
Vision: Identifying Affected Library Versions for Open Source
Software Vulnerabilities

Susheng Wu∗
School of Computer Science

Fudan University
Shanghai, China

Ruisi Wang∗
School of Computer Science

Fudan University
Shanghai, China

Kaifeng Huang†
School of Software Engineering

Tongji University
Shanghai, China

Yiheng Cao∗
School of Computer Science

Fudan University
Shanghai, China

Wenyan Song∗
School of Computer Science

Fudan University
Shanghai, China

Zhuotong Zhou∗
School of Computer Science

Fudan University
Shanghai, China

Yiheng Huang∗
School of Computer Science

Fudan University
Shanghai, China

Bihuan Chen∗†
School of Computer Science

Fudan University
Shanghai, China

Xin Peng∗
School of Computer Science

Fudan University
Shanghai, China

ABSTRACT

Vulnerability reports play a crucial role in mitigating open-source
software risks. Typically, the vulnerability report contains affected
versions of a software. However, despite the validation by security
expert who discovers and vendors who review, the affected versions
are not always accurate. Especially, the complexity of maintaining
its accuracy increases significantly when dealing with multiple
versions and their differences. Several advances have been made
to identify affected versions. However, they still face limitations.
First, some existing approaches identify affected versions based on
repository-hosting platforms (i.e., GitHub), but these versions are
not always consistent with those in package registries (i.e., Maven).
Second, existing approaches fail to distinguish the importance of
different vulnerable methods and patched statements in face of
vulnerabilities with multiple methods and change hunks.

To address these problems, this paper proposes a novel approach,
Vision, to accurately identify affected library versions (ALVs) for vul-
nerabilities. Vision uses library versions from the package registry
as inputs. To distinguish the importance of vulnerable methods and
patched statements, Vision performs critical method selection and
critical statement selection to prioritize important changes and their
context. Furthermore, the vulnerability signature is represented
by weighted inter-procedural program dependency graphs that
incorporate critical methods and statements. Vision determines
ALVs based on the similarities between these weighted graphs. Our
∗S. Wu, R. Wang, Y. Cao, W. Song, Z. Zhou, Y. Huang, B. Chen and X. Peng are also
with Shanghai Key Laboratory of Data Science, Fudan University, China.
†K. Huang and B. Chen are the corresponding authors.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ASE ’24, October 27-November 1, 2024, Sacramento, CA, USA

© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-1248-7/24/10
https://doi.org/10.1145/3691620.3695516

evaluation demonstrates that Vision outperforms state-of-the-art
approaches, achieving a precision of 0.91 and a recall of 0.94. Addi-
tionally, our evaluation shows the practical usefulness of Vision in
correcting affected versions in existing vulnerability databases.

CCS CONCEPTS

• Security and privacy→ Vulnerability management; • Soft-
ware and its engineering→ Software safety; • Information

systems → Open source software;

KEYWORDS

open source software, vulnerability quality, affected versions

ACM Reference Format:

Susheng Wu, Ruisi Wang, Kaifeng Huang, Yiheng Cao, Wenyan Song, Zhuo-
tong Zhou, Yiheng Huang, Bihuan Chen, and Xin Peng. 2024. Vision: Identi-
fying Affected Library Versions for Open Source Software Vulnerabilities. In
39th IEEE/ACM International Conference on Automated Software Engineering

(ASE ’24), October 27-November 1, 2024, Sacramento, CA, USA. ACM, New
York, NY, USA, 13 pages. https://doi.org/10.1145/3691620.3695516

1 INTRODUCTION

Open-source software (OSS) promotes innovation sharing and ac-
celerates software development, which has become a key infras-
tructure in modern industry. Despite its benefits, it also presents se-
curity risks. Vulnerabilities in OSS can be exploited by attackers to
compromise downstream software. A recent report from Sonatype
[52] highlights that approximately 12.5% of OSS downloads contain
known vulnerabilities. Therefore, detecting vulnerabilities in OSS is
crucial for software security. Fortunately, there are OSS vulnera-
bility databases containing vulnerability reports which are crowd-
sourced from security experts. They help downstream clients deter-
mine if their applications are affected by matching the vulnerable
OSS versions in the database to the versions used in the applications.

Problem.However, the manually compiled vulnerability reports
would inevitably introduce inaccuracies [8, 14, 15, 30]. Particularly,
the field of affected versions which indicates the vulnerable and

1

https://doi.org/10.1145/3691620.3695516
https://doi.org/10.1145/3691620.3695516

ASE ’24, October 27-November 1, 2024, Sacramento, CA, USA Wu et al.

safe versions to the vulnerability, is prone to inaccuracies. The pri-
mary reason is that while security experts can actively identify and
confirm vulnerabilities, checking across multiple versions is labor-
intensive and less appealing to their objectives. These inaccuracies
can significantly impact the consumers of vulnerability reports, e.g.,
OSS vulnerability management applications [28, 32, 61, 73].

Existing Approaches. Various methods have been proposed to
identify affected library versions (ALVs). Dong et al. [14] proposed
to use named entity recognition to extract ALVs from vulnerability
descriptions, which is limited by the quality of the descriptions. Dai
et al. [13] utilized trace-guided fuzzing to detect and validate ALVs.
Although it provides convincing proof-of-concepts, the procedure
is both computationally intensive and time-consuming. Shi et al.
[48] leveraged taint analysis to identify ALVs. However, it requires
manual curation of dangerous functions, which is restricted to cer-
tain types of vulnerabilities. Researchers have increasingly focused
on statically analyzing source code by matching the vulnerability
patches or vulnerable clones. Specifically, Patch-based approaches
[2, 27, 38, 55] identify ALVs by tracing code changes in version his-
tory. Clone-based approaches [31, 65–67, 70] generate clone-based
fingerprints from the modified methods in vulnerability, and ALVs
are reported if fingerprints are matched in ALVs.

Limitations. The existing methods have several limitations. (a)
They identify library versions from repository-hosting platforms
(e.g., GitHub). They overlook the discrepancies of library versions
between repository-hosting platforms and package registries (e.g.,
Maven repository). As a result, this leads to missed detections of
library versions in package registries. Since a large portion of down-
stream consumers retrieves libraries from these registries, it signifi-
cantly impacts the effectiveness of vulnerability detection tools. (b)
Patch-based approaches depend on the change type (i.e., added lines
or deleted lines) in the patch, and cannot report ALVs when the
patch does not contain deleted lines. Moreover, these approaches
do not include the context of the vulnerability (i.e., depended and
depending statements), which inevitably leads to false alarms. (c)
Clone-based approaches add the vulnerability context by incorpo-
rating program slicing [65, 66, 70]. However, they assign equal
importance for all fixing methods (i.e., methods used to patch vul-
nerabilities) within a vulnerability. They neither differentiate the
importance of fixing methods nor assign different priorities to the
changed statements within a fixing method.

Our Approach. We propose a novel approach, Vision, to iden-
tify affected library versions of OSS vulnerabilities. Unlike prior
approaches, Vision analyzes library versions from the package reg-
istry (i.e.,Maven) to overcome limitation (a). The Maven repository
serves as the default repository for the Maven package manager,
offering a comprehensive list of library versions available for both
manual downloads and automatic requests. The key insight of
Vision is that different methods or statements contain unequal
semantic knowledge of the vulnerability. Therefore, different from
existing approaches which place equal importance on the methods
and statements to generate vulnerability signatures, Vision distin-
guishes critical methods and critical statements from the rest of the
methods and statements. Specifically, Vision conducts vulnerability
and patch signature generation for each vulnerability, and generates
weighted inter-procedural program dependency graphs (weighted
IPDGs). The weighted IPDGs encode the criticalness of methods

and statements into a graph representation. Simultaneously, Vi-
sion performs vulnerability-potential and patch-potential version

signature generation for candidate library versions, generating sig-
natures specific to vulnerable and patched versions which are also
weighted IPDGs. Subsequently, Vision performs affected library

version detection by comparing similarities between IPDGs.
Specifically, Vision not only generates a vulnerability signature

for the vulnerable library version and a vulnerability-potential sig-
nature for the candidate library version using deleted lines, but also
generates patch signature for patched library version and patch-
potential signature for candidate library version using added lines.
It compares the similarity of a candidate library version to the
vulnerable code while ensuring dissimilarity to the patched code.
Vision can leverage the original context to generate vulnerability
signatures even when there are no deleted lines, which effectively
addresses limitation (b). To overcome limitation (c), Vision em-
ploys the Hyperlink-Induced Topic Search algorithm (HITS) [63]
to select critical methods on the Method Reference Graph (MRGs).
Furthermore, it highlights critical statements and paths in weighted
IPDGs by identifying the critical variables from the patch.

Evaluation.We evaluate Vision’s effectiveness by comparing
it against two state-of-the-art patch-based approaches, and three
advanced clone-based approaches across 102 CVEs involving 79
libraries and 12,073 version pairs. Our results indicate that Vision
achieves a precision of 0.91 and a recall of 0.94, significantly out-
performing by at least 12.3% and 154.1% to the state-of-the-art
approaches, respectively. Specifically, Vision reports 357 false pos-
itives and 184 false negatives in the overlapping library versions,
and 418 false positives and 258 false negatives in the complete
ground truth. Comparatively, patch-based approaches averagely
report 1,031 false positives and 1,654 false negatives in the overlap-
ping library versions, 1,720 false positives and 2,961 false negatives
in the complete ground truth. Clone-based approaches averagely
report 286 false positives and 3,826 false negatives in the complete
ground truth. Additionally, ablation study and threshold sensitivity
analyses confirm the contributions of components in Vision to its
overall effectiveness. Besides, we demonstrate the generalizability
of Vision by applying it to the original datasets of V-SZZ and Ver-
Java, where it achieves comparable effectiveness with precision of
0.90 and recall of 0.92. To demonstrate the practical usefulness of Vi-
sion, we use Vision to analyze vulnerabilities that are labeled with
incorrect affected library versions in five vulnerability databases
and report them to the five vendors. Three vendors have replied
and fixed 39, 42 and 8 vulnerabilities, respectively.

Contribution. Our paper makes the following contributions.

• We propose Vision to identify affected library versions for OSS
vulnerabilities. It accepts library versions from the Maven and en-
codes the criticality of methods and statements of vulnerabilities
into weighted IPDGs for accurate identification.

• Our experiment has demonstrated the effectiveness and practi-
cal usefulness of Vision, outperforming the state-of-the-art in
precision and recall by at least 12.3% and 154.1%, respectively.

2 MOTIVATION

We first introduce inaccurate affected library versions and three
limitations in existing approaches that motivate Vision’s design.

2

Vision: Identifying Affected Library Versions for Open Source Software Vulnerabilities ASE ’24, October 27-November 1, 2024, Sacramento, CA, USA

Table 1: Versions of Armeria Affected by CVE-2021-43795 in
Vulnerability Databases and SOTA Approaches (𝑣0 is the ear-
liest version; red text denotes the falsely identified versions)

(a) Vulnerability Databases

Databases ALVs

NVD [0.4.0, 1.13.3]
GitHub Advisory [1.12.0,1.13.3]
GitLab Advisory [1.12.0,1.13.3]
Snyk [𝑣0 , 1.12.0]
Veracode [0.71.0,1.13.3]
Ground Truth [1.12.0,1.13.3]

(b) SOTA Approaches

Tools ALVs

V-SZZ [0.69.0, 1.11.0], [1.12.0, 1.13.3]
VerJava [0.87.0, 1.11.0], [1.12.0, 1.13.3]
V0Finder 0.81.1, [0.87.0, 1.11.0], [1.12.0, 1.13.3]
VUDDY ∅
MVP ∅
Ground Truth [1.12.0,1.13.3]

2.1 Inaccurate Affected Library Versions in

Vulnerability Databases

The inaccurate Affected Library Versions (ALVs) in vulnerability
databases mean that the affected library versions of a vulnerability
either contain wrong versions or miss versions. It has been widely
recognized and remains a significant challenge [8, 14, 15, 30]. Ta-
ble 1(a) illustrates the inconsistency in reporting affected library
versions related to Armeria and CVE-2021-43795 [42] across vari-
ous vulnerability databases. The ground truth was determined by
manually inspecting the source code on each version. Specifically,
only two of the five databases (i.e.,NVD [41], GitHub Advisory [19],
GitLab Advisory [22], Snyk [51], and Veracode [59]) provide the
correct range of affected library versions. 𝑣0 indicates that no left
affected version bound is provided, defaulting to the earliest version.
This discrepancy underscores the challenge of relying solely on
vulnerability databases for precise affected library versions.

