𝑡ℎ𝑒𝑟 . Specifi-
cally, if a variable belongs to both𝑀𝑒𝑥𝑝 and𝑀𝑐𝑡𝑙 , we consider this
variable to belong only to𝑀𝑒𝑥𝑝 . This information will be used as a
kind of feedback for mutation to assist the directed fuzzing process.

Fitness Score of Seed. To effectively select and mutate seeds,
we propose to evaluate and prioritize seeds based on feedback from
the execution path. Specifically, Magneto first uses JaCoCo [17] to
instrument 𝐹𝑖 for collecting the line numbers covered by the seed
execution, and uses this as feedback to guide the fuzzing process. If
the line numbers covered by a seed execution are closer to the line
number where 𝐹𝑖−1 is called, the seed is considered more likely to
reach 𝐹𝑖−1. We define this fitness score of a seed 𝑆 by Eq. 1,

𝑆.𝑆𝑐𝑜𝑟𝑒 =

∑
𝑙∈𝜏 (𝑆 ) 𝑑

(
𝑙, 𝑙𝐹𝑖−1

)
|𝜏 (𝑆) |

(1)

where 𝜏 (𝑆) is the set of line numbers covered by the execution of the
seed 𝑆 , 𝑙𝐹𝑖−1 is the line number where 𝐹𝑖−1 is called, and𝑑 (𝑙, 𝑙𝐹𝑖−1 ) de-
notes the distance between a covered line number 𝑙 in 𝜏 (𝑆) and 𝑙𝐹𝑖−1 .

A seed with a smaller fitness score will be prioritized for exe-
cution and mutation. Unlike traditional coverage-guided fuzzing,
which aims to increase code coverage to trigger potential vulnera-
bilities [8], Magneto guides the fuzzer to focus more on how to ex-
ecute the seed to reach 𝐹𝑖−1 while exploiting the vulnerability in
𝐹0, thereby generating an exploit for 𝐹𝑖 more effectively.

Mutation Strategy.We employ different mutation strategies for
different types of variables in a seed. In particular, if a variable be-
longs to𝑀𝑐𝑡𝑙 , we assign it a higher mutation probability to help the
seed explore more branches, thereby increasing the likelihood of
reaching the call to 𝐹𝑖−1 in 𝐹𝑖 . Here, the probability is set to 0.9. If a

variable belongs to𝑀𝑒𝑥𝑝 , which typically contains specific knowl-
edge for exploiting the vulnerability and is often well constructed in
our seed synthesis based on the exploit context, we assign it a lower
mutation probability of 0.1. If a variable belongs to𝑀𝑜𝑡ℎ𝑒𝑟 , we do
not mutate it because it is not related to vulnerability exploitation.
In this way, our fuzzer can understand the contribution of different
variables to the exploit and perform mutations accordingly.

Magneto sequentially mutates each variable in𝑀𝑐𝑡𝑙 and𝑀𝑒𝑥𝑝

according to their mutation probability. Once a variable is to be mu-
tated, wemutate it based on its type. Specifically, for a primitive type
(e.g., int), our fuzzer generates a new value via a random method
(e.g., random.nextInt()). For a reference type, our fuzzer has a 0.5
chance of selecting an subclass of the given class for instantiation
and initializing the fields with random values; and there is also a
0.5 chance that our fuzzer assigns a random value to one field of the
variable. For an array type, our fuzzer has a 0.5 chance of creating a
new array object. It first employs random.nextInt() to determine
the array size and then assigns random values to the array elements
based on their types. There is also a 0.5 chance that our fuzzer mu-
tates one element in the existing array according to its type.

Oracle Analysis. We leverage ASM [2] to instrument the func-
tion body of the vulnerable function 𝐹0 in order to record its execu-
tion status, i.e., its return value and thrown exception, during the
execution of a seed. After each seed execution, Magneto checks if
𝐹0 is executed. If 𝐹0 is not executed, the seed has failed to exploit the
vulnerability, and Magneto proceeds to the next round of mutation
and evaluation. If 𝐹0 is executed, Magneto feeds its recorded return
value and thrown exception into the vulnerability oracle (which can
be obtained from 𝑉𝑜𝑟𝑎𝑐𝑙𝑒 in vulnerability database) for assessment.
If the oracle passes, the vulnerability has not been exploited, and
Magneto continues to the next round. If the oracle fails, it indicates
that the vulnerability has been exploited. Therefore, Magneto has
successfully generates the exploit for 𝐹𝑖 .

