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ABSTRACT

Open source software (OSS) supply chains have been attractive tar-

gets for attacks. One of the significant, popular attacks is realized by

malicious packages on package registries. NPM, as the largest pack-

age registry, has been recently flooded with malicious packages. In

response to this severe security risk, many detection tools have been

proposed. However, these tools do not model malicious behavior in

a holistic way; only consider a predefined set of sensitive APIs; and re-

quire hugemanual confirmation effort due to high false positives and

binary detection results. Thus, their practical usefulness is hindered.

To address these limitations, we propose a practical tool, named Spi-

derScan, to identifymalicious NPMpackages based on graph-based

behavior modeling and matching. In the offline phase, given a set of

malicious packages, SpiderScanmodels each malicious behavior in

a graph that considers control flows and data dependencies across

sensitive API calls, while leveraging LLM to recognize sensitive APIs

in both built-in modules and third-party dependencies. In the online

phase, given a target package, SpiderScan constructs its suspicious

behavior graphs and matches them with malicious behavior graphs,

and uses dynamic analysis and LLM to confirm the maliciousness

only for certain malicious behaviors. Our extensive evaluation has

demonstrated the effectiveness of SpiderScan over the state-of-the-

art. SpiderScan has detected 249 new malicious packages in NPM,

and received 70 thank letters from the official team of NPM.
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1 INTRODUCTION

As delineated in the 2024 open source security and risk analysis

report by Synopsys [65], 96% of the codebases contained OSS. More-

over, the open source community witnessed developers making 301

million contributions to OSS across GitHub in 2023 [30]. However,

the pervasive adoption of OSS and the broad contributions to OSS

have inevitably escalated the trend of security issueswithinOSS sup-

ply chains, exposing them to significant risks of cyber-attacks [21,

27, 28, 34, 40, 53, 62, 64, 76, 77, 83]. A comprehensive taxonomy of

attacks on OSS supply chains has been proposed by Ladisa et al. [34].

Problem. A significant security risk is caused by malicious pack-

ages on package registries. The two popular package registries NPM

and PyPI have been recently flooded with malicious packages [17,

22, 43, 48, 70, 82], bringing security threats to a wide range of down-

stream applications. As revealed by the Sonatype report [62], over

245,000 malicious packages were discovered in 2023 alone, which

was double the total from all previous years combined since 2019.

To trick developers into installing and using malicious packages,

attackers often use techniques such as typosquatting [66] and com-

bosquatting [75]. These attacks attempt to mimic the names of pop-

ular packages. For example, Check Point CloudGuard found a ty-

posquatting campaign on PyPI with over 500malicious packages [1].

Besides, attackers also attempt to inject malicious code into existing

popular packages. For example, an attacker compromised the NPM

account of a maintainer, and published malicious versions of the

eslint-scope and eslint-config-eslint packages to NPM [25]. Moreover,

attackers exploit dependency confusion to launch the attack. They

create and publish malicious packages with the same name as the

internal packages used by target organizations [5, 55]. Facing the
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broad attack surface, automated tools to detect these malicious pack-

ages on registries become extremely important. In this work, we

focus on detecting malicious packages on NPM, which is the largest

package registry, with more than two million packages [45].

Existing Approaches. A lot of tools have been proposed to de-

tect malicious NPM packages, which can be categorized into five

types: rule-based [9, 11, 19, 42, 54, 66, 80], unsupervised learning

[18, 47], supervised learning [23, 26, 35, 46, 61, 81], prompt engi-

neering [79], and differential analysis [50, 59]. In particular, rule-

based methods rely on predefined rules. These tools are straight-

forward and lightweight, but often produce many false positives,

making them less effective in real-world scenarios. Learning-based

methods rely on feature extraction, and use clustering or classifi-

cation techniques to identify malicious packages. Except for Cere-

bro [81] which models package behavior as a sequence of activities,

these tools capture package behavior as a set of discrete features

over sensitive APIs, code structures or semantics (e.g., data flow),

simplifying the modeling of malicious behavior and thus hindering

their practical effectiveness. Prompt engineering methods leverage

the capability of ChatGPT [52], and use self-refinement and chain-

of-thought techniques to detect maliciousness, but can incur high

expense in real-world scenarios. Differential analysis methods ex-

plore changes between different versions of a package or between

the source code in open-source repositories and the distributed

artifacts. These tools work under a different setting from previous

tools. Some tools [11, 26] use dynamic analysis in a heavy way,

hindering their practical usefulness in real-world scenarios.

Limitations. We summarize three limitations that hinder the

usefulness of existing malicious package detection tools. First, exist-
ing tools fail to holistically model malicious behavior (L1). Malicious

behavior not only relates to sensitive API calls, but also involves the

control flows and data dependencies across these API calls. How-

ever, most of the existing tools consider sensitive API calls, but

only a few tools consider control flows [26, 81] or data dependen-

cies [11], limiting their effectiveness and causing false positives.

Second, existing tools only consider a predefined set of sensitive APIs,
and mostly do not consider sensitive APIs in third-party dependencies
(L2). Sensitive APIs (e.g., eval and fs.writeFile) are treated as

good indicators of maliciousness, and spread over a wide range of

functionalities (e.g., network, process, and file system). However, ex-

isting tools [11, 26, 61, 81] require manually collected sensitive APIs,

which not only increases theworkload but also raises false negatives

due to incorrect or incomplete collection [49]. Further, apart from

sensitive APIs in built-in modules, malicious behavior leverages sen-

sitive APIs in third-party dependencies. However, only a few tools [11,

26] consider both built-in modules and third-party dependencies.

Third, existing tools require a huge confirmation effort (L3). On one
hand, the potentially high false positives lead to a huge manual ef-

fort to review and confirm the maliciousness, and hence overwhelm

registry maintainers [49]. On the other hand, the binary detection

result with insufficient detail about the type and location of mali-

ciousness further increases the manual confirmation effort [49, 73].

Our Approach. To overcome these limitations, we propose Spi-

derScan, a practical tool to detect malicious NPM packages based

on graph-based behaviormodeling andmatching. In the offline phase,

given a set of malicious packages, SpiderScan extracts and models

each malicious behavior in a graph that considers control flows and

data dependencies across sensitive API calls, which addresses L1.

SpiderScan adopts LLM to recognize sensitive APIs in built-in mod-

ules and third-party dependencies, which addressesL2. In the online

phase, given a target package, SpiderScan constructs its suspicious

behavior graph and matches it with malicious behavior graphs. If

matched, SpiderScan leverages dynamic analysis and LLM to con-

firm the maliciousness only for some specific malicious behaviors.

Based on the matching result, SpiderScan provides the type and lo-

cation of the detected maliciousness, which addresses L3.

Evaluation. We evaluate SpiderScan and four state-of-the-art,

i.e.,GuardDog [9], SAP [35],Amalfi [61] andCerebro [81]. On the

public dataset, SpiderScan achieves the highest F1-score of 92.9%,

significantly outperforming the state-of-the-art by 8.7% to 34.4%.

Further, in the real-world detection scenario, we monitor the newly-

published packages in NPM for three months. SpiderScan achieves

the lowest false positive rate of 38.2%, significantly outperforming

the state-of-the-art by 25.4% to 59.1%. SpiderScan has detected 249

previously unknownmalicious packages, and reported them toNPM.