2.2 Limitations of Existing Works

Library Versions from Repository-Hosting Platforms. The li-
brary versions on the repository-hosting platforms and package reg-
istries can be discrepant. For example, we compare library versions
of spring-boot-actuator-logview and spring-integration-zip onMaven
and GitHub, as shown in Fig. 1. For spring-boot-actuator-logview
(see Fig. 1(a)), 15 versions are released on Maven [36], whereas
only 7 versions are available on GitHub [20]. For spring-integration-
zip (see Fig. 1(b)), 21 versions are released on Maven [37], while
47 versions are released on GitHub [21]. Their overlap is zero.

To observe the prevalence of discrepancies between the repository-
hosting platform and package registry, we conducted an empirical
analysis. Specifically, we identified 539 libraries on Maven and their
corresponding 434 GitHub repositories from the 1,083 CVEs related
to Java libraries collected during the first step of ground truth con-
struction in Sec 4.1. Note that one repository may contain multiple
libraries. Then, we extract and compare versions from Maven and
GitHub repositories. We normalized the original versions by con-
verting them into semantic versioning, removing library-related
prefixes/suffixes or other meaningless elements. For example, the
version rel/v5.4-beta1 of the Apache HttpComponents Client
in its GitHub repository was normalized to 5.4-beta1. As a result,
511 (94.8%) Maven libraries and 407 (93.8%) GitHub repositories
contain discrepant versions compared with their counterparts. The
discrepant versions account for 28.0% (15,341/54,713) of the total
versions. Furthermore, we compared newer versions that were
released over the past three years (i.e., 07-2021 to 07-2024). The dis-
crepancies persist, with 471 (87.4%) Maven libraries and 375 (86.4%)

[0.2.0-0.2.6]

[0.2.7, 0.2.12]
0.2.13

0.1.0

(a) Versions of spring-boot-actuator-logview (b) Versions of spring-integration-zip

2.0.0,
[6.1.0, 6.1.9],
[6.2.0, 6.2.5],
…

kafka.v1.0.0.M1
aws.v0.5.0
gr.v0.0.1
cass.v0.9.0
…

Figure 1: Discrepant Library Versions on Maven and GitHub

(the blue circles denote versions from Maven, while the red

circles denote versions from GitHub)

GitHub repositories containing discrepant versions. They make up
25.2% (12,067/49,356) of the total versions.

The discrepancies between the two platforms pose challenges
in identifying the ALVs, especially for patch-based approaches [2,
27, 38, 55]. These approaches depend on the source code repository
history and their annotated versions in commits to pinpoint library
versions. However, the identified ALVs may not represent all the
library versions that developers may use from package registries.
In fact, due to the complexity of the software supply chain, many
libraries, both direct and transitive, are retrieved from package
registries by package managers’ automatic requests.

Equal Importance to Changed Methods.We compared the
capabilities of two patch-based approaches (i.e., V-SZZ [2] and Ver-
Java [55]) and three clone-based approaches (i.e., V0Finder [67],
Vuddy [31] andMVP [70]) in identifying ALVs for the same vulner-
ability used in Sec. 2.1. We provided two patch-based approaches
with library versions tagged in the GitHub repository, as they rely
on source code repositories. Additionally, we provided three clone-
based approaches with candidate library versions retrieved from
Maven. As presented in Table 1(b), V-SZZ, VerJava, and V0Finder
reported 49, 68 and 69 vulnerable versions, respectively. Meanwhile,
Vuddy andMVP did not report any affected library versions. The
falsely identified library versions are denoted in red.

We examined the root cause of this vulnerability. Fig. 2 illustrates
the evolution history of Armeria. Specifically, the root cause was
introduced in commit a380cf and fixed in commit e2697a [43, 44].
There are multiple changed methods in commit e2697a. However, if
equal importance is given to changed methods, detection tools may
erroneously trace method changes back to commits prior to com-
mit a380cf. For instance, V-SZZ pinpoints the deleted statement
𝑠1 in the appendHexNibble() method as vulnerable and traces it
to commit bf1ee5. However, this method does not contribute to
the root cause of the vulnerability. Consequently, V-SZZ falsely
labels versions from 0.69.0 to 1.12.0 as vulnerable. Similarly, Ver-
Java and V0Finder also include falsely identified versions in their
assessments, as they consider insignificant methods as indicative
of the vulnerability. Vuddy andMVP did not report any vulnera-
ble versions because of failed identification of any method in this
case. Besides, our ablation evaluation results (see Section 4.3) also
indicate the necessity of selecting critical methods.

Equal Importance to Changed Statements.We use one of the
changedmethods (i.e., crypt_raw) in the patch of CVE-2022-22976
[45] in spring-security as an illustrative example, which is pre-
sented in Fig. 3. We highlight the modified lines, collapse the un-
changed ones, and remove blank lines for improved clarity. The
line numbers remain consistent with the original numbers. We
analyze the cause of the vulnerability and the reasoning behind the

3

ASE ’24, October 27-November 1, 2024, Sacramento, CA, USA Wu et al.

a380cf

1.12.0 1.13.3 1.13.4

1. delete statement s1 in appendHexNibble ()
2. add and delete statements in splitPathAndQuery()
3. add statements in queryContainsDoubleDots()
…

4b0837 e2697a cc2e40364ee3

Root Cause Fix

Affected Versions Unaffected VersionsUnaffected Versions

0.69.0

bf1ee5

Vulnerability-irrelevant
Change

1. add statement s1 in appendHexNibble()

7d4d5
AFV Range by V-SZZ

Figure 2: Evolution History of CVE-2021-43795 in Armeria.

(a) crypt_raw before change (b) crypt_raw after change

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

private byte[] crypt_raw(…, int log_rounds, …,) {

 int rounds, i, j;

 int cdata[] = bf_crypt_ciphertext.clone();

 int clen = cdata.length;

 byte ret[];

 if (log_rounds < 4 || log_rounds > 31) {

throw new IllegalArgumentException("”);

 }

 rounds = 1 << log_rounds;

 if (salt.length != BCRYPT_SALT_LEN) {

 throw new IllegalArgumentException("");

 }

 init_key();

 ekskey(salt, password, sign_ext_bug, safety);

 for (i = 0; i < rounds; i++){

 key(password, sign_ext_bug, safety);

 key(salt, false, safety);

 }

 for (i = 0; i < 64; i++)

 for (j = 0; j < (clen >> 1); j++)

 encipher(cdata, j << 1);

 }

 }

 ret = new byte[clen * 4];

 for (i = 0, j = 0; i < clen; i++)

 ret[j++] = (byte) ((cdata[i] >> 24) & 0xff);

 ret[j++] = (byte) ((cdata[i] >> 16) & 0xff);

 ret[j++] = (byte) ((cdata[i] >> 8) & 0xff);

 ret[j++] = (byte) (cdata[i] & 0xff);

 }

 return ret;

}

1-2

3

4-5

6

7

8

9-15

16-17

18

19-20

21

22

23

24-25

26

27

28

29

30

31

32-33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

private byte[] crypt_raw(…, int log_rounds, boolean for_check){

 int cdata[] = bf_crypt_ciphertext.clone();

 int clen = cdata.length;

 long rounds;

 if (log_rounds < 4 || log_rounds > 31) {

 if (!for_check || log_round != 0) {

 throw new IllegalArgumentException("");…}

 else {…

 if (rounds < 16 || rounds > Integer.MAX_VALUE) {

 throw new IllegalArgumentException("");}

 }

 if (salt.length != BCRYPT_SALT_LEN) {

 throw new IllegalArgumentException("");

 }

 init_key();

 ekskey(salt, password, sign_ext_bug, safety);

 for (int i = 0; i < rounds; i++){

 key(password, sign_ext_bug, safety);

 key(salt, false, safety);

 }

 for (int i = 0; i < 64; i++) {

 for (int j = 0; j < (clen >> 1); j++) {

 encipher(cdata, j << 1);

 }

 }

 byte[] ret = new byte[clen * 4];

 for (int i = 0, j = 0; i < clen; i++) {

 ret[j++] = (byte) ((cdata[i] >> 24) & 0xff);

 ret[j++] = (byte) ((cdata[i] >> 16) & 0xff);

 ret[j++] = (byte) ((cdata[i] >> 8) & 0xff);

 ret[j++] = (byte) (cdata[i] & 0xff);

 }

 return ret;

}

Figure 3: Patch in the crypt_raw Method in the Commit

a40f735 of spring-security (the red and green background

denote the deleted and added lines respectively)

patch. An integer overflow error with the maximum work factor is
the major cause. In the original method, the integer rounds over-
flows when log_rounds is set to 31 (Line 10 in Fig. 3(a)). The patch
changes rounds from int to long (Lne 6 in Fig. 3(b)), and includes
if check on rounds and log_rounds (Line 8-20 in Fig. 3(b)).

We explore how V-SZZ, VerJava, V0Finder, Vuddy andMVP
select the statements to generate their vulnerability signature for
this method, as illustrated in Table 2. There are two signature types,
i.e., the vulnerable signature (“vul.”) and patch signature (“pat.”).
“vul.” is designed to match a vulnerability, while “pat.” is designed
to validate if the vulnerability is patched. We use line numbers
from Fig. 3 to represent the composing elements of the signature
content. The “vul.” and “pat.” signatures are composed of the lines
in Fig. 3(a) and Fig. 3(b), respectively. We can observe that the five
approaches select the changed statements differently. On the one
hand, V-SZZ, Vuddy, and V0Finder generate vulnerability signa-
tures by analyzing the method before change. Specifically, V-SZZ
focuses on deleted lines, while Vuddy and V0Finder process the
entire method before change. On the other hand, VerJava andMVP
utilize both the vulnerable signature and the patch signature to
detect vulnerabilities and confirm whether they have been patched.
VerJava uses the changed statements, whereas MVP employs pro-
gram slicing to identify the context of these changes (e.g., Lines 3,
5, and 7 in the “pat.” are the context generated byMVP).

However, the vulnerability signature needs to be aligned with
its semantic meaning to realize precise ALVs detection. Including

Table 2: Composing Lines in the Vulnerability Signature of

crypt_raw from spring-security for CVE-2022-22976 across
State-of-the-Art Approaches (numbers in the signature con-

tent represents the composing lines from Fig. 3)

Approaches Signature
Type Signature Content

V-SZZ vul. {1}, {2}, {5}, {8}, {10}, {17}, {22}, {23}, {28}, {29}

VerJava vul. {1-2,5,8,10,17, 22-23,28-29}
pat. {1-2, 6, 8-20, 29,34-35, 40-41}

MVP vul. {1,2, 3-4,5,7,10,11,12,14,15,17,19,20,22,23,25}
pat. {1-2,3,5,6,7,8-20,21-28,29,30-33,34-35,36-39,40-41,42-47}

Vuddy vul. {1-2,3-4,5,7,8,9,10,11-16,17,18-21,22-23,24-27,28-29,30-35}
V0Finder vul. {1-2,3-4,5,7,8,9,10,11-16,17,18-21,22-23,24-27,28-29,30-35}

unnecessary statements would hinder the accuracy of ALVs detec-
tion, regarding both precision and recall. For instance, the patch
modifies the declaration scope of global variables including i and j
(Line 1 and 5 in Fig. 3(a)) into the local for conditions (Line 29, 34,
35 and 41 in Fig. 3(b)). The declaration of ret is merged with array
initialization (Line 40 in Fig. 3(b)). These modifications, though
present in the patch, do not directly impact the vulnerability itself.

Summary. Building on these observations, we propose to de-
tect ALVs from the package registry (i.e., Maven). Moreover, we
incorporate the criticality of both methods and statements from
the vulnerability patch to enhance ALVs detection accuracy.