Example. Recall that in the generated seed template for the call
step ⟨𝐹2, 𝐹1⟩, invoking 𝐹1 in 𝐹2 also requires getDepends to return
a non-null string, but LLM fails to infer this, preventing our synthe-
sized seed from directly exploiting the vulnerability. This is com-
pensated by our directed fuzzer through mutating the depends field
of the receiver object in the seed, successfully correcting this issue
and exploiting the vulnerability in 𝐹0 through 𝐹2.

4 EVALUATION

4.1 Evaluation Setup

To evaluate the effectiveness and efficiency of Magneto in gener-
ating vulnerability exploits for real-world projects, we design three
research questions. We run our experiments on a Linux workstation
with an Intel(R) Xeon(R) Silver 4316@2.30GHz and 256 GB of RAM,
running Ubuntu 22.04.4 LTS with JDK 1.8.0 412.
• RQ1Effectiveness Evaluation:How is the effectiveness of Mag-
neto in generating exploits for vulnerabilities in libraries?

• RQ2 Efficiency Evaluation:What is the time overhead of Mag-
neto in generating exploits for vulnerabilities in libraries?

• RQ3 Ablation Study:What is the contribution of the design de-
cisions in Magneto to the effectiveness of Magneto?
Vulnerability Database Collection. To ensure our vulnera-

bility database covers a wide range of vulnerability types, we gather
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vulnerabilities in NVD from 2015 to 2023which have patch-like links
(e.g., commits in GitHub repositories) in their references. We collect
a total of 942 vulnerabilities. Then, we focus on Java vulnerabilities,
and locate their library repositories and verify the correctness of
their patches based on the patch-like links. Next, we only keep the
vulnerabilities whose patches include test cases, as these test cases
often contain information related to vulnerability exploitation. Then,
based on the test cases and modification information in the patches,
we identify the corresponding vulnerable functions, and write the
corresponding exploits in the form of JUnit test cases. In total, we
collect 28 Java vulnerabilities with their exploits. In addition, we
supplement our database with the vulnerabilities used in Transfer
[28] and Vesta [10]. 6 of the 22 vulnerabilities in Transfer and 14
of the 30 vulnerabilities in Vesta are included, while others are not
included because we fail to manually exploit them. Ultimately, we
collect 32 Java vulnerabilities (and 45 vulnerable functions) with
their exploits from 21 libraries, covering 17 types of vulnerabilities
(i.e., CWE). They affect a wide range of libraries, e.g., JSON, PDF,
archive processing, HTTP framework, and data manipulation tools.

We also need to get the version ranges of the libraries affected
by these vulnerabilities. This information is often disclosed in NVD,
but it may contain significant false positives or false negatives. Thus,
we decide to run the exploit on all versions of the library, if the vul-
nerability is successfully exploited, we consider that version to be af-
fected. To verify whether a vulnerability is exploited by an exploit,
we create its oracle based on the exploit for the vulnerability. When
the oracle is violated, it indicates that the vulnerability has been
exploited [51]. This allows us to get a more precise list of affected
library versions. Finally, we collect 970 affected library versions.

State-of-the-Art. To the best of our knowledge, we select all the
state-of-the-art tools in this direction, i.e., Siege [25], Transfer [28]
and Vesta [10]. Except for Siege, all tools, including ours, require
the exploit at the library side as the tool input.

RQ1 Setup.We compareMagnetowith the state-of-the-art tools
in evaluating the effectiveness in generating vulnerability exploits.
To comprehensively assess the effectiveness of each tool in complex
scenarios involving reachable call chains, we evaluate not only the
number of vulnerabilities each tool can exploit for client projects but
also the capability of each tool in generating exploits through reach-
able call chains. To this end, we manually construct a ground truth
for each pair of a vulnerability and a client project, andmeasure each
tool’s effectiveness based on multiple metrics. To evaluate each tool
on a same baseline, our metrics describe the effectiveness in exploit-
ing one vulnerability for one client project (i.e., the vulnerability
database only contains the vulnerability under exploiting).