All these malicious packages have been removed by NPM, and we

have received 70 thank letters from the official team of NPM.

Contribution. This work makes the following contributions.

• Weproposed a practical tool SpiderScan to detectmalicious NPM

packages by graph-based behavior modeling and matching.

• We conducted extensive experiments to demonstrate the effec-

tiveness and practical usefulness of SpiderScan.

• We detected 249 new malicious packages in NPM, and received

70 thank letters from the official team of NPM.

2 PRELIMINARY AND MOTIVATION

We introduce the three phases that trigger malicious behaviors, and

use examples to illustrate the limitations of existing tools.

2.1 Preliminary

Install-Time. In the install-time of an NPM package, the package

is fetched, and its setup scripts are executed. This phase is initiated

when the npm install command is run. The package.json file plays a vi-
tal role in this phase, as it lists the dependencies and scripts to be ex-

ecuted. The key scripts executed during this phase include preinstall,
install and postinstall. Malicious code can be embedded in the scripts,

leading to the execution of harmful commands or codes even before

the package is fully installed. As reported by Ohm et al. [48], most

malicious packages start their malicious routines on installation.

Import-Time. Import-time occurs when a packagemodule is im-

ported into a project using require or import statements. The main
field in package.json specifies the primary entry file of the module.

This phase is critical because it triggers the initialization code in the

module, which can include setting up configurations, opening net-

work connections, or manipulating files. Malicious code can utilize

this phase to execute harmful activities as soon as the module is im-

ported into a project, often without the user’s immediate awareness.

Run-Time. Run-time is the phase when an actual project is exe-

cuted. This phase spans the entire lifecycle of the project from start

to finish, including all user interactions and triggered processes.

Malicious code can be designed to activate at specific points during

this phase, often based on certain conditions or inputs, making it

harder to detect and mitigate, but less likely to be triggered.
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Figure 1: Code Snippet of colour-string-1.5.3

Figure 2: Code Snippet of bitcionjslib-1.0.0

2.2 Motivation

Motivation 1: Malicious behavior involves control flows and

data dependencies across sensitiveAPI calls. Figure 1 shows the

code snippet of the malicious package colour-string-1.5.3, which im-

plements a backdoor. Specifically, this malicious behavior is realized

via sensitive APIs from built-inmodules (e.g., http, child_process,
and fs). It makes a GET request to a URL, and executes the callback

functionwhen the response flemished is received (Line 5–6). In the
callback function, it creates a writable file stream neroli (Line 7),
and listens to the data event (Line 8–10) and end event (Line 11–16).
When a chunk of data tollman is received from the response, it

writes the data to the file (Line 9). When the response is complete,

it modifies the permission of the file (Line 13), and calls the process

creation function to execute the file, launching the attack (Line 14).

Existing tools use predefined rules (e.g., regular expressionmatch-

ing) to extract http.get, fs.createWriteStream, fs.chmod and
child_process.exec as sensitive API calls. However, they onlymap

them into coarse-grained behaviors; e.g., http.get is mapped into a

network operation, losing the semantic information. Moreover, they

may fail to extract the sensitive API call to neroli.write, which is

important to capture the behavior of this backdoor. In addition, they

mostly do not track control flows and data dependencies between

these sensitive API calls, e.g., the control flow between http.get
and fs.createWriteStream, and the data dependency between

fs.createWriteStream and neroli.write. Such a coarse-grained
and incomplete behavior modeling leads to high false positives.

Motivation 2: Malicious code may use third-party depen-

dencies to achieve the malicious objective. Figure 2 shows the
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Figure 3: Approach Overview of SpiderScan

code snippet of the malicious package bitcionjslib-1.0.0, which steals
the sensitive data in bitcoin wallet. Specifically, it introduces third-

party dependency nodemailer (Line 4) to facilitate the stealing. It

uses the sensitive API createTransport to connect to a mail server

(Line 22), and uses sensitive API sendMail to send a mail (Line 23).

Themail attachment contains the file path to the bitcoin wallet (Line

7 and 18). However, existing tools mostly do not consider sensitive

APIs in third-party dependencies, which leads to false negatives.

3 OUR APPROACH

To overcome the limitations of existing tools, we introduce Spider-

Scan, a practical tool to detect malicious NPM packages based on

graph-based behavior modeling and matching empowered by LLM.

The approach overview of SpiderScan is illustrated in Figure 3. It

is composed of five components, i.e., suspicious behavior extractor

(Sec. 3.4), script analyzer (Sec. 3.2), obfuscation detector (Sec. 3.3),

maliciousness detector (Sec. 3.5), andmaliciousness verifier (Sec. 3.6).

In the offline phase, given a set of knownmalicious packages, Spi-

derScan uses the suspicious behavior extractor to model and con-

struct a set of malicious behavior graphs (i.e., each graph represents

one type of malicious behavior) via automated deduplication and

manual pruning. Our graph holistically captures the control flows

and data dependencies across sensitive API calls by static analysis.

Moreover, our graph completely captures sensitive APIs (in both

built-in modules and third-party dependencies) by LLM.

In the online phase, given a newly published package, Spider-

Scan uses the script analyzer to extract the commands in the pack-
age.json file and leverage LLM to identifymalicious commands. Then,

SpiderScan uses the obfuscation detector to detect code obfusca-

tion and directly report the obfuscated code as malicious. Next, if no

obfuscated code is found, SpiderScan runs the maliciousness detec-

tor, which uses the suspicious behavior extractor to generate the sus-

picious behavior graph for the package, and matches it with the ma-

licious behavior graphs constructed in the offline phase. If matched,

SpiderScan reports the location of the malicious code. Finally, for

certain matched malicious behaviors (e.g., reading a file and sending
it to a remote server) that could incur high false positives, Spider-

Scan uses the maliciousness verifier to confirm the true malicious-

ness based on dynamic analysis and LLM.

3.1 Prompt Design

Somemodules in SpiderScan leverage LLMs. Prompt engineering is

an important skill to effectively interact with LLMs. We use prompt

3
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engineering practices to construct our prompts, specifically adher-

ing to the following criteria: 1) Adopt Specific Roles. Instructing

an LLM to adopt specific professional roles can enhance responses,

making them more relevant and contextually accurate [78]; 2) Pro-

vide the Context. Providing context is a common strategy that can

reduce the likelihood of an LLM producing incorrect or irrelevant

answers [41]; 3) Specify the Goal. Defining the goal helps an LLM

focus on the specific task at hand, reducing ambiguity and increas-

ing the chances of generating expected and coherent results; 4) Pro-

vide Examples. Adding examples to a prompt enhances the LLM’s

understanding by clarifying intent and improving contextualization,

leading to more accurate and relevant results [7]. Additionally, cer-

tain specific examples can enhance the LLM’s detection capabilities

in some custom scenarios; 5) Specify the Output. Using templates

like JSON to structure the LLM’s responses can minimize errors and

streamline the processing and analysis of results in downstream

tasks [78]. Once the prompt design is completed, we assess its

validity and verify the expert knowledge involved.