3 APPROACH

In this section, we elaborate Vision. The overview of Vision is
presented in Fig. 4. The key insight of our approach is that different
methods or statements contain unequal semantic knowledge of the
vulnerability. Therefore, different from existing approaches which
place equal importance on the methods and statements to generate
vulnerability signatures, Vision distinguishes critical methods and
critical statements from these methods and encodes their critical-
ness into weighted inter-procedural program dependency graphs
(IPDGs). By comparing similarity between IPDGs, Vision detects
the affected library versions. It consists of three main modules:
• Vulnerability and Patch Signature Generation.Given a vulnerability-
fixing commit in a GitHub repository, we identify the vulnerable
version and the patched version of the repository, denoted as
𝑅𝑃pre and 𝑅𝑃pos, respectively. Vision leverages 𝑅𝑃pre to gener-
ate the vulnerability signature 𝑆𝑖𝑔vul, and 𝑅𝑃pos to generate the
patch signature 𝑆𝑖𝑔pat. The vulnerability description is used to
help select the critical methods.

• Vulnerability-potential and Patch-potential Version Signature Gen-

eration. Given a candidate library version from the package reg-
istries, we create vulnerability-potential signature 𝑆𝑖𝑔′vul and
patch-potential signature 𝑆𝑖𝑔′pat. Based on the observation that
defining which sets of characteristics (e.g., methods, statements)
in a candidate library version to match is a crucial step before
signature matching, Vision carefully selects these characteristics
based on the specific vulnerability. As a result, “vulnerability-
potential version signature” indicates the signature is specifically
customized based on the vulnerability where it will potentially
match the corresponding vulnerability, and “patch-potential ver-
sion signature” to match the corresponding patch.

• Affected Library Version Detection.Vision calculates the similarity
between 𝑆𝑖𝑔𝑣𝑢𝑙 and 𝑆𝑖𝑔′vul, 𝑆𝑖𝑔𝑝𝑎𝑡 and 𝑆𝑖𝑔

′
pat. If the signatures of

4

Vision: Identifying Affected Library Versions for Open Source Software Vulnerabilities ASE ’24, October 27-November 1, 2024, Sacramento, CA, USA

Critical Method

Selection

Critical

Statement

Identification

Change

Statement Slicing

Vulnerability Description

Change

Statement

Mapping & Slicing

Critical Method

Mapping

Critical

Statement

Mapping
Candidate Library Version

Affected

Vulnerability and Patch Signature Generation

Vulnerability-Potential and Patch-Potential Version Signature Generation

Affected Library Version

Detection

Weighted IPDG

Generation

Weighted IPDG

Generation

Similarity

Calculation

Pre-Fixing

Repository

Post-Fixing

Repository

Unaffected

Patch Signature

Vulnerability Signature

Patch-Potential

Signature

Vulnerability-Potential

Signature

Figure 4: Overview of Vision

the candidate library version (i.e., 𝑆𝑖𝑔′vul or 𝑆𝑖𝑔
′
pat) shows greater

similarity to the vulnerability signature (𝑆𝑖𝑔𝑣𝑢𝑙) than to the patch
signature (𝑆𝑖𝑔𝑝𝑎𝑡), it is classified as affected by the vulnerability;
otherwise, it is considered unaffected.

3.1 Vulnerability and Patch Signature

Generation

3.1.1 Critical Method Selection. Vision identifies critical meth-
ods in 𝑅𝑃pre and 𝑅𝑃pos through two-steps. First, Vision generates
method reference graphs (MRGs) for the vulnerable and patched
versions. Second, it identifies the critical methods within MRGs.
We denote the critical changed methods as 𝑀𝑐vul and 𝑀𝑐pat, and
the critical unchanged methods as𝑀𝑢vul and𝑀𝑢pat, in 𝑅𝑃pre and
𝑅𝑃pos, respectively.

1) Method Reference Graphs (MRGs) Generation. Solely relying
on changed methods from patches without their contexts [2, 55] is
insufficient. To this end, we introduce Method Reference Graphs
(MRGs), which include the method calls and and mentioned meth-
ods or class names from the vulnerability description as a hybrid
context to facilitate the understanding of the vulnerability and help
to select the critical methods. While method calls provide the struc-
tural context of a vulnerability, they do not fully reflect its semantic
meaning. Conversely, vulnerability descriptions, often contributed
by experts, provide semantic insights on important classes and
methods but lack contextual calling relationships. The MRGs are
denoted as𝑀𝑅𝐺vul in 𝑅𝑃pre and𝑀𝑅𝐺pat in 𝑅𝑃pos. It consists of two
main components: constructing call graphs for 𝑅𝑃𝑠 and merging
vulnerability descriptions into these call graphs.

• Constructing Call Graphs. Vision constructs call graphs via
Joern [49] in 𝑅𝑃pre and 𝑅𝑃pos. However, the whole-program call
graph include methods and call relations irrelevant to the vulner-
ability. To this end, Vision selects the changed methods and their
callee methods, incorporating them into 𝑀𝑅𝐺vul and 𝑀𝑅𝐺pat,
respectively.

• Extracting Mentioned Classes and Methods in Vulnera-

bility Description. Vision collects vulnerability descriptions
from two sources: CVE descriptions and commit descriptions.
It searches for method and class names in these descriptions
and matches the mentioned methods and methods within the
mentioned class in𝑀𝑅𝐺vul (resp.𝑀𝑅𝐺pat). Since the actual ref-
erencer is an expert contributor, who does not appear as a valid
vertex in the method reference graph, Vision creates a phantom

method caller for each matched method. An extra reference rela-
tion is then established from the phantom caller to the mentioned
methods, which are added to𝑀𝑅𝐺vul (resp.𝑀𝑅𝐺pat).
2) Critical Methods Selection on the MRGs. To identify critical

methods,Vision utilizes theHyperlink-Induced Topic Search (HITS)
algorithm, originally developed for rating web pages [63].

In this context, the concepts of authorities and hubs are key to
pinpointing critical methods. The authority score of a method is
determined by the sum of the hub scores of the methods that point
to it, while the hub score is based on the sum of the authority scores
of the methods to which it points. These scores are calculated itera-
tively. In the context of vulnerabilities, authority methods are those
that a malicious trigger (or sanitizer) would eventually reach, while
hub methods are the triggers (or sanitizers) that are likely to be tra-
versed. Additionally, intermediate methods lying between authority
and hub methods are considered during the scoring iterations.

The authority (𝑎𝑢𝑡ℎ) and hub (ℎ𝑢𝑏) values are initialized to 1
for each method in 𝑀𝑅𝐺vul and 𝑀𝑅𝐺pat. The iteration process
begins by calculating the 𝑎𝑢𝑡ℎ and ℎ𝑢𝑏 values for each method, as
shown in Eq. 1 and 2. This iteration continues until convergence is
achieved. In the 𝑘-th iteration, the 𝑎𝑢𝑡ℎ and ℎ𝑢𝑏 values for method
𝑚𝑖 in 𝑀𝑅𝐺vul (or 𝑀𝑅𝐺pat) are updated according to Eq. 1 and 2.
Ref(𝑚𝑖 ,𝑚 𝑗) is 1 if there is a call relation or expert reference from𝑚𝑖

to𝑚 𝑗 , and 0 otherwise. After the iteration converges, the ℎ𝑢𝑏 and
𝑎𝑢𝑡ℎ are normalized across different MRGs. The method is regarded
as critical if the sum of its ℎ𝑢𝑏 and 𝑎𝑢𝑡ℎ scores exceeds a globally
optimal threshold, denoted as 𝑡ℎℎ𝑖𝑡𝑠 .

auth(𝑘 + 1,𝑚𝑖) =
∑︁
𝑗

Ref(𝑚𝑖 ,𝑚 𝑗) · hub(𝑘,𝑚 𝑗) (1)

hub(𝑘 + 1,𝑚𝑖) =
∑︁
𝑗

Ref(𝑚 𝑗 ,𝑚𝑖) · auth(𝑘,𝑚 𝑗) (2)

After the critical methods are selected, we also obtain their call
relations and the corresponding callsite statements. We denote
them as 𝐸callvul and 𝑆

call
vul in 𝑅𝑃pre, and 𝐸callpat and 𝑆

call
pat in 𝑅𝑃pos.

3.1.2 Change Statement Slicing. Given each critical changed
methods 𝑀𝑐vul (resp. 𝑀𝑐pat) in 𝑀𝑅𝐺vul (resp. 𝑀𝑅𝐺pat), Vision
generates a Program Dependency Graph (PDG) using Joern [49]. It
performs forward and backward program slicing on the PDG based
on changed statements. Those statements who have data or control
dependencies with changed statements are sliced into the partial
PDG. The PDG is a 2-tuple ⟨𝑆, 𝐸⟩ where 𝑆 and 𝐸 are collections of
statements and their dependency relations. For each statement 𝑠 ,

5

ASE ’24, October 27-November 1, 2024, Sacramento, CA, USA Wu et al.

𝑠 ∈ 𝑆 . Each dependency relation𝑒 ∈ 𝐸 is a 2-tuple ⟨𝑠1, 𝑠2⟩ where 𝑠1
and 𝑠2 are two statements.

3.1.3 Critical Statement Identification. Vision identifies criti-
cal variables and then applies taint analysis to determine the critical
statements.

1) Critical Variable Identification. A changed hunk is a block
consisting of one or more contiguous added or deleted statements,
denoted as a tuple ⟨𝑆𝑎𝑑𝑑 , 𝑆𝑑𝑒𝑙 ⟩, where 𝑆𝑎𝑑𝑑 consists of the added
statements and 𝑆𝑑𝑒𝑙 consists of the deleted statements. To identify
critical variables, Vision examines each critical method by process-
ing the change hunks using git diff. We focus on three types:
• Newly Introduced Variables in Added Hunks (𝑆𝑑𝑒𝑙 = ∅∩𝑆𝑎𝑑𝑑 ≠ ∅).
These variables are likely to play a role in fixing the vulnerability.
Vision identifies them by analyzing the sub Abstract Syntax
Tree (AST) of the added hunks to extract the newly introduced
variables.

• Removed Variables in Deleted Hunks (𝑆𝑑𝑒𝑙 ≠ ∅ ∩ 𝑆𝑎𝑑𝑑 = ∅). Vari-
ables that were present in 𝑅𝑃pre but are removed in 𝑅𝑃pos may
be indicative of vulnerable code. Vision identifies these variables
by analyzing the sub AST of of the deleted hunks.

• Newly Introduced and Removed Variables inModifiedHunks (𝑆𝑑𝑒𝑙 ≠
∅ ∩ 𝑆𝑎𝑑𝑑 ≠ ∅). Variables that are altered due to changes in the
code, such as modifications in method parameters or conditional
statements, may be critical. Vision compares the sets of variables
before and after the change, identifying the critical variables as
those that differ between the two versions.
2) Taint Analysis.Once the critical variables are identified,Vision

applies taint analysis to trace the flows from these variables to the
method’s entry point and exit points and identify critical statements
that in the flows.
• Backward Taint Analysis. Vision traces critical statements from
each critical variable backward to the method’s entry point. This
process reveals the statements that influence the value of the
critical variables, marking them as critical.

• Forward Taint Analysis. Vision traces critical statements from
each critical variable forward to the method’s exit points (i.e.,
return, throw, except, assert, and catch statement). This traces
how the variables impact other statements.
Finally, the critical statements and their dependency relations are

denoted as 𝑆 taintvul , and 𝐸taintvul in 𝑅𝑃pre, and 𝑆 taintpat , and 𝐸taintpat in 𝑅𝑃pos.

3.1.4 Signature Generation. The signature is a weighted inter-
procedural PDG (weighted IPDG), denoted as a 3-tuple ⟨𝑆, 𝐸,𝑊 ⟩,
where 𝑆 and 𝐸 are the collections of statements and their depen-
dency relations, respectively, and each weight entry𝑤𝑜 ∈𝑊 maps
a statement and its dependency relations to its weight value. The
signature generation for 𝑆𝑖𝑔vul (resp. 𝑆𝑖𝑔pat) is as follows:
• Connecting PDGs into IPDGs. Vision generates PDGs for
critical methods. For critical methods with changes, Vision uses
the partial PDGs from of𝑀𝑐vul (resp.𝑀𝑐pat) that are generated in
change statement slicing (see Section 3.1.2). For critical unchanged
methods (i.e.,𝑀𝑢vul (resp.𝑀𝑢pat)), Vision collapses their PDGs
into single method nodes where internal program dependency
relations are omitted. Then, the partial PDGs and single method
nodes are connected using inter-procedural call relations from
call graphs generated in critical method selection (see Section

3.1.1). Specifically, the inter-procedural call relation starts from
the call site statement in the PDG of the caller method to the
PDG entry of the calleemethod. All inter-procedural call relations
starting from statements in a single method node are collapsed
into one startpoint. As a result, the connected PDGs are Inter-
procedural PDGs (IPDGs).