RQ2 Setup.We measure the average time taken by Magneto
and the state-of-the-art tools to generate the exploit for each pair of
a vulnerability and a client project. Notice that, the state-of-the-art
tools do not have the vulnerability reachability analysis component,
but assume the public function 𝐹𝑛 in the client project is given as an
input. For a fair comparison, we use our vulnerability reachability
analysis component as the first step of the state-of-the-art tools.

RQ3 Setup. We create several ablated versions of Magneto to
evaluate the design decisions made in Magneto. First, as the origi-
nal version of Magneto uses GPT-4, we create a version that uses GPT-
3 to evaluate the impact of different LLMs. Second, we create two ver-
sions by removing seed template generation and removing directed

fuzzing to investigate how they contribute to Magneto. Third, we
also create a version by removing the static analysis in seed syn-
thesis, to investigate how it contributes to Magneto. Finally, we
evaluate the sensitivity of Magneto to the BFS search depth in seed
template generation by setting it to 1, 2, 3 and 4 respectively.

Ground Truth Construction.We search from GitHub projects
that call vulnerable functions of our collected vulnerabilities and
whose dependent library versions fall into the affected version range.
Then, for each client project, we first use static analysis tools to con-
struct its call graph, and identify the reachable call chains to the vul-
nerable functions. Next, we manually construct the exploit for each
reachable call chain to verify that the vulnerability can be exploited
through the call chain. To address potential biases, three experts
with four years of experience in Java security were involved. Two
experts were asked to try their best to independently identify ex-
ploitable call chains for each project. Then, the third expert con-
ducted a final review of their findings, with the Cohen’s Kappa coef-
ficient [47] being 0.962. Finally, we collect 84 pairs of vulnerability
and client project, and 182 exploitable call chains in 49 projects with
a total length of 429. 78 exploitable call chains have a length of one.
The average length of all exploitable call chains is 2.36, with the
longest exploitable call chain consisting of 8 calls. The entire con-
struction takes around one person-month.

Effectiveness Metrics.Wemeasure the effectiveness using four
metrics. Specifically, the EPN metric indicates the number of pairs of
vulnerability and client project where a tool successfully generates
an exploit for at least one exploitable call chain. The ECN metric in-
dicates the number of exploitable call chains for which a tool suc-
cessfully generates an exploit. The MEL and AEL metrics respec-
tivelymeasure themaximum and average length of the exploited call
chains across all the exploitable call chains (if an exploitable call
chain is not exploited, its length is counted as zero).

4.2 Effectiveness Evaluation (RQ1)

Overall Results.Table 1 reports the results of our effectiveness eval-
uation by comparing Magneto with all the state-of-the-art tools.
Siege is not reported in Table 1 because it fails to exploit any vulner-
ability. In terms of EPN, Magneto successfully generates an exploit
for 79 (94.0%) pairs of vulnerability and project, which outperforms
Transfer and Vesta by 75.6% and 97.5%, respectively. In terms of
ECN, Magneto successfully generates an exploit for 135 (74.2%) ex-
ploitable call chains, which improves Transfer andVesta by 154.7%
and 206.8%. In terms of MEL and AEL, Magneto achieves a maxi-
mum length of 6 and an average length of 1.47, significantly out-
performing the best of the state-of-the-art by 100.0% and 308.3%.

Moreover, asMagneto is step-wise, we also investigate those par-
tially exploited call chains (i.e., Magneto can generate an exploit
for 𝐹𝑖 (0 < 𝑖 < 𝑛) but fails for 𝐹𝑖+1). Specifically, Magneto partially
generates an exploit for 42 exploitable call chains, meaning that it
fails for the first call step ⟨𝐹1, 𝐹0⟩ for only 5 exploitable call chains.