3.2 Script Analyzer

SpiderScan incorporates our script analyzer to analyze the pack-
age.json file of a package. As introduced in Sec. 2.1, package.json
plays a crucial role in determining the behavior of a package during

both the install-time and import-time phases. The goal of our script

analyzer is to obtain the entry files of these two phases, and to detect

malicious shell commands executed during the install-time.

Entry File Extraction. The scripts field in package.json, includ-
ing the preinstall, install and postinstall scripts, specifies the entry
files executed during the install-time, while the main field in pack-
age.json specifies the entry files executed during the import-time.We

employ regular expressions to extract JS files from these fields. These

files are later used in our suspicious behavior extractor.

Shell CommandAnalysis. The scripts field in package.jsonmay

contain shell commands executed during the install-time, which can

be malicious. However, the shell commands can be too diverse to be

comprehensively analyzed. To this end, we leverage LLM to decide

whether each shell command extracted from the scripts field is ma-

licious. Some existing tools focus on detecting Unix-like malicious

shell commands.DONAPI [26] implements detection by pre-defining

a set of rules and incorporating malicious URL detection, but it fails

to identify malicious shell commands beyond rules. ShellCore [3]

leverages NLP to identify malicious commands at both the term and

character levels. However, directly applying tokenizer techniques

designed for natural language to shell commands poses challenges.

To address this, Trizna [69] leverages the bashlex parsing tool to

analyze malicious shell commands, and bases its encoding on this

approach. SIFAST [8] incorporates AST information from the com-

mands, and utilizes a new embedding method. We choose LLMs for

our script analyzer because they not only classify but also explain

their reasoning, aiding manual review and aligning with Spider-

Scan’s goal of accelerating manual inspections, which is not pro-

vided by existing tools. Trained on vast and diverse datasets, LLMs

can grasp complex contexts and subtle nuances in shell commands,

and integrate knowledge from multiple domains, including pro-

gramming languages, cybersecurity concepts, and general knowl-

edge. This approach enables LLMs to detect malicious commands

You are an experienced Linux shell programmer and an experienced 
Node.js package programmer. 
...
You should return your answer in the form of a JSON object using the 
template provided below: 
...
If the shell command contains only one command, explain the command 
and replace the placeholder ${description 1} with your explanation. 
...
If the shell command runs a file during execution (e.g., using the node 
command), replace the placeholder ${file 1} with the actual file name 
being executed. 
…
Finally, analyze the entire shell command to determine if it is malicious.
If the shell command retrieves user, system, or other local information 
and sends it to a specific URL or performs a DNS lookup, it is malicious.
...
The answer to the judgement should only be malicious or benign, 
replace the placeholder ${judge} with your judgement.

  nohup /bin/sh -c 'nc hacker_ip | /bin/sh' >/dev/null 2>&1 &#          

System

User

Figure 4: Partial Prompt for Shell Command Analysis

more effectively than traditional NLP techniques. Moreover, by us-

ing LLMs, we can quickly adapt to new threats or custom scenarios

without requiring retraining or fine-tuning, which is often required

by traditional NLP techniques.

Figure 4 shows part of the prompt for analyzing a shell command.

We set the role of LLM as a shell programmer, and instruct the LLM

to explain the commands and extract files executed. Then, we in-

struct LLM to judge the maliciousness of the shell commands. The

classification is based onmalicious behavior analysis. Behavior anal-

ysis is a widely used and effective approach [4, 26, 81], as malicious

actions typically involve a sequence of steps, such as reading and up-

loading sensitive data. LLM examines script behaviors to determine

if they are malicious, such as data theft, payload execution, or re-

verse shells. To enhance detection, we include examples ofmalicious

behaviors in the prompt. These examples are drawn from grey liter-

ature, previous research [26, 48, 81, 82], documented malicious shell

commands [20, 63], and observations of existing malicious pack-

ages. These malicious behaviors are found in real-world scenarios,

making the inclusion of these examples both reasonable and effec-

tive. For those commands that execute additional files, such as .exe
or .sh files, we instruct the LLM to classify them as malicious. By

default, we instruct LLM to make classifications based on its exten-

sive knowledge. The current classification approach is effective, but

alternative methods could be considered, such as modifying and

applying the rule and NLP-based tools, or by extracting predefined

features and training a classifier. If maliciousness is detected, we

report the package as malicious, and provide the malicious com-

mand and its explanation and executed files as evidences, which

can facilitate manual confirmation.

3.3 Obfuscation Detector

SpiderScan uses our obfuscation detector to detect obfuscated code

files in a package. Obfuscation is commonly employed by attackers

to avoid maliciousness detection by humans or program analysis

tools [48]. Therefore, it is important to effectively detect obfuscation.

Existing obfuscation detectors utilize either lexical information de-

rived from the code text [24, 26, 32, 38, 67] or syntactic information

4
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Table 1: Lexical Features in Obfuscation Detection

ID Feature Description Source

F1 Total number of lines of code [38]

F2 Ratio of lines of code before and after code formatting [26]

F3 Ratio of the number of spaces before and after code formatting [26]

F4 Count of confusing identifiers and property identifiers new

F5 Measure of uncertainty or randomness in identifiers [32]

F6 Count of long strings (whose length exceeds 100 characters) [26]

F7 Length of the longest string in the JavaScript file [24]

F9 Average count of whitespace characters per line [38]

F10 Count of special numbers (e.g., hexadecimal, Unicode and octal) [38]

F11 Count of special symbols (e.g., % and # ) [67]

derived from the abstract syntax tree (AST) [12, 13, 15, 16, 29]. Ob-

fuscated code exhibits distinctive characteristics both in its lexical

units (e.g., obfuscated identifiers) and its syntactic structures (e.g.,

extensive use of array accesses or binary expressions). Based on

these observations, we propose to combine lexical and syntactic

features to enhance obfuscation detection by supervised learning.

Specifically, Table 1 lists our adopted lexical features. Except for F4,

these features are borrowed from existing obfuscation detectors. For

F4, confusing identifiers refer to unreadable identifiers, e.g., _0xcfcc1c.

These identifiers often include hexadecimal or Unicode-encoded char-

acters, or contain consecutive consonants. Based on these charac-

teristics, we use rules to extract confusing identifiers. For syntactic

features, we follow Fass et al.’s work [15, 16], employing an n-grams

model to extract syntactic features based on the AST sequence.

Based on these extracted features, we train a random forest clas-

sifier to detect obfuscated code files. If obfuscated code files are de-

tected, we directly report the package as malicious. This strategy is

also used in existing tools [9, 35, 46, 61], adhering to the principle of

security first because obfuscation is a common technique used in

malicious code. If no obfuscated code file is detected, these code files

are analyzed subsequently in our suspicious behavior extractor.

3.4 Suspicious Behavior Extractor

Given the non-obfuscated entry files (whichwill be executed at install-

time and import-time) as well as the other non-obfuscated code files

(which will be executed at run-time), our suspicious behavior extrac-

tor aims to generate suspicious behavior graphs (SBGs) for a pack-

age which model the potentially malicious behaviors in the package.

For a given set of knownmalicious packages in the offline phase, the

generated SBGs will be used to semi-automatically generate mali-

cious behavior graphs. For a newly-published package in the online

phase, the generated SBGs will be used to match with the malicious

behavior graphs in our maliciousness detector.