• AssigningWeights to IPDGs. Each vertex and edge in the IPDG
is assigned weight values of 1 by default. Then, Vision assigns
higher weights using critical methods and critical statements.
First, Vision assigns𝑤𝑐𝑟𝑖_𝑚 to callsite statement 𝑆callvul (resp. 𝑆

call
pat)

and call relations 𝐸callvul (resp. 𝐸
call
pat) that belongs to the identified

critical methods (see Section 3.1.1). Second, Vision assigns𝑤𝑐𝑟𝑖_𝑠
to the critical statements 𝑆 taintvul (resp. 𝑆 taintpat) and their dependency
relations 𝐸taintvul (resp. 𝐸taintpat).
Finally, the vulnerability signature 𝑆𝑖𝑔vul (resp. 𝑆𝑖𝑔pat) is gener-

ated, represented as a weighted IPDG.

3.2 Vulnerability-potential and Patch-potential

Version Signature Generation

3.2.1 Critical Method Mapping. Taking input from the candi-
date library version, Vision first decompiles the library version
using Java Decompiler [29]. Then, Vision employs NiCad [7], a pop-
ular code clone detection tool, to identify methods in the candidate
library version that are similar to those in 𝑅𝑃pre (and 𝑅𝑃pos). Instead
of directly comparing method signatures, we use clone detection
to handle more complex refactorings. The similar methods found
in the candidate library version provide evidence that potentially
contributes to the identification of the vulnerability.

3.2.2 Change Statement Mapping & Slicing. Vision computes
the similarity between the statements of the original method and
the mapped critical method. To handle potential syntactic differ-
ences caused by decompilation, Vision conducts normalization on
both ends, which includes reordering operands, transforming into
default operands (e.g., transforming ">" to "<") in IfStatement, and
unifying conditional expressions in ForStatement. Then, Vision
calculates the syntactic similarity using Levenshtein distance [64]
between the statements on both sides. If the similarity exceeds the
threshold 𝑡ℎ𝑙𝑑 , Vision obtains a mapping statement pair. We set the
default threshold as 0.55 following previous work [16]. After that,
a mapping set of delete statements and a mapping set of add state-
ments is constructed. Next, Vision performs forward and backward
program slicing on them.

3.2.3 Critical Statement Mapping. Next, Vision identifies the
statements from the original method containing the critical variable.
Based on the identified statements, Vision constructs the PDG and
performs taint analysis on the mapped variable, which forms the
collection of the critical statements in the original method.

3.2.4 Signature Generation. The signature generation is simi-
lar to the vulnerability and patch signature generation in Section
3.1.4. Using the mapped critical methods (see Section 3.2.2) and
critical statements (see Section 3.2.3), Vision connects PDGs into
inter-procedural PDGs and assigns weights to their statements
and dependency relations. The vulnerability-potential and patch-
potential signature are denoted as 𝑆𝑖𝑔′vul and 𝑆𝑖𝑔

′
pat, respectively.

6

Vision: Identifying Affected Library Versions for Open Source Software Vulnerabilities ASE ’24, October 27-November 1, 2024, Sacramento, CA, USA

3.3 Affected Library Versions Detection

3.3.1 Similarity Calculation. Vision compares the similarity of
the weighted IPDGs between 𝑆𝑖𝑔vul and 𝑆𝑖𝑔′vul, 𝑆𝑖𝑔pat and 𝑆𝑖𝑔′pat
to identify ALVs. First, Vision leverages UniXcoder [23], which
is a unified cross-modal pre-trained model for programming lan-
guage. UniXcoder helps to generate the semantic embeddings for
the textual representation. Taking input as a statement or state-
ment set (in cases where methods were merged into a single node)
𝑠 from the vertex set𝑉 of the original signature 𝑆𝑖𝑔vul or 𝑆𝑖𝑔pat, Vi-
sion generates the semantic embedding vector 𝑣𝑒𝑐 (𝑠), normalized
by L2 norm.

Second, given 𝑠𝑖 from the original weighted IPDG and 𝑠 𝑗 from the
mapped weighted IPDG, Vision calculates their cosine similarity
(i.e., vec(𝑠𝑖) · vec(𝑠 𝑗)). Therefore, the distance in replacing from 𝑠𝑖
to 𝑠 𝑗 is based on their similarity and the weights of both nodes,
denoted as𝑤𝑠𝑖 and𝑤𝑠 𝑗 , which presented in Eq. 3.

𝑑 (𝑠𝑖 , 𝑠 𝑗) = (1 − vec(𝑠𝑖) · vec(𝑠 𝑗)) ×𝑤𝑠𝑖 ×𝑤𝑠 𝑗 (3)
Meanwhile, the edge similarity of 𝑒𝑖 from the original weighted
IPDG and 𝑒 𝑗 from the mapped weighted IPDG, is calculated by
averaging the node distances between the source nodes (𝑒𝑖 .𝑠1 and
𝑒 𝑗 .𝑠1) and the destination nodes (𝑒 𝑗 .𝑠2 and 𝑒 𝑗 .𝑠2), presented in Eq. 4.

d(𝑒𝑖 , 𝑒 𝑗) =
𝑐 (𝑒𝑖 .𝑠1, 𝑒 𝑗 .𝑠1) + 𝑐 (𝑒𝑖 .𝑠2, 𝑒 𝑗 .𝑠2)

2
(4)

Third, the problem then becomes to minimize the total distance
so that the mapping statements and edges are maximized, which is
a bipartite matching problem. We utilize the previous work [10] to
find the optimal solution where the minimal statement distance and
edge distance between 𝑆𝑖𝑔𝑎 and 𝑆𝑖𝑔𝑏 is denoted by sDis(𝑆𝑖𝑔𝑎, 𝑆𝑖𝑔𝑏)
and eDis(𝑆𝑖𝑔𝑎, 𝑆𝑖𝑔𝑏), respectively. Afterwards, we calculate the
similarity between 𝑆𝑖𝑔𝑎 and 𝑆𝑖𝑔𝑏 , which is presented in Eq. 5.

sim(𝑆𝑖𝑔𝑎, 𝑆𝑖𝑔𝑏) = 1 −
(
sDis(𝑆𝑖𝑔𝑎, 𝑆𝑖𝑔𝑏) +

√︁
eDis(𝑆𝑖𝑔𝑎, 𝑆𝑖𝑔𝑏)

| 𝑆𝑖𝑔𝑎 .𝑆 | + | 𝑆𝑖𝑔𝑏 .𝑆 |

)
(5)

Finally, Vision generates the vulnerability similarity score 𝑠𝑖𝑚𝑣

between 𝑆𝑖𝑔vul and 𝑆𝑖𝑔′vul, as well as the patch similarity score 𝑠𝑖𝑚𝑝

between 𝑆𝑖𝑔pat and 𝑆𝑖𝑔′pat. To be considered an ALV, it must satisfy
𝑠𝑖𝑚𝑣 > 𝑡ℎ𝑣𝑢𝑙 and 𝑡ℎ𝑝𝑎𝑡 > 𝑠𝑖𝑚𝑝 . Additionally, an ALV should be
more similar to the vulnerability signature than the patch signature,
meaning 𝑡ℎ𝑣𝑢𝑙 > 𝑡ℎ𝑝𝑎𝑡 . Therefore, we use a single threshold 𝑡ℎ𝑠 ,
reconstruct our formula to 𝑠𝑖𝑚𝑣 > 𝑡ℎ𝑠 & 𝑠𝑖𝑚𝑣 > 𝑠𝑖𝑚𝑝 .Vision deter-
mines a candidate library version as affected if this condition is met.
Otherwise, Vision determines the library version as unaffected.

4 EVALUATION

We implemented Vision using 11.4K lines of Python code and 1.6K
lines of Java code. We design the following research questions.
• RQ1: Effectiveness Evaluation.How effective isVision in iden-
tifying ALVs compared to state-of-the-art methods?

• RQ2: Ablation Study. How is the contribution of each compo-
nent to the overall effectiveness of Vision?

• RQ3: Parameter Sensitivity. How do the parameters affect the
effectiveness of Vision?

Table 3: Results of Our Effectiveness Evaluation

Dataset Tools #Ver. #V. PV. TP FP FN Pre. Rec.

O. V-SZZ 11,256 102 26 2,310 1,401 1,640 0.62 0.58
VerJava 11,256 102 29 2,283 660 1,667 0.78 0.58
Vision − 11,256 102 66 3,766 357 184 0.91 0.95

C.

VerJava∗ 12,073 102 4 1,721 1,720 2,961 0.50 0.37
V0Finder 12,073 102 16 1,159 267 3,523 0.81 0.25
MVP 12,073 102 8 670 308 4,012 0.69 0.14
Vuddy 12,073 102 11 738 283 3,944 0.72 0.16
Vision 12,073 102 62 4,424 418 258 0.91 0.94

• RQ4: Generality Evaluation. How is the generality of Vision
when applying Vision in other datasets?

• RQ5: Efficiency Evaluation. How is Vision’s time overhead?
• RQ6: Usefulness Evaluation. How is the usefulness of Vision?

4.1 Evaluation Setup

Ground Truth. We choose Java libraries in Maven due to their
popularity and complexity. The ground truth is established through
a rigorous four-step examination process:

• Collecting Vulnerabilities. We collected CVEs with their patch
(e.g., GitHub commits) in their references from January 1999 to
May 2024 from NVD [41]. It covered existing datasets of V-SZZ
and VerJava [2, 55]. We obtained 1,083 CVEs with its patch.

• Collecting Test Cases/Proof-of-Concepts and Creating Test Cases.

We manually inspected test cases included in the patches. If not
present, we searched for patch commits in GitHub repositories
using CVE IDs and websites containing vulnerability “exploits”
or “proof-of-concepts (PoCs)”. We analyzed their triggering logic
and transformed them into JUnit test cases. We obtained 102
CVEs with test cases, each with an assertion of the trigger status.

• Running Test Cases across Library Versions. We automatically
changed the library versions from Maven and executed the test
cases to verify the triggering status of the vulnerabilities. We
manually inspected unsuccessful test case runs and modified the
code for compatibility with the corresponding version.

• Manual Inspection. We conducted manual inspections on the
remaining library versions that were not successfully executed
by the test cases. We determined if the vulnerability existed
by checking the presence of vulnerable or fixing methods and
statements in the remaining library versions.

Two of the authors constructed the ground truth, each with
over 5 years of experience in software security. We measured their
agreement using Cohen’s Kappa coefficient, which reached 0.879
for inspecting vulnerability-affected versions. A third author was
involved in resolving disagreements. As a result, we collected 12,073
library versions corresponding to 102 CVEs within 79 libraries.

Baselines.We compare Visionwith patch-based approaches. We
obtained V-SZZ [2] and reproduced VerJava [55], which are state-
of-the-art tools for identifying ALVs. We did not compare AFV [48]
because it targets specific vulnerabilities in PHP. We also compare
Vision with clone-based approaches. We obtained V0Finder [67]
and VUDDY [31], and reproduced MVP [70]. We modified VUDDY
to make it compatible for Java. We did not compare V1Scan [65]
and Movery [66] because they depend on ranges of vulnerable
versions to generate an aggregated signature, which would unfairly
hinder their effectiveness if only one vulnerable version is provided.

7

ASE ’24, October 27-November 1, 2024, Sacramento, CA, USA Wu et al.

Table 4: Results of Our Effectiveness Evaluation w.r.t CWE Types (#V. denotes the number of vulnerabilities of a CWE type)

Dataset Tools cwe-707 cwe-664 cwe-693 cwe-682 cwe-284 cwe-435 cwe-703 cwe-691 cwe-339 cwe-19 cwe-417 cwe-264 others

#V.=23 #V.=34 #V.=1 #V.=2 #V.=5 #V.=3 #V.=3 #V.=8 #V.=1 #V.=1 #V.=1 #V.=1 #V.=19

O.