Reasons for Failures.We summarize twomain reasons forMag-
neto’s failure in generating exploits. First, if the extracted focal
code contains too many functions due to complex functionalities,
LLM becomes overwhelmed. This makes it difficult for LLM to un-
derstand the semantics and hence unable to make correct inferences.
On the contrary, if many of the used functions belong to third-party
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Table 1: Results of Our Effectiveness Evaluation Compared to the State-of-the-Art

Affected Library Vulnerability
Ground Truth Transfer Vesta Magneto

EPN ECN MEL AEL EPN ECN MEL AEL EPN ECN MEL AEL EPN ECN MEL AEL
Dom4j CVE-2018-1000632 1 7 1 1.00 1 7 1 1.00 1 7 1 1.00 1 7 1 1.00

Xstream

CVE-2017-7957 2 4 1 1.00 1 1 1 0.25 2 3 1 0.75 2 4 1 1.00
CVE-2020-26217 5 7 2 1.14 5 6 1 0.86 4 6 1 0.86 4 6 1 0.86
CVE-2021-43859 6 8 2 1.12 1 1 1 0.12 6 7 2 1.00 5 7 1 0.88
CVE-2022-41966 6 8 2 1.12 5 5 1 0.62 5 7 1 0.88 5 7 1 0.88

Spring Security CVE-2020-5408 3 4 1 1.00 2 2 1 0.50 0 0 0 0.00 3 4 1 1.00
CVE-2022-22976 2 2 1 1.00 2 2 1 1.00 0 0 0 0.00 2 2 1 1.00

JSON Sanitizer
CVE-2020-13973 2 4 4 2.75 2 2 3 1.00 1 0 0 0.00 2 2 3 1.00
CVE-2021-23899 2 4 4 2.75 2 1 1 0.25 1 0 0 0.00 2 2 3 1.00
CVE-2021-23900 2 4 4 2.75 2 1 1 0.25 1 0 0 0.00 2 2 3 1.00

Junrar CVE-2022-23596 1 1 2 2.00 0 0 0 0.00 1 0 0 0.00 1 1 2 2.00
Jodd HTTP CVE-2022-29631 3 5 3 2.20 2 1 1 0.20 2 2 1 0.40 3 5 3 2.20

HTTP Components CVE-2020-13956 4 11 5 4.27 2 2 3 0.55 2 0 0 0.00 4 11 5 4.27
Fastjson CVE-2022-25845 3 3 2 1.33 0 0 0 0.00 0 0 0 0.00 2 1 1 0.33

Snappy Java CVE-2023-34453 1 1 1 1.00 0 0 0 0.00 0 0 0 0.00 1 1 1 1.00
CVE-2023-43642 1 1 1 1.00 0 0 0 0.00 0 0 0 0.00 1 1 1 1.00

Commons Compress CVE-2018-1324 2 2 3 2.00 0 0 0 0.00 1 0 0 0.00 2 1 1 0.50
CVE-2021-35516 3 5 6 2.40 0 0 0 0.00 1 1 1 0.20 3 4 2 1.20

Zt Zip CVE-2018-1002201 2 2 3 2.00 0 0 0 0.00 0 0 0 0.00 2 2 3 2.00
Netty CVE-2015-2156 1 6 5 4.00 0 0 0 0.00 0 0 0 0.00 1 0 0 0.00
JSON CVE-2022-45688 2 5 2 1.60 0 0 0 0.00 0 0 0 0.00 2 3 2 0.80

Jackson Databind CVE-2022-42004 4 4 1 1.00 0 0 0 0.00 0 0 0 0.00 4 4 1 1.00

Commons IO CVE-2021-29425 3 9 3 2.22 2 3 1 0.33 2 1 1 0.11 3 7 3 1.56
IO-611 3 9 3 2.22 3 5 3 1.00 2 1 1 0.11 3 9 3 2.22

Spring Web CVE-2018-15756 1 1 2 2.00 0 0 0 0.00 0 0 0 0.00 0 0 0 0.00

Commons Lang3 LANG-1385 2 3 2 1.33 2 3 2 1.33 1 2 1 0.67 2 3 2 1.33
LANG-1645 2 4 2 1.50 2 3 2 1.00 1 2 1 0.50 2 4 2 1.50

PDF Box CVE-2021-31812 2 37 6 3.32 0 0 0 0.00 1 1 1 0.03 2 21 6 2.03
Zip4j Zip4j-263 2 2 1 1.00 2 2 1 1.00 2 2 1 1.00 2 2 1 1.00

Commons Beanutils CVE-2019-10086 3 9 8 4.67 3 1 1 0.11 0 0 0 0.00 3 2 2 0.33

JSON Smart CVE-2021-27568 3 4 2 1.25 3 4 2 1.25 1 1 1 0.25 3 4 2 1.25
CVE-2023-1370 5 6 2 1.17 1 1 1 0.17 2 1 1 0.17 5 6 2 1.17