Program Behavior Graph Generation. Before generating the

SBGs for a package, wemodel the code at the global scope of each file

(i.e., statements that exist outside any function or class declaration)

as an implicit “main” function, and abstract each file as a set of func-

tions. Then, we generate the call graph (CG) for the package, and

generate the control flow graph (CFG) and data dependence graph

(DDG) for each function. Finally, we generate a program behavior

graph (PBG) for each of the functions which do not have any caller

in CG. Each node in a PBG represents a statement. Nodes are con-

nected by two types of edges, i.e., control flow and data dependency.

To generate a PBG for a function 𝑓 , we traverse 𝑓 ’s CFG, simulat-

ing the program’s execution order, and maintain a stack 𝑠𝑓 to record

Table 2: Behavior Types of Sensitive APIs

Coarse-Grained Type Fine-Grained Type Hook

Information

Reading

R1: Read input data from hardware devices

R2: get the path or directory information

R3: get system information

R4: get user information

R5: get network information

R6: read data from a byte array, or stream

R7: read data from a file ✓

Data Writing

W1: create a data representation

W2: write data to a byte array, or stream

W3: write data to a file ✓

Network

Operation

N1: make HTTP request

N2: resolve the DNS

N3: create a network server or communication

N4: send data over the network

N5: receive data over the network

N6: configure the network

N7: start listening

System

Operation

S1: manipulate the path

S2: pipe the data

File

Operation

F1: search for a file ✓
F2: copy or move a file or directory

F3: create a file or directory.

F4: delete a file or directory ✓
F5: modify the permissions or ownership

F6: compress data

F7: decompress data

F8: create a writable stream

F9: create a readable stream

F10: open a file ✓

Transcoding &

Cryptography

T1: encode the data

T2: decode the data

T3: create a cipher object

T4: create a decipher object

T5: cipher the data

T6: decipher the data

Payload

Execution

E1: spawn a new process ✓
E2: run an executable file ✓
E3: execute a command ✓
E4: execute a dynamically created program ✓

Other \

the execution context within 𝑓 . During the traversal, wemainly han-

dle the following four types of nodes (others are omitted here for

space limitation), and add them to the resulting PBG. Once a node

is added, we connect this node to existing nodes in the PBG based

on their relations in 𝑓 ’s CFG and DDG.

Import. import and require statements are used to import mod-

ules. When encountering a node of this type, we analyze the type of

the module being imported, categorizing it as built-in, third-party,

or local, and add its alias information to the stack 𝑠𝑓 . The alias infor-

mation is denoted as a 3-tuple ⟨𝑚𝑜𝑑𝑢𝑙𝑒, 𝑎𝑙𝑖𝑎𝑠,𝑇𝑜𝑀⟩, where𝑚𝑜𝑑𝑢𝑙𝑒

denotes the name of the module, 𝑎𝑙𝑖𝑎𝑠 denotes the name of its alias,

and𝑇𝑜𝑀 denotes the type of the module. In addition, for third-party

modules, we download the latest compatible version of the corre-

sponding package based on the dependencies field in package.json. If
no version is specified, we download the latest version by default.

Function Call. A function call statement refers to the invoca-

tion of a function 𝑓 ′ which is declared by the package itself. When

encountering a node of this type, we locate the corresponding callee

𝑓 ′ based on CG. Then, we determine whether there exist data depen-

dencies to the arguments of this function call to 𝑓 ′ based on 𝑓 ’s DDG.

If such dependencies exist, we connect this function call node to the
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Sets the permissions on the file.
An asynchronous function that returns CPU information.

User

System
You are an expert in the field of programming, and your task is to 
classify an API description into one of the following classes. Each class 
is uniquely identified by a number and described with a specific label 
and a few examples that belong to the class. Based on the similarity 
between the description I provide and the examples for each class, 
determine the most appropriate class. If the description does not clearly 
match any given class based on the examples, or if there is uncertainty 
about its classification, use the default class number 40. The answer 
should only contain the class number and be restricted to one option.
. . .
<4> [get system information] Get information about the process, Node.js 
and its dependencies versions, the operating system, or other system-
related info. Get CPU information or memory information. Get disk 
information.
. . .
<22> [create a network server or communication] Create a new 
instance of an HTTP server. Create an HTTP request object or a Socket 
for communication. Establish a connection to a specified server at a 
given port. Create a transport object for sending emails.
. . .
<37> [execute a command] Spawn a shell and execute a command 
within that shell. Execute a command synchronously or asynchronously.

Figure 5: Partial Prompt for Sensitive API Identification

callee node by a data dependency edge. In the absence of data de-

pendencies, we utilize a control flow edge to connect them. Next, we

analyze the callee 𝑓 ′ to enable inter-procedural analysis, and create
a new stack 𝑠𝑓 ′ . When we finish the analysis of 𝑓 ′, we destroy 𝑠𝑓 ′ .

APICall.AnAPI call statement refers to the invocation of anAPI

that is provided by built-in modules or third-party dependencies. In

particular, an API call node is denoted as a 4-tuple ⟨𝑙, 𝑐, 𝑏𝑐, 𝑟𝑡⟩, where
𝑙 is the location of the statement, 𝑐 is the code of the statement, 𝑏𝑐 is

the behavior category of the API, and 𝑟𝑡 is the type of the return

value of the API call. 𝑙 and 𝑐 can be directly decided, while 𝑏𝑐 and 𝑟𝑡

will be decided later. Each API call node can classified as sensitive or

non-sensitive based on 𝑏𝑐 , and we add the sensitive one to the set𝛩 .

For an API call which consists of the qualifier and the API name,

we search the qualifier in the stack 𝑠𝑓 . If there exists an alias infor-

mation whose 𝑎𝑙𝑖𝑎𝑠 equals the qualifier, we handle it as a built-in or

third-party API call according to 𝑇𝑜𝑀 in the alias information. If

there exists a return value information (see Assignment) whose 𝑖𝑑
equals the qualifier, we handle it as an API call on returned object.

For a built-in API call, we use the official Node.js documentation

[44] (which has been downloaded and locally stored) to obtain its

return type (which is used to set 𝑟𝑡 ) and the API comment (which is

used to infer 𝑏𝑐). Existing tools [18, 46, 61, 81] map APIs into coarse-

grained behavior categories. To enhance the semantics, we propose

eight coarse-grained behavior categories, and further refine each

category into fine-grained categories based on our observations of

malicious packages and the description of malicious packages re-

ported on online posts or news. Table 2 shows the detailed behavior

categories. Given the API comment, we employ LLM to classify the

API call into fine-grained behavior categories. Figure 5 shows part

of the prompt for this classification. The first part sets the role of

LLM and describes this classification task. The second part contains

the fine-grained behavior categories and several examples. Once

𝑏𝑐 is inferred by LLM, we add this API call node to the stack 𝑠𝑓 .

http.get (N1, Line 5)

fs.createWriteStream (F8, Line 7)

Control Flow Data Dependency

neroli.write (W2, Line 9)
fs.chmod (F5, Line 13)

child_process.exec (E3, Line 14)

http.get (N1, Line 5)

fs.createWriteStream (F8, Line 7)

neroli.write (W2, Line 9) 

neroli.end (Line 12)

fs.chmod (F5, Line 13)

child_process.exec (E3, Line 14)

flemished.on (Line 8) 

flemished.on (Line 11) 

PBG SBG

Figure 6: Example of Programand Suspicious BehaviorGraph

For a third-party API call, we use the downloaded package in Im-
port to extract the source code of the API declaration as well as the

API comment. Different from built-in APIs, third-party APIs might

not always provide comments, and thus here we further extract the

source code, and use LLM to summarize the source code into a sum-

mary. Given the summary and API comment, we leverage LLM to

classify the API call into fine-grained behavior categories, where

the same prompt in Figure 5 is used. Once 𝑏𝑐 is inferred by LLM (𝑟𝑐

is not resolved and is empty), we add this API call node to 𝑠𝑓 .