V-SZZ Pre. 0.50 0.65 0.00 0.41 0.37 0.79 1.00 0.64 1.00 1.00 0.00 1.00 0.81
Rec. 0.86 0.49 0.00 0.86 0.53 0.57 0.26 0.59 0.95 0.62 0.00 0.75 0.70

VerJava Pre. 0.92 0.86 0.51 0.46 0.26 1.00 1.00 0.74 1.00 1.00 0.30 0.00 0.97

Rec. 0.46 0.60 0.95 0.99 0.47 0.67 1.00 0.84 0.86 0.62 1.00 0.00 0.41

Vision − Pre. 0.82 0.98 0.64 1.00 1.00 0.99 1.00 0.93 0.57 1.00 1.00 0.50 0.85
Rec. 0.93 0.95 0.86 1.00 1.00 0.99 1.00 0.98 1.00 0.62 1.00 1.00 0.96

C.

VerJava∗ Pre. 0.56 0.59 0.51 0.44 0.26 0.70 0.87 0.32 0.66 0.00 0.16 0.00 0.33
Rec. 0.45 0.36 1.00 0.99 0.48 0.33 0.74 0.36 0.94 0.00 1.00 0.00 0.12

V0Finder Pre. 0.84 0.96 0.46 0.38 1.00 0.00 1.00 0.93 1.00 0.00 0.97 1.00 0.90

Rec. 0.25 0.16 0.87 0.70 0.28 0.00 0.74 0.19 0.94 0.00 1.00 0.11 0.36

MVP Pre. 0.91 0.70 0.00 0.28 1.00 0.22 0.93 1.00 1.00 1.00 0.00 0.64 0.36
Rec. 0.25 0.10 0.00 0.70 0.43 0.04 1.00 0.19 0.94 0.06 0.00 1.00 0.01

Vuddy Pre. 1.00 0.94 0.00 0.28 0.00 0.00 1.00 0.00 1.00 0.00 0.00 0.00 0.75
Rec. 0.17 0.06 0.00 0.70 0.00 0.00 0.55 0.00 0.55 0.00 0.00 0.00 0.44

Vision Pre. 0.84 0.97 0.65 1.00 1.00 0.99 1.00 0.77 0.67 1.00 1.00 0.64 0.87
Rec. 0.93 0.95 0.86 1.00 1.00 1.00 1.00 0.98 1.00 0.62 1.00 1.00 0.90

Metrics and Environment. We evaluate the approaches using
true positive (TP), false positive (FP), false negative (FN), precision
and recall, as used in previous studies [2, 55]. Additionally, we
introduce the perfectly identified vulnerability (PV.) to measure the
number of vulnerabilities where the evaluated tool identifies the
ALVs completely and correctly (i.e., zero FP and zero FN).

4.2 Effectiveness Evaluation (RQ1)

RQ1 Setup.We assessed Vision using our ground truth and com-
pared its performance with baseline approaches. Since V-SZZ and
VerJava accept library versions from GitHub repositories, we evalu-
ated these approaches on the overlapping library versions (denoted
as O.) between GitHub repositories and our complete ground truth
dataset (denoted as C.). We also evaluate our approach on the over-
lapping library versions, denoted as Vision −. Besides, we modified
VerJava to analyze complete library versions fromMaven, which is
denoted as VerJava∗. Additionally, we observed the generalization
of Vision and baseline approaches w.r.t CWE types. Our ground
truth includes 83 vulnerabilities encompassing 36 distinct CWE
types, while 19 vulnerabilities have not been labeled with a CWE.
We categorized the CWEs into 12 groups based on their common
ancestors following the classifications in [11, 12]. The 19 vulnerabil-
ities without CWEs are collectively classified under a single group
(i.e., Others). Furthermore, we investigated how Vision and base-
line approaches perform under two change types, including hybrid
changes and solely additions. Notably, our ground truth does not
contain any changes with solely deletions. We used optimal param-
eters for Vision according to our sensitivity analysis (see Sec. 4.4).

Overall Result. Table 3 presents the results of our effectiveness
evaluation compared with five baseline approaches. Vision reports
357 false positives and 184 false negatives in the overlapping library
versions, and 418 false positives and 258 false negatives in the
complete ground truth. Comparatively, patch-based approaches
averagely report 1,031 false positives and 1,654 false negatives, 1,720
false positives and 2,961 false negatives. Clone-based approaches
averagely report 286 false positves and 3,826 false negatives in
the complete ground truth. Vision achieves the highest precision
of 0.91 and recall of 0.94 in the complete library versions and the
highest precision of 0.91 and recall of 0.95 in the overlapping library
versions. Comparatively, in the overlapping library versions, the

state-of-the-art VerJava achieves a precision of 0.78 and a recall of
0.58. Vision − surpasses VerJavawith an improvement in precision
by 0.13 (16.7%) and in recall by 0.37 (63.8%). In the complete library
versions, the state-of-the-art V0Finder achieves a precision of 0.81
and a recall of 0.25. Vision outperforms V0Finder with an increase
in precision by 0.10 (12.0%) and in recall by 0.69 (276.0%). Moreover,
Vision identifies 66 (64.7%) PVs in the overlapping library versions,
surpassing VerJava with 37 (36.3%) PVs. In the complete library
versions, Vision identifies 62 (60.8%) PVs, outperforming V0Finder
with 46 (287.5%) PVs.

Vision generates 357 FPs and 184 FNs, resulting in 56 vulner-
abilities which are not PVs in the overlapping library versions. It
generates 418 FPs and 258 FNs, resulting 40 vulnerabilities which
are not PVs in the complete library versions. We summarize three
major reasons. First, the CVE or commit descriptions may contain
irrelevant methods, which can mislead our critical method selection.
Second, Vision leverages program slicing based on Joern, which
contains incorrect data or control dependencies that can mislead
our critical statement selection. Third, the library versions can have
different fixing logics because they evolve on different branches,
which may not be reflected in patch-potential signatures.

Effectiveness w.r.t CWE Types. Table 4 presents the effec-
tiveness of Vision and the baselines with respect to CWE types.
In the overlapping library versions, Vision outperforms the state-
of-the-art VerJava in 8 of the 13 CWE types regarding precision
and in 12 of the 13 CWE types regarding recall. It achieves 100%
precision or recall in 6 CWE types. On average, Vision outperforms
the state-of-the-art VerJava with a precision of 0.87 and a recall
of 0.95 among the 13 CWE types. In the complete library versions,
Vision outperforms the state-of-the-art Vuddy in 8 of the 13 CWE
types regarding precision and in 12 of the 13 CWE types regarding
recall. On average, Vision outperforms the state-of-the-art Vuddy
with a precision of 0.88 and a recall of 0.94 among the 13 types.

Effectiveness w.r.t Changed Methods. Table 5 illustrates the
effectiveness of Vision and the baselines with respect to the num-
ber of changed methods. We observe that as the number of changed
methods increases, the effectiveness of Vision remains stable. The
precision of Vision ranges from 0.84 to 0.97 in the overlapping li-
brary versions and from 0.86 to 0.95 in the complete library versions.
The recall of Vision ranges from 0.92 to 0.95 in the overlapping

8

Vision: Identifying Affected Library Versions for Open Source Software Vulnerabilities ASE ’24, October 27-November 1, 2024, Sacramento, CA, USA

Table 5: Results of Our Effectiveness Evaluation w.r.t the

Number of Changed Methods (# CM.)

#
CM. #V. Dataset Tools PV. TP FP FN Pre. Rec.

1 52

O.
V-SZZ 17 1,075 666 967 0.62 0.53
VerJava 20 985 331 1,057 0.75 0.48
Vision −

35 1,942 59 100 0.97 0.95

C.

VerJava* 2 996 1,148 1,518 0.46 0.40
V0Finder 7 313 11 2,201 0.97 0.12
MVP 2 94 8 2,420 0.92 0.04
Vuddy 5 275 15 2,239 0.95 0.11
Vision 32 2,397 113 117 0.95 0.95

2-5 33

O.
V-SZZ 4 861 421 423 0.67 0.67
VerJava 4 944 135 340 0.87 0.74
Vision −

19 1,248 238 36 0.84 0.97

C.

VerJava* 2 511 298 1,027 0.63 0.33
V0Finder 5 470 3 1,068 0.99 0.31
MVP 3 341 155 1,197 0.69 0.22
Vuddy 3 226 8 1,312 0.97 0.15
Vision 18 1,445 245 93 0.86 0.94

>5 17

O.
V-SZZ 5 374 314 250 0.54 0.60
VerJava 5 354 194 270 0.65 0.57
Vision −

12 576 60 48 0.91 0.92

C.

VerJava* 0 214 274 416 0.44 0.34
V0Finder 4 376 253 254 0.60 0.60
MVP 3 235 145 395 0.62 0.37
Vuddy 3 237 260 393 0.48 0.38
Vision 12 582 60 48 0.91 0.92

library versions and from 0.92 to 0.95 in the complete library ver-
sions. In terms of precision, Vision outperforms the state-of-the-art
tools in the overlapping library versions. However, it has slightly
lower precision than Vuddy in the complete library versions, with a
difference of 0.02 for vulnerabilities with one changed method and
0.13 for vulnerabilities with 2 to 5 changed methods. Nevertheless,
as the number of changed methods increases, Vision regains its
leading advantage. In terms of recall, Vision outperforms the state-
of-the-art tools in both overlapping and complete library versions.

Effectiveness w.r.t Changed Types. Table 6 presents the effec-
tiveness of Vision and the baselines with respect to the changed
types. Overall, Vision consistently outperforms the baseline ap-
proaches in both the overlapping library versions and the complete
versions for hybrid changes and some additions. Notably, V-SZZ
achieves a precision of 0.62 and a recall of 0.78 for hybrid changes,
but V-SZZ does not support solely additions and fails. Neverthe-
less, Vision outperforms V-SZZ in hybrid changes, achieving a 0.27
higher precision and a 0.16 higher recall.

Summary: Vision achieves the highest precision and recall
in both complete and overlapping library versions with 0.91
and 0.94, 0.91 and 0.95, respectively, averagely surpassing the
state-of-the-arts by 0.23 (33.8%) in precision and 0.71 (308.7%)
in recall. Vision identifies averagely 3,352 (312.7%) more true
ALVs than state-of-the-arts. Vision is effectiveacross different
CWE types, changed method numbers, and change types.

4.3 Ablation Study (RQ2)

RQ2 Setup.We created five ablated versions of Vision: (a) keep-
ing only those critical methods identified from expert references,
thereby ablating the call relations (w/o CR); (b) keeping call relations
as critical methods without expert references (w/o EF); (c) ablating
the critical method selection and using changed methods instead
(w/ CM); (d) setting the weight to 1 to mark the critical statements

Table 6: Results of Our Effectiveness Evaluation w.r.t Change

Types

Dataset Tools Hybrid Changes (#V.= 81) Solely Additions (#V.=21)

TP FP FN Pre. Rec. TP FP FN Pre. Rec.

O.
V-SZZ 2,310 1,401 639 0.62 0.78 0 0 1,001 0.00 0.00
VerJava 1,445 553 1,504 0.72 0.49 838 107 163 0.89 0.84
Vision −

2,766 328 183 0.89 0.94 1,000 29 1 0.97 1.00

C.

VerJava∗ 783 1,139 2,676 0.41 0.23 938 581 285 0.62 0.77
V0Finder 996 266 2,463 0.79 0.29 163 1 1,060 0.99 0.13
MVP 577 308 2,882 0.65 0.17 93 0 1,130 1.00 0.08
Vuddy 610 268 2,849 0.69 0.18 128 15 1,095 0.90 0.10
Vision 3,206 357 253 0.90 0.93 1,218 61 5 0.95 1.00

Table 7: Results of Our Ablation Evaluation

w/o
CR

w/o
EF

w/
CM

w/o
CS

w/
LD

V0Finder
w/ CMS

MVP w/
CMS

Vuddy
w/ CMS

Pre. 0.81 0.90 0.87 0.85 0.86 0.91 0.87 0.88
ΔPre. -0.10 -0.02 -0.04 -0.07 -0.05 +0.10 +0.18 +0.16
Rec. 0.93 0.88 0.84 0.80 0.84 0.21 0.12 0.13
ΔRec. -0.02 -0.07 -0.11 -0.15 -0.11 -0.04 -0.02 -0.03

as normal statements (w/o CS); and (e) replacing UniXcoder in sim-
ilarity calculation with Levenshtein distance [64] (w/ LD). Besides,
we applied critical method selection in clone-based approaches. i.e.,
V0Finder w/ CMS, MVP w/ CMS, and Vuddy w/ CMS.