Total 21 32 84 182 8 2.36 45 53 3 0.36 40 44 2 0.25 79 135 6 1.47

Table 2: Effectiveness Results w.r.t. the Length of Call Chains

Call Chain Length Ground Truth Transfer Vesta Magneto

1 78 45 43 77
2 29 3 1 15
3 37 5 0 22
4 18 0 0 12
5 13 0 0 8
6 5 0 0 1
7 1 0 0 0
8 1 0 0 0

dependencies and thus are not extracted for the focal code, LLM
has too little code context to make correct inferences. Meanwhile,
our static analysis is also ineffective in handling such complex sce-
narios. As a result, Magneto fails to generate exploits. Second,
some arguments must originate from external environments, e.g.,
HTTP requests. We cannot instantiate these objects using new or
reflection, making it impossible to exploit such vulnerabilities.

Length Distribution of Exploited Call Chains. The first two
columns of Table 2 list the length distribution of the 182 exploitable
call chains in our ground truth, and the last three columns report the
length distribution of the successfully exploited call chains for each
tool. For these 78 exploitable call chains with a length of one, Trans-
fer and Vesta demonstrate relatively good effectiveness. Magneto
exhibits a strong performance in these scenarios, which only fails in
one case. For the exploitable call chains with a length lager than one,
Transfer andVesta experience a sharp decline in performance, and
only succeed in a few cases. Magneto maintains a relatively good
performance in these scenarios thanks to our step-wise design.

Table 3: Results of Our Efficiency Evaluation

Magneto
Siege Transfer Vesta

Vul. Reach. Analysis Directed Fuzzing Total

1.6 m 9.3 m 10.9 m 96.4 m 10.4 m 6.3 m

Summary: Magneto significantly outperforms all the state-
of-the-art tools, achieving an improvement of at least 75.6%
and 154.7% in terms of EPN and ECN. In addition, Magneto
demonstrates a relatively good performance for exploitable
call chains with a length larger than one, where all the state-
of-the-art tools work poorly. These results demonstrate the
effectiveness of Magneto in generating exploits.

4.3 Efficiency Evaluation (RQ2)

Table 3 lists the results of our efficiency evaluation. Magneto takes
an average of 10.9 minutes to analyze each pair of vulnerability and
project. Specifically, vulnerability reachability analysis costs 1.6min-
utes (which is the same across all tools), while the whole directed
fuzzing costs 9.3minutes. Siege has the highest time overhead of 96.4
minutes, and Vesta has the lowest (i.e., 6.3 minutes).

Summary: It takes 10.9 minutes for Magneto to generate ex-
ploits for each pair of vulnerability and project, which is 4.6
minutes slower than the fastest. This is acceptable due to our
significant improvement in effectiveness.
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Table 4: Results of Our Ablation Study

Ablated Version Single-Step Scenario Multi-Step Scenario

EPN ECN AEL MEL EPN ECN AEL MEL
GPT-4-turbo (BFS Search Depth = 2) 56 77 0.99 1 31 58 1.83 6

GPT-3-turbo 52 73 0.94 1 28 39 1.25 5
w/o Seed Template Generation 54 75 0.96 1 24 13 0.33 3

w/o Directed Fuzzing 52 72 0.92 1 26 33 1.04 5
w/o Static Analysis in Seed Synthesis 49 63 0.81 1 22 34 1.00 5

BFS Search Depth = 1 55 76 0.97 1 28 32 0.79 3
BFS Search Depth = 3 55 75 0.96 1 30 34 0.86 4
BFS Search Depth = 4 55 75 0.96 1 28 31 0.89 4

4.4 Ablation Study (RQ3)

Table 4 shows the ablation results. The second row reports the orig-
inal version of Magneto that uses GPT-4 and set BFS depth to 2.

Impact of LLMs. After changing GPT-4 to GPT-3, Magneto ex-
perienced a drop of 7.1% in EPN, 5.2% in ECN, and 5.1% in AEL in
the Single-Step scenario, and a drop of 9.7% in EPN, 32.8% in ECN,
31.7% in AEL, and 16.7% in MEL in the Multi-Step scenario. These
results indicate that the capability of LLMs affects the quality of
inferred seed templates, especially in the Multi-Step scenario.