For an API call on a returned object, we first obtain the matched

return value information (seeAssignment) from the stack 𝑠𝑓 . If the

𝑇𝑜𝑀 in the return value information indicates a built-in API, we lo-

cate this built-in API based on the API name and the 𝑟𝑡 in the return

value information. Then, we handle it as a built-in API call. If the

𝑇𝑜𝑀 in the return value information indicates a third-party API, it is

challenging to analyze this API call because the type of the returned

object (i.e., the 𝑟𝑡 in the return value information) is not resolved.

Nonetheless, the API name can provide significant insights. For ex-

ample, an object named server, which is returned by an API call

whose behavior category is to create a network server.When an API

named send is invoked on server, this API name and the behavior

category of the API call that returns server can be leveraged to

infer the behavior category. Therefore, we use the 𝑏𝑐 in the return

value information and the API name as the input for LLM to in-

fer the behavior category, using the same prompt in Figure 5. We

choose LLM-based classification over existing NLP-based comment-

code techniques [2, 56] because acquiring classification data for this

new task (e.g., mapping code summaries to fine-grained types) is

challenging, as fine-grained types may evolve with emerging ma-

licious behaviors. LLMs enable rapid adaptation to these changes

through prompt modification without the need for fine-tuning.

Assignment. Here we only introduce the assignment statement

whose right-side is a call expression. We search the call name of the

right-side call expression on the stack 𝑠𝑓 . If there exists a built-in

or third-party API call that matches the call name, we encounter an

assignment from the return value of an API call. Then, we collect

the return value information as a 4-tuple ⟨𝑖𝑑,𝑇𝑜𝑀,𝑏𝑐, 𝑟𝑡⟩, where 𝑖𝑑
is the left-side identifier of the assignment, 𝑇𝑜𝑀 denotes whether

the API is from a built-in or third-party module, and 𝑏𝑐 and 𝑟𝑡 re-

spectively denote the behavior category and return value type of

the API call. Finally, we add this return value information to the

6
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stack 𝑠𝑓 . By evaluating this assignment, we can handle the call on

the object returned by an API call (e.g., Line 23 in Figure 2).

Suspicious Behavior Graph Generation. From the generated

PBG, we extract a subgraph solely composed of sensitive API call

nodes (i.e., whose 𝑏𝑐 is not Other in Table 2), forming the suspicious

behavior graph (SBG) which models potentially malicious behavior

according to control flows and data dependencies across sensitive

API calls. Specifically, an SBG is denoted as a tuple ⟨𝑉 , 𝐸⟩, where 𝑉
denotes the set of sensitive API call nodes (i.e.,𝛩 ), and 𝐸 denotes the

control flows and data dependencies between the nodes in 𝑉 . Each

edge 𝑒 ∈ 𝐸 is denoted as a 3-tuple ⟨𝑣𝑖 , 𝑣 𝑗 ,𝑇𝑜𝐸⟩, where 𝑣𝑖 , 𝑣 𝑗 ∈ 𝑉 and

𝑣𝑖 and 𝑣 𝑗 are connected in the PBG, and 𝑇𝑜𝐸 = 𝑃𝑎𝑡ℎ𝑇𝑦𝑝𝑒 (𝑣𝑖 , 𝑣 𝑗 ) in
the PBG. If there exists one path from 𝑣𝑖 to 𝑣 𝑗 in the PBG whose

all edges are the type of data dependency, 𝑃𝑎𝑡ℎ𝑇𝑦𝑝𝑒 (𝑣𝑖 , 𝑣 𝑗 ) is data
dependency; otherwise, 𝑃𝑎𝑡ℎ𝑇𝑦𝑝𝑒 (𝑣𝑖 , 𝑣 𝑗 ) is control flow.

The left side of Figure 6 illustrates the PBG of the code snippet in

Figure 1, where the five sensitive API call nodes are highlightedwith

the behavior category identifier (e.g., N1). The right side shows the

SBG extracted from the PBG, modeling the behavior of a backdoor.

Malicious BehaviorGraphGeneration. In the offline phase, our

suspicious behavior extractor generates a set of SBGs from a given set

of knownmalicious packages. As some SBGs canmodel the same be-

havior, some SBGs can be benign, and some SBGs can contain unnec-

essary nodes for amalicious behavior, we conduct a semi-automated

process to generate precise malicious behavior graphs (MBGs).

Specifically, we first automatically deduplicate the generated SBGs.

Then, wemanually investigatewhether each SBG ismalicious. As the

given set of knownmalicious packages does not provide the location

of malicious code, this has to be donemanually. If the location is pro-

vided, this can also be done automatically based on nodes’ mapping

to the code location. Finally, wemanually prune each SBG by remov-

ing nodes that are not essentially required for a malicious behavior

so as to reduce false negatives in our maliciousness detector. Hence,

each resulting MBG precisely models a type of maliciousness.

3.5 Maliciousness Detector

SpiderScan uses our maliciousness detector to identify potentially

malicious behaviors in a newly published package. Our malicious-

ness detector first uses our suspicious behavior extractor to generate

SBGs of the package, and thenmatches each SBGwithMBGs to iden-

tify potential maliciousness type and its location.

For each SBG, denoted as ⟨𝑉𝑆 , 𝐸𝑆 ⟩, and each MBG, denoted as

⟨𝑉𝑀 , 𝐸𝑀 ⟩, our matching process works as follows. It first finds all

possible mappings from𝑉𝑀 to𝑉𝑆 at the behavior level, meaning that

the behaviors of all sensitive API calls inMBG also exist in SBG. If no

mapping is found, we report this SBG as not containing the mali-

ciousness type of thisMBG. Specifically, we find all possible𝑉𝑆 ⊂ 𝑉𝑆

such that |𝑉𝑆 | = |𝑉𝑀 | and ∀𝑣𝑖 ∈ 𝑉𝑀 , ∃ 𝑣 𝑗 ∈ 𝑉𝑆 , 𝑣𝑖 .𝑏𝑐 = 𝑣 𝑗 .𝑏𝑐 . Here

𝑏𝑐 refers to fine-grained behaviors in Table 2. In this way, we detect

the maliciousness realized by different sets of sensitive API calls.