Overall Results. Table 7 presents the results of our ablation
study. Overall, the precision and recall decrease across the five
ablated versions. Specifically, Vision without critical statements
(w/o CS) exhibits the most significant recall drop of 0.15 and the
second-largest precision drop of 0.07, underscoring the importance
of selecting critical statements. Meanwhile, Vision with changed
methods (w/ CM) experiences a recall drop of 0.11 and a precision
drop of 0.04, highlighting the importance of critical method selec-
tion. Additionally, removing call relations (w/o CR) or expert refer-
ences (w/o EF) results in decreased precision and recall, indicating
that both call relations and expert references contribute to Vision’s
effectiveness. We also observe a decrease in precision and recall
when UniXcoder is replaced with Levenshtein distance (w/ LD).
Besides, using our critical method selection, V0Finder,MVP and
Vuddy undergo significant increases in precision by 0.10, 0.18 and
0.16 and slight drops in recall by 0.04, 0.02 and 0.03, respectively.

Summary: Removing any component of Vision results in
noticeable drops in precision and recall. Ablating critical state-
ments causes the largest recall drop of 0.15, while removing
call relations leads to the largest precision drop of 0.10. Using
our critical method selection, clone-based methods undergo
significant increases of precision by 0.15 on averagewith slight
drops of recall by 0.03 on average.

4.4 Parameter Sensitivity (RQ3)

RQ3 Setup. Four parameters are configurable in Vision, including
the threshold for selecting critical methods (𝑡ℎℎ𝑖𝑡𝑠), the weight for
inter-procedural calls between the statements from critical methods
(𝑤𝑐𝑟𝑖_𝑚), the weight for the critical statements (𝑤𝑐𝑟𝑖_𝑠), and the sim-
ilarity for threshold for identifying Vulnerabilities (𝑡ℎ𝑠). The default
parameter is 0.4, 3, 3 and 0.6. To evaluate the sensitivity of these
thresholds to Vision’s accuracy, we reconfigured one parameter
and fixed the other three against our dataset.

9

ASE ’24, October 27-November 1, 2024, Sacramento, CA, USA Wu et al.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0
 Max F1=0.93

Precision
Recall
F1 Score

(a) 𝑡ℎℎ𝑖𝑡𝑠

1 2 3 4 5
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0
 Max F1=0.93

Precision
Recall
F1 Score

(b) 𝑤𝑐𝑟𝑖_𝑚

1 2 3 4 5
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

 Max F1=0.93

Precision
Recall
F1 Score

(c) 𝑤𝑐𝑟𝑖_𝑠

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0
 Max F1 = 0.93

Precision
Recall
F1 Score

(d) 𝑡ℎ𝑠

Figure 5: Results of Our Sensitivity Analysis

Overall Result. Fig. 5 illustrates the results of our sensitivity
analysis. It achieves the optimal performance when 𝑡ℎℎ𝑖𝑡𝑠 is set to
0.4,𝑤𝑐𝑟𝑖_𝑚 and𝑤𝑐𝑟𝑖_𝑠 are both set to 3, and 𝑡ℎ𝑠 is set to 0.6.

Summary: Vision performs best with 𝑡ℎℎ𝑖𝑡𝑠 set to 0.4,𝑤𝑐𝑟𝑖_𝑚
and𝑤𝑐𝑟𝑖_𝑠 set to 3, and 𝑡ℎ𝑠 set to 0.6.

4.5 Generality Evaluation (RQ4)

RQ4 Setup.We applied Vision to the original datasets of V-SZZ
and VerJava. We selected 50% (41/81) of the CVEs from the overlap-
ping set between V-SZZ and VerJava, resulting in a total of 3,381
complete (C.) and 3,078 overlapping library versions (O.).

Overall Results. Table 8 presents the results of our generality
evaluation. Compared to the results from our effectiveness eval-
uation (see Section 4.2), Vision, Vision −, MVP, V0Finder, and
Vuddy produce similar outcomes. In contrast, V-SZZ, VerJava, and
VerJava∗ achieve higher precision and recall in their own datasets.
Specifically, Vision undergoes a slight drop in precision by 1% and
recall by 2%. Vision − has a slight increase in precision by 2% and a
slight drop in recall by 1%. It demonstrates the generality of Vision
in external datasets. Compared to state-of-the-arts,Vision − outper-
forms VerJava, achieving a 0.11 (13.41%) increase in precision and
0.35 (59.32%) increase in recall. Additionally, Vision − identifies 29
(70.73%) perfectly identified vulnerabilities (PVs) in the overlapping
library versions, surpassing VerJava with 16 (123.08%) PVs.

Summary: Vision’s precision and recall drop slightly in
the overlapping dataset of V-SZZ and VerJava. Besides,
V0Finder,MVP and Vuddy undergo significant increases in
precision by 10%, 18% and 16% and slight drops in recall by 4%,
2% and 3%. The results demonstrate the generality of Vision.

4.6 Efficiency Evaluation (RQ5)

RQ5 Setup. We measured the average time taken to identify ALVs
for each vulnerability as well as for each library.

Table 8: Results of Our Generality Evaluation in the Overlap-

ping Dataset of V-SZZ and VerJava

Dataset Tools #Ver. #V. PV. TP FP FN Pre. Rec.

O. V-SZZ 3,078 41 9 768 282 445 0.73 0.63
VerJava 3,078 41 13 716 157 497 0.82 0.59
Vision − 3,078 41 29 1,140 86 73 0.93 0.94

C.

VerJava∗ 3,381 41 10 697 382 587 0.65 0.54
V0Finder 3,381 41 1 338 100 946 0.77 0.26
MVP 3,381 41 1 257 94 1,027 0.73 0.20
Vuddy 3,381 41 1 141 49 1,143 0.74 0.11
Vision 3,381 41 27 1,179 128 105 0.90 0.92

Table 9: Results of Our Efficiency Evaluation

Time (s) V-SZZ VerJava VerJava* V0Finder MVP Vuddy Vision

Per L. 29.35 1.73 1.42 425.06 17771.16 72.57 1094.12
Per V. 4.09 0.01 0.01 3.84 186.93 1.92 9.24

Table 10: Results of Usefulness Evaluation among Vulnera-

bility Databases (Δ denotes the accuracy gains of Vision over

the corresponding database)

Tools #V. PV/Δ TP/Δ FP/Δ FN/Δ Pre./Δ Rec./Δ

NVD 102 34/+27 3,745/+677 1,410/-992 937/-677 0.73/+0.19 0.80/+0.14
Veracode 97 34/+24 3,853/+522 596/-178 768/-522 0.87/+0.05 0.83/+0.11
GitHub 95 35/+22 4,085/+246 1,777/-1,388 478/-246 0.70/+0.22 0.90/+0.05
GitLab 93 27/+27 3,569/+563 1,639/-1,223 795/-563 0.69/+0.22 0.82/+0.13
Snyk 97 37/+19 3,988/+323 1,182/-764 583/-323 0.77/+0.14 0.87/+0.07

Overall Result. Table 9 presents the time cost of Vision com-
pared to the other five tools. On average, Vision takes 9.24 seconds
to process a candidate library version and determine if it is affected,
and 1,094.11 seconds to process all library versions for a vulnera-
bility. The time cost is higher than existing tools, primarily due to
decompiling jars in critical method mapping, generating call graphs
in critical method selection, and similarity calculation. However,
we believe it is acceptable given Vision’s superior effectiveness in
identifying vulnerability-affected versions compared to other tools.

Summary: Vision takes an average of 9.24s to identify an
ALV and 1,094.11s to identify all ALVs for a vulnerability.

4.7 Usefulness Evaluation (RQ6)

RQ6 Setup. Following previous work [68], we compareVisionwith
five vulnerability databasesNVD [41],Veracode [59],GitHub [19],
GitLab [22], and Snyk [51]. We exclude any unknown CVEs and
library versions absent from our ground truth. We measured the
accuracy of the five databases using the same metrics as in RQ1
in Sec. 4.2. Additionally, we evaluate the accuracy of Vision using
the same set of vulnerabilities in each database and calculate the
accuracy gains of Vision over the corresponding databases.

Overall Result. Table 10 lists the results of our usefulness evalu-
ation. Vision improves precision and recall across all five databases.
It achieves a maximum precision increase of 0.22 in both GitHub
and GitLab, and a maximum recall improvement of 0.14 over NVD.
Further, it helps to identify more perfectly identified vulnerabilities

(PVs), with an increase of at least 19 in Snyk and up to 27 in NVD.
Furthermore, we select inaccurate vulnerabilities identified by

Vision from our ground truth and the dataset from V-SZZ and Ver-
Java. We reported 52, 31 and 46 incorrectly labeled vulnerabilities
to NVD, Veracode and Snyk via email, and 39 and 42 to GitHub
and GitLab by creating issues. By now, GitHub and GitLab have
resolved all incorrect affected library versions. NVD have fixed

10

Vision: Identifying Affected Library Versions for Open Source Software Vulnerabilities ASE ’24, October 27-November 1, 2024, Sacramento, CA, USA

incorrect affected versions in 8 vulnerabilities while the rest are
under review. Notably, GitLab has expressed interest in our tool
for ALV detection.

Summary: Vision improves the accuracy of ALVs across five
vulnerability databases. We reported incorrect ALVs to the
databases, resulting in fixes for 39, 42 and 8 vulnerabilities by
GitHub, GitLab and NVD, respectively. These results high-
light the practical usefulness of Vision in assisting security
teams to identify affected library versions and enhance the
quality of vulnerability databases.

4.8 Discussion

Threats. One primary threat to our evaluation is the construction
of ground truth. While we execute Proof-of-Concepts and validate
affected library versions as thoroughly as possible, a portion of the
dataset is constructed through manual confirmation, which may
introduce human error.Wemitigate this threat by involving three of
the authors in constructing the ground truth. Besides, the evaluated
results are influenced by the dataset’s size. We build a dataset of 102
vulnerabilities and 12,073 affected and unaffected library versions,
requiring 800 man-hours, which is the largest databset.

Limitations. First, Vision relies on several language-dependent
tools such as Java Decompiler and Joern, limiting its applicability to
other programming languages. Second, Vision lacks explanations
for the predicted affected library versions. We intend to address
this limitation by adding interpretations with visualized vulnera-
bility causes and fixes, based on critical methods and statements.
Third, Vision takes a patch commit as an input but the target patch
may contain multiple commits, leading to the overlooking of the
vulnerability signature and patch signature. This can result in both
false positives and false negatives.

5 RELATEDWORK

Affected LibraryVersion Identification. It is a crucial task to iden-
tify library versions affected by an open source software vulnerabil-
ity. Various approaches have been proposed to automatically achieve
this task [2, 13, 14, 27, 38, 48, 55]. Specifically, Dong et al. [14]
adopted named entity recognition (NER) to identify affected li-
brary versions in vulnerability reports. Instead of relying on vulner-
ability reports, several approaches [2, 27, 38, 55] proposed to use
vulnerability patches. Nguyen et al. [38] detected vulnerable ver-
sions on source code repository by the original SZZ algorithm [50],
which assumed that the last modification of the deleted lines in
the patch introduced the vulnerability. Bao et al. [2] improved
the original SZZ algorithm by tracing back the deleted lines in
the patch to determine the vulnerability-inducing versions. These
SZZ-based approaches fail when the patch only contains added
lines. Sun et al. [55] identified affected versions by measuring the
presence of deleted lines and the non-presence of added lines in the
patch in target versions. He et al. [27] leveraged developer logs and
patches to identify affected versions. However, this approach heav-
ily relies on the completeness and accuracy of developer logs that
contain vulnerability fixing information, and requires manual veri-
fication, which reduces the cost-efficiency. Patch-based approaches
fail to consider the context of modified lines in the patch, lead-
ing to inaccuracies. Vision is also patch-based, and it captures the

context for an accurate version identification. Shi et al. [48] also
proposed a patch-based approach but targeted Web vulnerabilities.
Dai et al. [13] utilized Proof of Concept (PoC), and adopted directed
fuzzing to identify the affected versions but the vulnerability may
lack a PoC [35, 55], limiting the practical effectiveness.