Impact of Employed Strategies. After removing seed template
generation (i.e., relying on the static analysis in seed synthesis to de-
rive the seed), Magneto suffers a significant decrease in all the met-
rics, especially in ECN (by 77.6%),AEL (by 82.0%) andMEL (by 50.0%)
in the Multi-Step scenario. After removing directed fuzzing (i.e.,
directly using the synthesized seeds to exploit the vulnerability),
Magneto has a large decline in all the metrics, especially in ECN
(by 43.1%) in the Multi-Step scenario. After removing the static
analysis in seed synthesis, Magneto suffers a great drop in all the
metrics, especially in EPN (by 29.0%), ECN (by 41.4%) and AEL (by
45.4%) in the Multi-Step scenario. These results highlight the value
of each strategy and the rationality of their combination.

Impact of Focal Code Scope.We configure the BFS search depth
that is used to determine the scope of extracted focal code. A thresh-
old of 2 yields the best results across the four metrics in both Single-
Step and Multi-Step scenarios. Both a smaller and larger scope
hinder LLM’s inference capability.

Summary:Magneto relies on the capability of LLM aswell as
the scope of focal code to better derive seed templates. Be-
sides, all the strategies have an important contribution to the
Magneto. The results also indicate that static and dynamic
analyses have a good performance on Single-Step scenarios,
while using LLMs is more effective in Multi-Step scenarios.

4.5 Discussion

Threats. A primary threat to our evaluation is the construction of
the ground truth. We search for affected client projects based on the
vulnerabilities in our vulnerability database, which might limit the
range of client projects we find. Consequently, there is a possibility
that wemaymiss client projects with different or newer types of vul-
nerabilities not present in our vulnerability database. However, we
endeavor to collect as many vulnerabilities as possible and seek as
many projects as possible where vulnerabilities can be exploited via
reachable call chains, hence enhancing the diversity and complex-
ity of our dataset. Compared to the ground truth benchmarks of
Transfer and Vesta, our ground truth is the largest, and includes

more complex vulnerability exploitation scenarios, thereby provid-
ing a more comprehensive evaluation of Magneto’s effectiveness.
In addition, Magneto may be affected by LLM data leakage. To
mitigate this issue, our ground truth collection process focuses on
selecting recently updated projects. Moreover, while LLMs may be
trained on related code, they were not trained for this specific task.

Limitations. First, Magneto relies on a vulnerability database,
and the scope of it may impact Magneto’s effectiveness. To address
this issue, we have implemented an semi-automated pipeline that
crawls vulnerability patches and extracts the affected libraries and
related test cases. Using these test cases and patches, we can gather
exploits and continuously update the database. Second, Magneto
uses GPT as the LLM to infer seed templates. However, GPT is closed-
source. We plan to evaluate Magneto with different open-source
LLMs. Third, Magneto faces challenges in handling particularly
complex object combinations when using LLM to infer seed tem-
plate. To partially mitigate this, we leverage static analysis tech-
niques to complement seed template, and achieving the best results
in our experiments compared to state-of-the-art tools.

5 RELATEDWORK

We review the most closely related work in three areas, i.e., exploit
generation, third-party library security, and fuzz testing.

5.1 Exploit Generation

An exploit refers to a piece of code that takes advantage of a vul-
nerability in an application to cause unintended behavior. It plays a
crucial role in assessing the severity and security risks of vulnerabil-
ities. There are two lines of work that aim to automatically generate
exploits. On the one hand, some researchers (e.g., [3, 6, 46]) focus on
generating an exploit for a vulnerability in a program. For example,
Brumley et al. [6] proposed to use patches to generate exploits for
input-validation vulnerabilities. Avgerinos et al. [3] leveraged sym-
bolic execution to generate control-flow hijack exploits. Wang et
al. [46] introduced a layout-oriented fuzzing and control-flow stitch-
ing approach to generate exploits for heap-based vulnerabilities.