Then, for eachmapping from𝑉𝑀 to𝑉𝑆 , it examineswhether all the

control flow and data dependency edges in MBG exist in SBG. If yes,

we report this package as containing the maliciousness type of this

MBG, and also provide the code location according to the location

information (i.e., 𝑙 , which is recorded during the generation of SBG)

of each node in𝑉𝑆 . Specifically, for each edge ⟨𝑣𝑖 , 𝑣 𝑗 ,𝑇𝑜𝐸⟩ ∈ 𝐸𝑀 , we

Read Sensitive File 

Normal Behavior 

Figure 7: An Example of Malicious Code and Benign Code

That Share the Same Behavior Graph

obtain 𝑣𝑖 ’s mapping in 𝑉𝑆 as 𝑣𝑖 , and 𝑣 𝑗 ’s mapping in 𝑉𝑆 as 𝑣 𝑗 , and

examine whether 𝑃𝑎𝑡ℎ𝑇𝑦𝑝𝑒 (𝑣𝑖 , 𝑣 𝑗 ) equals 𝑇𝑜𝐸.

3.6 Maliciousness Verifier

It can be challenging to distinguish between malicious and benign

behavior for certain maliciousness types due to their similar repre-

sentations in behavior graphs. For example, as illustrated in Figure 7,

the upper part contains a malicious behavior, while the lower part

contains a benign behavior. The malicious code reads data from sen-

sitive files such as .zshrc and .bash_history (Line 4 and 7), which con-

tain shell configuration and history data. In contrast, the benign

code accesses config.txt (Line 1), which typically does not contain

user or system-related data. Both behaviors are modeled to the same

behavior graph, and are matched to the maliciousness type of “read
a local file and send it through the network”, causing a false positive.

To this end, for certain maliciousness types that could incur high

false positives, SpiderScan further leverages our maliciousness ver-

ifier to employ dynamic analysis and LLM to reduce false positives.

The overall idea is to obtain the arguments that are passed to sensi-

tive API calls of certain behavior categories. For example, the spe-

cific files the malicious code reads at Line 7 and the begin code reads

at Line 2 in Figure 7 can be used to determine the true maliciousness.

However, static analysis struggles to capture passed arguments ac-

curately. For example, the first argument passed to fs.readFile at
Line 7 in Figure 7 is dynamically concatenated by the return value

of os.homedir at Line 5 and the elements in an array at Line 4.

Hence, we employ dynamic analysis through instrumented API

hooks. Specifically, for the SBG of a newly published package that is

identified as containing a certain maliciousness type by our mali-

ciousness detector, we instrument API hooks to the sensitive API

calls in its𝑉𝑆 whose behavior category is R7, W3, F1, F4, F10, E1, E2,

E3 and E4, as indicated in Table 2. Basically, we only hook sen-

sitive API calls that open, read, write, delete and search files and

execute payloads, as the files and payloads are often dynamically

determined and heavily affect the maliciousness. Then, we utilize a

sandbox to execute the package for collecting the passed arguments.

Finally, based on the behavior category of the hooked API, we

design a corresponding prompt to determine whether the API call’s

behavior is malicious according to the collected arguments. By us-

ing LLMs to assess the maliciousness of APIs and their param-

eters, we eliminate the need for frequent rule updates required

by traditional methods, enabling fast adaptation. LLMs can effec-

tively handle variations in parameters and understand nested logic.
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System

User

You are an experienced Node.js programmer. I will provide you with a 
string representing the parameters of a file-reading API. Your task is to 
determine whether this API reads a sensitive file. The following cases will 
help you make your judgment.
If the function attempts to read config file of npm package such as 
`package.json` or other configuration files that do not contain system 
settings, such as `.json`, the answer is No. 
…
If the function attempts to access system configuration files, such as `/etc/
ssh/ssh_config`, `C:\Windows\System32\Config`, or `/etc/hosts`, the 
answer is Yes.
Your response should only be Yes or No.

/etc/passwd

Figure 8: Partial Prompt for Reading Data from a File (R7)

Additionally, by configuring the LLM’s roles and context, it can in-

corporate background knowledge and established security practices

into its judgments, providing enhanced scalability. Figure 8 shows

part of the prompt for analyzing whether a file reading API reads

sensitive files. We instruct the LLM to act as a Node.js programmer

and provide relevant context. The examples used to enhance detec-

tion are gathered from the Linux privilege escalation cheat sheet

[58] and observations of existing packages.

Ultimately, combining comprehensive detection and dynamic ver-

ification of malicious behaviors, we identify all malicious behaviors

within the package. We provide a detailed report that indicates the

type and code location of maliciousness, and whether the malicious

behavior is triggered at install-time, import-time or run-time.

4 EVALUATION

We have implemented SpiderScan in 6k lines of Python code. In

obfuscation detector, we use Tree-sitter [68] to generate ASTs and

extract lexical and syntactic features, and use scikit-learn [60] to

train the random forest. In suspicious behavior extractor, we use Jo-

ern [31] to generate the Code Property Graph (CPG), which includes

CG, CFG and DDG. In maliciousness verifier, we use Tree-sitter to

instrument API hooks, and use Docker [10] as the sandbox equipped

with a Ubuntu operating system and the Node.js environment. For

LLM tasks, we employ ChatGPT-3.5 [51] to balance performance

and cost. We use the in-context learning setting, which means the

LLM only relies on the current information provided.

We design three research questions to evaluate SpiderScan.

• RQ1 Effectiveness Evaluation: How is the effectiveness of

SpiderScan, compared to state-of-the-art detection tools?

• RQ2 Usefulness Evaluation: How useful is SpiderScan in real-

word detection, compared to state-of-the-art detection tools?

• RQ3 Ablation Study: How do different components of Spider-

Scan contribute to the usefulness of SpiderScan?

4.1 Evaluation Setup

Dataset Collection.We collect malicious NPM packages from two

types of sources as shown in Table 3. First, we collect from publicly

disclosed datasets in literature, i.e., 2,133 packages from Backstab-

ber’s Knife Collection [48] and 567 packages fromMalOSS’s dataset

[11]. Second, we collect from grey literature (e.g., blogs and news).We

Table 3: Malicious Packages Dataset

Source Link Num

BKC [48] https://dasfreak.github.io/Backstabbers-Knife-Collection/ 2,113

MalOSS [11] https://github.com/osssanitizer/maloss 567

Sonatype https://www.sonatype.com/ 49

Fortinet https://www.fortinet.com/ 14

CheckPoint https://www.checkpoint.com/ 1

GitHub Blog https://github.blog/ 13

Hacker News https://thehackernews.com/ 24

Phylum https://www.phylum.io/ 173

Total – 2,775

Used – 364

exclude the overlap across sources, and obtain 2,775 malicious pack-

ages. To further avoid evaluation bias, we remove duplicate pack-

ages based on the following criteria: (1) we remove packages that

are identical in content except for the package name; (2) we remove

packages whose malicious code files are identical; (3) we remove

packages that do not contain malicious code, because they are proof-

of-concept (POC) samples or serve as security holdings. Finally, we

collect 364 malicious packages, and 120 of them contain obfuscated

malicious code. For benign packages, we follow previous work [46,

81], and select the top 5,000 most downloaded packages on NPM, as

commonly used packages are less likely to contain malicious code.

State-of-the-Art Selection. For rule-based tools, we pickGuard-

Dog [9]; and for learning-based tools, we pick SAP [35],Amalfi [61]

and Cerebro [81]. We do not compare with MalOSS [11] as its

dynamic analysis fails to run, and we do not compare withDONAPI

[26] as we fail to obtain the source code from the authors. Besides,

both of them heavily rely on dynamic analysis. We train Amalfi

using the decision tree model which performs the best [61], and we

train SAP with the extreme gradient boosting model which per-

forms the best [33, 35]. All these tools are configured using the same

configuration described in their original paper.