Vulnerable Code Clone Detection. Code similarity analysis is
commonly used in detecting vulnerable code clones (VCCs, or recur-
ring vulnerabilities) across different libraries based on syntactic or
semantic signatures, which can also be adapted to affected version
identification. For example, Kim et al. [31] introduced VUDDY to
detect VCCs based on abstraction and normalization of vulnera-
ble functions. Xiao et al. [70] proposed MVP, which used program
slicing to generate a vulnerability signature from the vulnerable
function and a patch signature from the patched function. Woo et
al. developed Movery [66] and V1Scan [65], which leveraged all
vulnerable versions to overcome the syntax diversity of vulnerable
functions. These two approaches also motivate the necessity to
identify all affected versions. Woo et al. [67] designed V0Finder
to discover the software where a vulnerability first originated. All
these VCC detection approaches can generate signatures that con-
tain code that is irrelevant to the vulnerability and the patch, posing
a significant challenge in generating precise signatures. Moreover,
all these approaches can over-abstract identifiers or statements into
a same symbol, potentially making vulnerable and non-vulnerable
code difficult to distinguish and leading to false positives.

Vulnerability Knowledge Enhancement. The quality of vul-
nerability knowledge in vulnerability databases often lacks reliabil-
ity, raising significant concerns [14, 39, 68]. Chen et al. [6], Haryono
et al. [26] and Lyu et al. [33] utilized extreme multi-label learning
to identify affected libraries; Chen et al. [4, 5] adopted large lan-
guage model to identify affected libraries; and Wu et al. [68] used
learning-to-rank to identify affected libraries and their ecosystems.
Besides, several approaches [17, 40, 47, 56, 60, 71] are focused on
identifying the patches for a vulnerability, and several techniques
[3, 18, 34, 57] are focused on developing predictive models for vul-
nerability exploitability. Moreover, Anwar et al. [1], Croft et al. [9]
andWunder et al. [69] empirically investigated the inconsistency of
CVSS score. Several approaches [24, 25, 46, 53, 54, 62, 72] predicted
the key aspects (e.g., vulnerability type, root cause, attack vector,
and attacker type) of a vulnerability.

6 CONCLUSIONS

We have introduced Vision, a novel approach for identifying af-
fected library versions for OSS vulnerabilities.Vision selects critical
methods and statements, encoding their criticality into signatures
represented by weighted IPDGs. It identifies affected library ver-
sions through comparing library version signatures with patch
signatures. Extensive experiments have demonstrated Vision’s ef-
fectiveness, efficiency, and practical usefulness. The source code
of Vision as well as all our experimental data are available at our
replication website [58]. In the future, we plan to extend Vision to
support other programming languages to improve its generality.

ACKNOWLEDGMENT

This work was supported by the National Natural Science Founda-
tion of China (Grant No. 62372114, 62332005 and 62402342).

11

ASE ’24, October 27-November 1, 2024, Sacramento, CA, USA Wu et al.

REFERENCES

[1] Afsah Anwar, Ahmed Abusnaina, Songqing Chen, Frank Li, and David Mohaisen.
2021. Cleaning the NVD: Comprehensive quality assessment, improvements, and
analyses. IEEE Transactions on Dependable and Secure Computing 19, 6 (2021),
4255–4269.

[2] Lingfeng Bao, Xin Xia, Ahmed E Hassan, and Xiaohu Yang. 2022. V-SZZ: auto-
matic identification of version ranges affected by CVE vulnerabilities. In Proceed-

ings of the 44th International Conference on Software Engineering. 2352–2364.
[3] Haipeng Chen, Rui Liu, Noseong Park, and VS Subrahmanian. 2019. Using

twitter to predict when vulnerabilities will be exploited. In Proceedings of the

25th ACM SIGKDD international conference on knowledge discovery & data Mining.
3143–3152.

[4] Tianyu Chen, Lin Li, Bingjie Shan, Guangtai Liang, Ding Li, Qianxiang Wang,
and Tao Xie. 2023. Identifying Vulnerable Third-Party Libraries from Textual
Descriptions of Vulnerabilities and Libraries. arXiv preprint arXiv:2307.08206

(2023).
[5] Tianyu Chen, Lin Li, Liuchuan Zhu, Zongyang Li, Guangtai Liang, Ding Li,

Qianxiang Wang, and Tao Xie. 2023. VulLibGen: Identifying Vulnerable Third-
Party Libraries via Generative Pre-Trained Model. arXiv preprint arXiv:2308.04662
(2023).

[6] Yang Chen, Andrew E Santosa, Asankhaya Sharma, and David Lo. 2020. Auto-
mated identification of libraries from vulnerability data. In Proceedings of the

42nd International Conference on Software Engineering: Software Engineering in

Practice. 90–99.
[7] James R Cordy and Chanchal K Roy. 2011. The NiCad clone detector. In Proceed-

ings of the 19th International Conference on Program Comprehension. 219–220.
[8] Roland Croft, M Ali Babar, and M Mehdi Kholoosi. 2023. Data quality for soft-

ware vulnerability datasets. In Proceedings of the IEEE/ACM 45th International

Conference on Software Engineering. 121–133.
[9] Roland Croft, M Ali Babar, and Li Li. 2022. An investigation into inconsistency

of software vulnerability severity across data sources. In Proceedings of the IEEE

International Conference on Software Analysis, Evolution and Reengineering. 338–
348.

[10] Lei Cui, Zhiyu Hao, Yang Jiao, Haiqiang Fei, and Xiaochun Yun. 2020. Vuldetec-
tor: Detecting vulnerabilities using weighted feature graph comparison. IEEE
Transactions on Information Forensics and Security 16 (2020), 2004–2017.

[11] CWE. 2024. CWE VIEW: Research Concepts. Retrieved May 25, 2024 from
https://cwe.mitre.org/data/definitions/1000.html

[12] CWE. 2024. CWE VIEW: Software Development. Retrieved May 25, 2024 from
https://cwe.mitre.org/data/definitions/699.html

[13] Jiarun Dai, Yuan Zhang, Hailong Xu, Haiming Lyu, ZichengWu, Xinyu Xing, and
Min Yang. 2021. Facilitating vulnerability assessment through poc migration. In
Proceedings of the 2021 ACM SIGSAC Conference on Computer and Communications

Security. 3300–3317.
[14] Ying Dong, Wenbo Guo, Yueqi Chen, Xinyu Xing, Yuqing Zhang, and GangWang.

2019. Towards the detection of inconsistencies in public security vulnerability
reports. In Proceedings of the 28th USENIX security symposium. 869–885.

[15] Ying Dong, Wenbo Guo, Yueqi Chen, Xinyu Xing, Yuqing Zhang, and GangWang.
2019. Towards the detection of inconsistencies in public security vulnerability
reports. In 28th USENIX security symposium (USENIX Security 19). 869–885.

[16] Ekwa Duala-Ekoko and Martin P Robillard. 2007. Tracking code clones in evolv-
ing software. In Proceedings of the 29th International Conference on Software

Engineering. 158–167.
[17] Trevor Dunlap, Elizabeth Lin, William Enck, and Bradley Reaves. 2023.

VFCFinder: Seamlessly pairing security advisories and patches. arXiv preprint
arXiv:2311.01532 (2023).

[18] Michel Edkrantz and Alan Said. 2015. Predicting Cyber Vulnerability Exploits
with Machine Learning. In Proceedings of the Thirteenth Scandinavian Conference

on Artificial Intelligence. 48–57.
[19] GitHub. 2024. GitHub Advisory Database. Retrieved May 25, 2024 from https:

//github.com/github/advisory-database
[20] GitHub. 2024. GitHub Repository for lukashinsch/spring-boot-actuator-logview. Re-

trieved May 25, 2024 from https://github.com/lukashinsch/spring-boot-actuator-
logview/tags

[21] GitHub. 2024. GitHub Repository for spring-projects/spring-integration-

extensions. Retrieved May 25, 2024 from https://github.com/spring-projects/
spring-integration-extensions/tags

[22] GitLab. 2024. GitLab Advisory Database. Retrieved May 25, 2024 from https:
//gitlab.com/gitlab-org/security-products/gemnasium-db

[23] Daya Guo, Shuai Lu, Nan Duan, Yanlin Wang, Ming Zhou, and Jian Yin. 2022.
Unixcoder: Unified cross-modal pre-training for code representation. arXiv

preprint arXiv:2203.03850 (2022).
[24] Hao Guo, Sen Chen, Zhenchang Xing, Xiaohong Li, Yude Bai, and Jiamou Sun.

2022. Detecting and augmenting missing key aspects in vulnerability descriptions.
ACM Transactions on Software Engineering and Methodology 31, 3 (2022), 1–27.

[25] Hao Guo, Zhenchang Xing, Sen Chen, Xiaohong Li, Yude Bai, and Hu Zhang. 2021.
Key aspects augmentation of vulnerability description based on multiple security

databases. In Proceedings of the 2021 IEEE 45th Annual Computers, Software, and

Applications Conference. 1020–1025.
[26] Stefanus A Haryono, Hong Jin Kang, Abhishek Sharma, Asankhaya Sharma,

Andrew Santosa, Ang Ming Yi, and David Lo. 2022. Automated identification of
libraries from vulnerability data: Can we do better?. In Proceedings of the 30th

International Conference on Program Comprehension. 178–189.
[27] Yongzhong He, Yiming Wang, Sencun Zhu, Wei Wang, Yunjia Zhang, Qiang Li,

and Aimin Yu. 2024. Automatically Identifying CVE Affected Versions With
Patches and Developer Logs. IEEE Transactions on Dependable and Secure Com-

puting 21, 02 (2024), 905–919.
[28] Kaifeng Huang, Bihuan Chen, Congying Xu, Ying Wang, Bowen Shi, Xin Peng,

Yijian Wu, and Yang Liu. 2022. Characterizing usages, updates and risks of
third-party libraries in Java projects. Empirical Software Engineering 27, 4 (2022),
90.

[29] java decompiler. 2024. jd-gui. Retrieved May 20, 2024 from https://github.com/
java-decompiler/jd-gui

[30] Hyeonseong Jo, Jinwoo Kim, Phillip Porras, Vinod Yegneswaran, and Seungwon
Shin. 2020. GapFinder: Finding inconsistency of security information from
unstructured text. IEEE Transactions on Information Forensics and Security 16
(2020), 86–99.

[31] Seulbae Kim, SeunghoonWoo, Heejo Lee, and Hakjoo Oh. 2017. Vuddy: A scalable
approach for vulnerable code clone discovery. In Proceedings of the Symposium

on Security and Privacy. 595–614.
[32] Chengwei Liu, Sen Chen, Lingling Fan, Bihuan Chen, Yang Liu, and Xin Peng.

2022. Demystifying the vulnerability propagation and its evolution via depen-
dency trees in the npm ecosystem. In Proceedings of the 44th International Con-

ference on Software Engineering. 672–684.
[33] Yunbo Lyu, Thanh Le-Cong, Hong Jin Kang, Ratnadira Widyasari, Zhipeng Zhao,

Xuan-Bach D Le, Ming Li, and David Lo. 2023. Chronos: Time-aware zero-
shot identification of libraries from vulnerability reports. In Proceedings of the

IEEE/ACM 45th International Conference on Software Engineering. 1033–1045.
[34] Lucas Miranda, Cainã Figueiredo, Daniel SadocMenasché, and Anton Kocheturov.

2023. Patch or Exploit? NVD Assisted Classification of Vulnerability-Related
GitHub Pages. In Proceedings of the International Symposium on Cyber Security,

Cryptology, and Machine Learning. 511–522.
[35] Dongliang Mu, Alejandro Cuevas, Limin Yang, Hang Hu, Xinyu Xing, Bing Mao,

and Gang Wang. 2018. Understanding the reproducibility of crowd-reported
security vulnerabilities. In Proceedings of the 27th USENIX Security Symposium.
919–936.