On the other hand, some researchers [10, 25, 28] concentrate on
generating an exploit for a vulnerability in a dependent library of a
project. Their purpose is to assess whether the vulnerability in the
dependent library can be triggered by the project. Iannone et al. [25]
proposed the first approach Siege in this direction. Siege uses the
vulnerable code in the dependent library as the search goal, and em-
ploys search-based testing approach EvoSuite [14] to generate test
cases for the project to execute the vulnerable code, thereby evaluat-
ing the exploitability of the vulnerability. To improve the likelihood
of generating such test cases, Kang et al. [28] introduced Transfer
and Chen et al. [10] developed Vesta to utilize the knowledge of the
vulnerability-witnessing test case in the dependent library. Specifi-
cally, Transfer executes the vulnerability-witnessing test case to
capture the program state of the vulnerable function at the library
side. Then, it uses the program state to guide EvoSuite to generate
test cases of the project that invoke the vulnerable function with
the same program state, thereby creating an exploit that triggers the
vulnerability from the project. Differently, Vesta first utilizes Evo-
Suite to generate test cases of the project that reach the vulnerable
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function. Then, according to predefined rules, it migrates parame-
ters from the vulnerability-witnessing test case into these generated
test cases in order to trigger the vulnerability.

The second line of work [10, 25, 28] is the closest to ours. How-
ever, these tools only handle simple scenarios where the vulner-
able function is directly invoked by the project, but often fail to
deal with complex scenarios where the vulnerable function is indi-
rectly invoked along a long call chain, leading to false negatives.
Instead, Magneto performs directed fuzzing on each function in
the call chain, and uses the information from the previous function’s
vulnerability exploit to assist in the next function.

5.2 Third-Party Library Security

The reuse of third-party libraries significantly speeds up the devel-
opment process of software projects. However, this convenience
also introduces substantial security risks. To gain a more compre-
hensive understanding of the security risks posed by vulnerabilities
in third-party libraries, several empirical studies have been con-
ducted in various ecosystems. For example, Zhan et al. [56] reported
that 74.95% of the vulnerable third-party libraries were widely used
by other libraries in the Android ecosystem. Hu et al. [22] found
that 66.10% of the downstream projects in the Go ecosystem were
affected by vulnerabilities in their dependencies, with 62.85% of
these projects yet to address these issues. Liu et al. [31] discovered
that 19.96% of the libraries were transitively affected by 416 vulner-
abilities in the NPM ecosystem. These analyses determine whether
a project is affected by a vulnerability based on whether the project
depends on the vulnerable library, without considering whether
the project actually invokes the vulnerable function.

To reduce false positives of previous analyses, several approaches
have been proposed to conduct reachability analysis of vulnerabili-
ties. For example, Wang et al. [24, 45] leveraged call graph analysis
to determine whether a vulnerability could be reached by a project.
Wu et al. [50] found that 86.1% of the vulnerable functions were not
actually reachable by their downstream projects. Xu et al. [53] pro-
posed to support vulnerability reachability analysis across different
ecosystems. However, as these analyses do not consider whether
the vulnerability can be actually triggered, many false positives still
remain. Magneto is designed to further reduce false positives by
assessing the exploitability of the vulnerability.

5.3 Fuzz Testing

A lot of fuzz testing approaches (e.g., [4, 5, 7, 9, 13, 21, 35, 41, 43,
44, 54]) have been proposed to discover bugs or vulnerabilities in
programs. Some approaches (e.g., [5, 13, 35, 41, 54]) utilized in-
strumentation and static analysis to maximize branch coverage,
thereby increasing the probability of finding vulnerabilities. How-
ever, they are limited when the programs under test deal with struc-
tured inputs (e.g., XML or code). Therefore, several approaches
(e.g., [21, 43, 44]) proposed grammar-aware fuzzers that generate
structured inputs based on their grammars. Unfortunately, they
may not be effective in scenarios such as patch presence testing
or vulnerability reproduction testing, which are required to target
specific code snippets. Hence, directed fuzzers (e.g., [4, 7, 9]) have
been proposed to guide the generated inputs to reach specific code

snippets. Magneto also utilizes directed fuzzing but for a different
task of automated exploit generation for library vulnerabilities.

6 CONCLUSIONS

In this paper, we have proposed a novel step-wise approach, named
Magneto, to exploit vulnerabilities in dependent libraries for client
projects through LLM-empowered directed fuzzing. Our evaluation
has demonstrated the effectiveness and efficiency of Magneto. In
the future, we plan to apply Magneto to analyze more downstream
projects to reduce their security risks, and extend Magneto to sup-
port other programming languages.
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