RQ1 Setup.We apply 10-fold cross-validation on the collected

dataset for all tools. We split the 120 obfuscated malicious packages

(denoted as 𝑂𝑀), 244 non-obfuscated malicious packages (denoted

as 𝑁𝑀), and 5,000 benign packages (denoted as 𝐵𝑃 ) into 10 folds.

For GuardDog, we run it on one fold of𝑂𝑀 , 𝑁𝑀 and 𝐵𝑃 to mimic

the cross-validation as it is not learning-based. For SAP, Amalfi

and Cerebro, we train them on nine folds of𝑂𝑀 , 𝑁𝑀 and 𝐵𝑃 , and

test them on one fold of 𝑂𝑀 , 𝑁𝑀 and 𝐵𝑃 . For SpiderScan, we use

nine folds of𝑂𝑀 and 𝐵𝑃 to train the obfuscation detector, use nine

folds of 𝑁𝑀 to generate MBGs, and run SpiderScan on one fold of

𝑂𝑀 , 𝑁𝑀 and 𝐵𝑃 to get the testing result. We use precision, recall

and F1-Score to evaluate the effectiveness of these tools.

RQ2 Setup.We run all tools on newly published packages on

NPM for three months. To realize this real-world detection scenario,

we design a monitoring system that retrieves the newly published

packages on NPM every five minutes and runs each tool on them.

We conduct our monitoring from Feb 2024 to Apr 2024, and analyze

298,504 NPM packages.Wemanually check all potentially malicious

packages detected by these tools except for SAP to confirm their

maliciousness. SAP reports a huge number of potentially malicious

packages that exceeds the acceptable scope of manual inspection,

and is not practical for real-world detection.

RQ3 Setup.We create three ablated versions of SpiderScan and

run them in the real-world detection scenario in RQ2. Specifically,

we create a version by removing our maliciousness verifier in order
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Table 4: Results of Effectiveness Evaluation

Tool Precision Recall F1-Score

GuardDog 57.1% 59.9% 58.5%

SAP 95.4% 48.7% 64.2%

Amalfi 73.1% 72.9% 72.8%

Cerebro 88.1% 80.7% 84.2%

SpiderScan 96.5% 89.7% 92.9%

to evaluate its contribution. We create a version that does not con-

sider edge types (i.e., control flow or data dependency) in our mali-

ciousness detector to evaluate the importance of edge types. We cre-

ate a version that only uses the coarse-grained behaviors in Table 2

to evaluate the contribution of fine-grained behavior categories.

4.2 Effectiveness Evaluation (RQ1)

Overall Effectiveness Results. Table 4 shows the effectiveness

results on public dataset. SpiderScan achieves the highest F1-score

of 92.9%, which outperforms the state-of-the-art by 8.7% to 34.4%.

The rule-based tool has the lowest F1-score of only 58.5%.

Effectiveness of Script Analyzer. We compare with the mali-

cious shell command detector in DONAPI [26] and two learning-

based tools ShellCore [3] and Trizna [69]. We do not compare

with SIFAST [8] as its source code is not publicly available. The

dataset of shell commands is comprised of two parts. The first part

consists of shell commands extracted from NPM packages collected

previously (denoted as NPM-SC). We collect 41 malicious shell com-

mands frommalicious packages and 496 from benign packages. The

second part is collected from publicly available datasets (denoted

as PA-SC). We collect benign shell commands from NL2Bash [39]

and malicious shell commands from Reverse Shell Cheat Sheet [63],

GTFOBins [20] and Boffa [6], and incorporate the data from the

first part, resulting in 11,100 malicious and 11,100 benign shell com-

mands. Considering the size of NPM-SC, we opt for 3-fold cross-

validation, while for PA-SC, we maintain 10-fold cross-validation.

Table 5 shows the effectiveness results on NPM-SC. SpiderScan
achieves the highest F1-score and successfully detects all malicious

shell commands. DONAPI ranks the second, but it misses some

malicious commands due to its rule-based nature. Both SpiderScan

and DONAPI share similar reasons for false positives, as both mark

the presence of executable files (e.g., .exe) as a malicious indicator.

ShellCore and Trizna demonstrate lower overall performance,

primarily due to the small sample size. Table 6 shows the effective-

ness results on PA-SC. The two learning-based tools achieve the

highest F1-score, with SpiderScan leading in recall but slightly

trailing in precision. We find that the benign dataset includes oper-

ations like searching for and deleting specific types of files, such

as the combination of find and rm. The LLM interprets these com-

mands as potentially harmful, assuming they could delete users’

data, and therefore classifies them as malicious.DONAPI shows low

recall compared to its performance on NPM-SC, suggesting that its

rules are more tailored to the NPM domain. Overall, SpiderScan

not only effectively detects malicious shell commands within the

NPM domain but also across other scenarios.

Verification of Expert Knowledge in Malicious Detection.

Expert knowledge is integrated into the prompts to improve the

detection of maliciousness. Along with manual verification, we con-

duct an ablation study by removing expert knowledge elements

such as role settings, context settings, and examples from the prompts.

Table 5: Results of Script Analyzer Evaluation (NPM-SC)

Tool Precision Recall F1-Score

DONAPI 81.8% 87.8% 84.7%

ShellCore (Term-level) 82.8% 75.1% 77.7%

ShellCore (Character-level) 90.0% 74.5% 79.6%

Trizna 86.0% 43.0% 57.4%

SpiderScan 89.1% 100.0% 94.3%

Table 6: Results of Script Analyzer Evaluation (PA-SC)

Tool Precision Recall F1-Score

DONAPI 96.6% 9.12% 16.7%

ShellCore (Term-level) 99.4% 99.5% 99.5%

ShellCore (Character-level) 99.6% 99.5% 99.6%

Trizna 99.8% 99.2% 99.5%

SpiderScan 98.4% 99.6% 99.0%

Table 7: Results of Ablation Study on Prompts

Ablated Prompt Precision Recall F1-Score

Shell Command 89.1% 100% 94.3%

Shell Command w/o Role 89.1% 100% 94.3%

Shell Command w/o Context 85.1% 100% 92.0%

Shell Command w/o Examples 79.5% 75.6% 77.5%

File Sensitivity 91.4% 95.1% 93.2%

File Sensitivity w/o Role 87.2% 95.1% 91.0%

File Sensitivity w/o Context 87.0% 93.4% 90.1%

File Sensitivity w/o Examples 36.0% 91.8% 51.7%

Table 8: Distribution of Malicious Behaviors

Malicious Behavior Number of MBGs

Information Stealing 19

Trojan 5

Malicious Command Execution 3

Dynamic Program Execution 5

Reverse Shell 2

Sabotaging 4

Table 9: Accuracy of LLM-Based Sensitive API Identification

Category
Total

Quantity

Manual

Review
Accuracy

Confidence

Interval

Built-in 4,520 355 85.1% [0.814, 0.888]

Third-party 16,110 376 83.2% [0.792, 0.868]

We select 117 sensitive and 537 non-sensitive file paths from NPM

packages as the dataset for file sensitivity analysis. Table 7 shows

the results. Removing role setting from the prompt does not affect

shell command detection performance, but it is still a good practice

to include it. In other scenarios, removing any element results in

performance loss, especially when examples are removed.