[36] mvnrepository. 2024. Maven Artifact for eu.hinsch/spring-boot-actuator-logview.
Retrieved May 25, 2024 from https://mvnrepository.com/artifact/eu.hinsch/
spring-boot-actuator-logview

[37] mvnrepository. 2024. Maven Artifact for org.springframework.integration/spring-

integration-zip. Retrieved May 25, 2024 from https://mvnrepository.com/artifact/
org.springframework.integration/spring-integration-zip

[38] Viet HungNguyen, Stanislav Dashevskyi, and FabioMassacci. 2016. An automatic
method for assessing the versions affected by a vulnerability. Empirical Software

Engineering 21 (2016), 2268–2297.
[39] Viet HungNguyen and FabioMassacci. 2013. The (un) reliability of nvd vulnerable

versions data: An empirical experiment on google chrome vulnerabilities. In
Proceedings of the 8th ACM SIGSAC symposium on Information, computer and

communications security. 493–498.
[40] Giang Nguyen-Truong, Hong Jin Kang, David Lo, Abhishek Sharma, Andrew E

Santosa, Asankhaya Sharma, andMing Yi Ang. 2022. Hermes: Using commit-issue
linking to detect vulnerability-fixing commits. In Proceedings of the International

Conference on Software Analysis, Evolution and Reengineering. 51–62.
[41] NVD. 2023. NVD. Retrieved July 14, 2023 from https://nvd.nist.gov/vuln/data-

feeds
[42] NVD. 2024. CVE-2021-43795. Retrieved May 25, 2024 from https://nvd.nist.gov/

vuln/detail/CVE-2021-43795
[43] NVD. 2024. CVE-2021-43795. Retrieved May 25, 2024 from https://github.com/

line/armeria/pull/3855/files/a380cf982f665459b79909555b5d4b024d7daf1a
[44] NVD. 2024. CVE-2021-43795. Retrieved May 25, 2024 from https://github.com/

line/armeria/commit/e2697a575e9df6692b423e02d731f293c1313284
[45] NVD. 2024. CVE-2022-22976. Retrieved May 25, 2024 from https://nvd.nist.gov/

vuln/detail/CVE-2022-22976
[46] Shengyi Pan, Lingfeng Bao, Xin Xia, David Lo, and Shanping Li. 2023. Fine-

grained commit-level vulnerability type prediction by CWE tree structure. In
Proceedings of the 45th International Conference on Software Engineering. 957–969.

[47] Antonino Sabetta, Serena Elisa Ponta, Rocio Cabrera Lozoya, Michele Bezzi,
Tommaso Sacchetti, Matteo Greco, Gergő Balogh, Péter Hegedűs, Rudolf Ferenc,
Ranindya Paramitha, et al. 2024. Known Vulnerabilities of Open Source Projects:
Where Are the Fixes? IEEE Security & Privacy 22, 2 (2024), 49–59.

[48] Youkun Shi, Yuan Zhang, Tianhan Luo, XiangyuMao, andMin Yang. 2022. Precise
(Un) Affected Version Analysis for Web Vulnerabilities. In Proceedings of the 37th

IEEE/ACM International Conference on Automated Software Engineering. 1–13.
[49] ShiftLeftSecurity. 2024. Joern. Retrieved April 20, 2024 from https://github.com/

ShiftLeftSecurity/joern

12

https://cwe.mitre.org/data/definitions/1000.html
https://cwe.mitre.org/data/definitions/699.html
https://github.com/github/advisory-database
https://github.com/github/advisory-database
https://github.com/lukashinsch/spring-boot-actuator-logview/tags
https://github.com/lukashinsch/spring-boot-actuator-logview/tags
https://github.com/spring-projects/spring-integration-extensions/tags
https://github.com/spring-projects/spring-integration-extensions/tags
https://gitlab.com/gitlab-org/security-products/gemnasium-db
https://gitlab.com/gitlab-org/security-products/gemnasium-db
https://github.com/java-decompiler/jd-gui
https://github.com/java-decompiler/jd-gui
https://mvnrepository.com/artifact/eu.hinsch/spring-boot-actuator-logview
https://mvnrepository.com/artifact/eu.hinsch/spring-boot-actuator-logview
https://mvnrepository.com/artifact/org.springframework.integration/spring-integration-zip
https://mvnrepository.com/artifact/org.springframework.integration/spring-integration-zip
https://nvd.nist.gov/vuln/data-feeds
https://nvd.nist.gov/vuln/data-feeds
https://nvd.nist.gov/vuln/detail/CVE-2021-43795
https://nvd.nist.gov/vuln/detail/CVE-2021-43795
https://github.com/line/armeria/pull/3855/files/a380cf982f665459b79909555b5d4b024d7daf1a
https://github.com/line/armeria/pull/3855/files/a380cf982f665459b79909555b5d4b024d7daf1a
https://github.com/line/armeria/commit/e2697a575e9df6692b423e02d731f293c1313284
https://github.com/line/armeria/commit/e2697a575e9df6692b423e02d731f293c1313284
https://nvd.nist.gov/vuln/detail/CVE-2022-22976
https://nvd.nist.gov/vuln/detail/CVE-2022-22976
https://github.com/ShiftLeftSecurity/joern
https://github.com/ShiftLeftSecurity/joern

Vision: Identifying Affected Library Versions for Open Source Software Vulnerabilities ASE ’24, October 27-November 1, 2024, Sacramento, CA, USA

[50] Jacek Śliwerski, Thomas Zimmermann, and Andreas Zeller. 2005. When do
changes induce fixes? ACM sigsoft software engineering notes 30, 4 (2005), 1–5.

[51] SNYK. 2023. SNYK Open Source Vulnerability Database. Retrieved May 25, 2024
from https://security.snyk.io/

[52] sonatype. 2023. 9th Annual State of the Software Supply Chain. Retrieved
May 25, 2024 from https://www.sonatype.com/state-of-the-software-supply-
chain/introduction

[53] Jiamou Sun, Zhenchang Xing, Qinghua Lu, Xiwei Xu, Liming Zhu, Thong Hoang,
and Dehai Zhao. 2023. Silent Vulnerable Dependency Alert Prediction with
Vulnerability Key Aspect Explanation. In Proceedings of the 45th International

Conference on Software Engineering. 970–982.
[54] Jiamou Sun, Zhenchang Xing, Xin Xia, Qinghua Lu, Xiwei Xu, and Liming Zhu.

2023. Aspect-level information discrepancies across heterogeneous vulnerability
reports: Severity, types and detection methods. ACM Transactions on Software

Engineering and Methodology 33, 2 (2023), 1–38.
[55] Qing Sun, Lili Xu, Yang Xiao, Feng Li, He Su, Yiming Liu, Hongyun Huang, and

Wei Huo. 2022. VERJava: Vulnerable Version Identification for Java OSS with a
Two-Stage Analysis. In Proceedings of the International Conference on Software

Maintenance and Evolution. 329–339.
[56] Xin Tan, Yuan Zhang, Chenyuan Mi, Jiajun Cao, Kun Sun, Yifan Lin, and Min

Yang. 2021. Locating the security patches for disclosed oss vulnerabilities with
vulnerability-commit correlation ranking. In Proceedings of the 2021 ACM SIGSAC

Conference on Computer and Communications Security. 3282–3299.
[57] Nazgol Tavabi, Palash Goyal, Mohammed Almukaynizi, Paulo Shakarian, and

Kristina Lerman. 2018. Darkembed: Exploit prediction with neural language
models. In Proceedings of the AAAI Conference on Artificial Intelligence. 7849–7854.

[58] Vision. 2024. Vision. Retrieved May 25, 2024 from https://vision-version.github.
io

[59] Veracode. 2024. Veracode Vulnerability Database. Retrieved May 25, 2024 from
https://sca.analysiscenter.veracode.com/vulnerability-database/search

[60] Shichao Wang, Yun Zhang, Liagfeng Bao, Xin Xia, and Minghui Wu. 2022. Vc-
match: a ranking-based approach for automatic security patches localization for
OSS vulnerabilities. In Proceedings of the International Conference on Software

Analysis, Evolution and Reengineering. 589–600.
[61] Ying Wang, Bihuan Chen, Kaifeng Huang, Bowen Shi, Congying Xu, Xin Peng,

Yijian Wu, and Yang Liu. 2020. An empirical study of usages, updates and risks of
third-party libraries in java projects. In Proceedings of the 2020 IEEE International

Conference on Software Maintenance and Evolution. 35–45.
[62] Xin-Cheng Wen, Cuiyun Gao, Feng Luo, Haoyu Wang, Ge Li, and Qing Liao.

2024. LIVABLE: Exploring Long-Tailed Classification of Software Vulnerability
Types. IEEE Transactions on Software Engineering (2024).

[63] Wikepedia. 2024. HITS algorithm. Retrieved May 25, 2024 from https://en.
wikipedia.org/wiki/HITS_algorithm

[64] wiki. 2024. Levenshtein Distance. Retrieved May 25, 2024 from https://en.
wikipedia.org/wiki/Levenshtein_distance

[65] SeunghoonWoo, Eunjin Choi, Heejo Lee, and Hakjoo Oh. 2023. V1SCAN: Discov-
ering 1-day Vulnerabilities in Reused C/C++ Open-source Software Components
Using Code Classification Techniques. In Proceedings of the 32nd USENIX Security

Symposium. 6541–6556.
[66] Seunghoon Woo, Hyunji Hong, Eunjin Choi, and Heejo Lee. 2022. MOVERY: A

Precise Approach for Modified Vulnerable Code Clone Discovery from Modified
Open-Source Software Components. In Proceedings of the 31st USENIX Security

Symposium. 3037–3053.
[67] Seunghoon Woo, Dongwook Lee, Sunghan Park, Heejo Lee, and Sven Dietrich.

2021. V0Finder: Discovering the Correct Origin of Publicly Reported Software
Vulnerabilities. In Proceedings of the 30th USENIX Security Symposium. 3041–3058.

[68] Susheng Wu, Wenyan Song, Kaifeng Huang, Bihuan Chen, and Xin Peng. 2024.
Identifying Affected Libraries and Their Ecosystems for Open Source Software
Vulnerabilities. In Proceedings of the 46th International Conference on Software

Engineering. 1–12.
[69] Julia Wunder, Andreas Kurtz, Christian Eichenmüller, Freya Gassmann, and

Zinaida Benenson. 2023. Shedding Light on CVSS Scoring Inconsistencies: A
User-Centric Study on Evaluating Widespread Security Vulnerabilities. arXiv
preprint arXiv:2308.15259 (2023).

[70] Yang Xiao, Bihuan Chen, Chendong Yu, Zhengzi Xu, Zimu Yuan, Feng Li,
Binghong Liu, Yang Liu, Wei Huo, Wei Zou, et al. 2020. MVP: Detecting Vulnera-
bilities using Patch-Enhanced Vulnerability Signatures. In Proceedings of the 29th

USENIX Security Symposium. 1165–1182.
[71] Congying Xu, Bihuan Chen, Chenhao Lu, Kaifeng Huang, Xin Peng, and Yang Liu.

2022. Tracking patches for open source software vulnerabilities. In Proceedings

of the 30th ACM Joint European Software Engineering Conference and Symposium

on the Foundations of Software Engineering. 860–871.
[72] Sofonias Yitagesu, Zhenchang Xing, Xiaowang Zhang, Zhiyong Feng, Xiaohong

Li, and Linyi Han. 2023. Extraction of phrase-based concepts in vulnerability
descriptions through unsupervised labeling. ACM Transactions on Software

Engineering and Methodology 32, 5 (2023), 1–45.
[73] Zhuotong Zhou, Yongzhuo Yang, Susheng Wu, Yiheng Huang, Bihuan Chen, and

Xin Peng. 2024. Magneto: A Step-Wise Approach to Exploit Vulnerabilities in

Dependent Libraries via LLM-Empowered Directed Fuzzing. In Proceedings of

the 39th IEEE/ACM International Conference on Automated Software Engineering.

13

https://security.snyk.io/
https://www.sonatype.com/state-of-the-software-supply-chain/introduction
https://www.sonatype.com/state-of-the-software-supply-chain/introduction
https://vision-version.github.io
https://vision-version.github.io
https://sca.analysiscenter.veracode.com/vulnerability-database/search
https://en.wikipedia.org/wiki/HITS_algorithm
https://en.wikipedia.org/wiki/HITS_algorithm
https://en.wikipedia.org/wiki/Levenshtein_distance
https://en.wikipedia.org/wiki/Levenshtein_distance

	Abstract
	1 Introduction
	2 Motivation
	2.1 Inaccurate Affected Library Versions in Vulnerability Databases
	2.2 Limitations of Existing Works

	3 Approach
	3.1 Vulnerability and Patch Signature Generation
	3.2 Vulnerability-potential and Patch-potential Version Signature Generation
	3.3 Affected Library Versions Detection

	4 Evaluation
	4.1 Evaluation Setup
	4.2 Effectiveness Evaluation (RQ1)
	4.3 Ablation Study (RQ2)
	4.4 Parameter Sensitivity (RQ3)
	4.5 Generality Evaluation (RQ4)
	4.6 Efficiency Evaluation (RQ5)
	4.7 Usefulness Evaluation (RQ6)
	4.8 Discussion

	5 Related Work
	6 Conclusions
	References