Effort of Malicious Behavior Graph Generation.We eval-

uate the semi-automated process of generatingMBGs and human ef-

fort involved in the pruning.We generate 350 SBGs from the 244 non-

obfuscated malicious packages. By applying automatic deduplica-

tion, we obtain 166 distinct SBGs. After that, wemanually assess and

prune these SBGs. Among these SBGs, we find that 40 SBGs do not

contain anymalicious behavior. Of the remaining 126 SBGs, 14 SBGs

contain the essential nodes and edges that make up themalicious be-

haviors without the need for human intervention. The remaining

112 SBGs contain non-essential nodes and edges, requiring further

manual pruning. Ultimately, it takes an expert three hours to get a

total of 38 MBGs, which is acceptable. These MBGs cover six types

of malicious behaviors, which is shown in Table 8. Most malicious

packages in public dataset are related to information stealing.
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Table 10: Results of Usefulness Evaluation

New Packages Tool Detected TP FP Rate

298,504

GuardDog 7,970 213 97.3%

SAP 48,249 – –

Amalfi 4,873 230 95.3%

Cerebro 442 161 63.6%

SpiderScan 403 249 38.2%

Table 11: Behaviors of New Malicious Packages

Malicious Behavior Number of Packages

Information Stealing 157

Trojan 9

Malicious Command Execution 68

Dynamic Program Execution 6

Reverse Shell 9

Sabotaging 0

Accuracy of LLM-Based SensitiveAPI Identification.Weeval-

uate the accuracy of LLM’s API classification. To this end, we sample

classified built-in and third-party APIs using a 95% confidence level

with a margin of error of 0.05, and manually review their accuracy.

As shown in Table 9, the accuracy reaches 85.1% and 83.2% for built-

in and third-party APIs, which are acceptable.

Summary: SpiderScan significantly outperforms all the state-

of-art tools in precision, recall and F1-score.

4.3 Usefulness Evaluation (RQ2)

Overall Usefulness Results. Table 10 reports the real-world detec-

tion results on 298,504 newly published packages in three months.

SpiderScan detects 403 potentiallymalicious packages, which are the

smallest among all tools. Noticeably, SAP detects 48,249 potentially

malicious packages, which are beyond the scope of manual inspec-

tion. We manually inspect the detected packages for the other four

tools, and report the true positives to NPM. All our reported mali-

cious packages have been confirmed and removed by NPM. Specifi-

cally, SpiderScan detects 249 true positives, which are the largest

among all tools, and from which we have received 70 thank letters

from NPM. During our real-world monitoring, SpiderScan spends

$26 on ChatGPT-3.5, which is an acceptable cost.

False PositieAnalysis.Among all tools, SpiderScan achieves the

lowest false positive rate of 38.2%, outperforming the state-of-the-

art by 25.4% to 59.1%.We also summarize four main reasons for false

positives. First, some benign packages request to download files from

a remote server and also send certain information about the local

machine as download options (e.g., the operating system type). Based

on the options, the remote server then provides corresponding files,

which are actually benign. However, they share the same behavior

as information stealing, and thus are falsely detected as malicious.

Second, LLM leads to some false positives. Some packages use exec
and eval to launch some normal operations. However, arguments

to these API calls are captured during dynamic analysis but are in-

correctly classified as malicious by LLM. We can add such examples

to the prompt to potentially reduce such false positives. In addition,

LLM might incorrectly identify sensitive API calls in our suspicious

behavior extractor, causing false positives. Third, some benign pack-

ages run .sh or .exe files during installation. It is actually correct for

LLM to consider these behaviors as potentially malicious, but it de-

pends on the file content to judge the true maliciousness. Last, some

Table 12: Execution Phases of New Malicious Packages

Execution Phase Number of Packages

Install-Time 193

Import-Time 53

Run-Time 3

Table 13: Detection Results of Each Component

Component Detected Number of MBGs Matched

Script Analyzer 80 –

Obfuscation Detector 50 –

Maliciousness Detector 89 11

Maliciousness Verifier 33 –

Table 14: Report Information of Detection Tools

Tool Output
Details

Type Location Phase

GuardDog Matched Rules ✓ ✓ ✗
SAP Binary ✗ ✗ ✗

Amalfi Binary ✗ ✗ ✗
Cerebro Binary ✗ ✗ ✗

SpiderScan Behavior Types ✓ ✓ ✓

benign packages employ obfuscation but are benign. Our manual

analysis indicates that they are mostly related to web servers.

False Negative Analysis. As NPM does not disclose the official

list of malicious packages, we conduct our false negative analysis

based on the 250 true positives identified by all tools. SpiderScan

fails to detect only onemalicious package, achieving the lowest false

negative rate. This malicious package establishes a remote database

connection and writes data into the database, including user and

network-related sensitive information. However, this behavior is

not observed in the known malicious dataset, and SpiderScan fails

to detect it. Other tools identifies features related to accessing user

and network information and classifies it as malicious. This mali-

cious behavior can be added into MBGs to reduce false negatives.

Malicious PackageCharacteristics. For the 249malicious pack-

ages SpiderScan detected, we look into their malicious behav-

iors and their execution phases. Table 11 reports the distribution

across malicious behaviors. Most malicious packages aim to steal

information. Table 12 gives the distribution across execution phases.

The majority of malicious behaviors occur during the install-time.

This is because the install-time has the highest execution priority in

the package lifecycle, making it the preferred choice for attackers.

Contributions of Each Component in SpiderScan. Table 13

reports the number of malicious packages detected by each compo-

nent in SpiderScan. Notice that a malicious package could contain

several malicious behaviors and hence could be detected in multiple

components. We can see that all components make invaluable con-

tributions to the detection results, which indicates the rationality of

combining these components. In addition, in our maliciousness de-

tector, 11 of the 38MBGs are matched, which indicates the relatively

small number of malicious attack types in real-world attacks.

User Study. Table 14 summarizes the provided report informa-

tion of all tools. SAP, Amalfi and Cerebro only provide binary de-

tection results. GuardDog provides matched rules and locations of

malicious code. However, it has a high false positive rate. Therefore,

it could be expensive for users to confirm the results of these tools.

In contrast, SpiderScan not only identifies the malicious behaviors

with a low false positive rate but also provides their code locations

and execution phases, facilitating the manual confirmation.
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Table 15: Results of User Study

Group Time (s) Accuracy

w/ Reports 69 18/20

w/o Reports 102 15/20

Table 16: Results of Ablation Study

Ablated Version Detected TP FP Rate

SpiderScan 403 249 38.2%

SpiderScan w/o Verifier 2179 249 88.6% (↑ 50.4%)
SpiderScan w/o Edge Type 846 249 70.6% (↑ 32.4%)

SpiderScan w/o Fine-Grained 1425 249 82.5% (↑ 44.3%)

To evaluate the usefulness of the detailed report provided by Spi-

derScan, we conduct a user study with 10 participants to inspect 20

packages (i.e., 15 true positives and 5 false positives). Participants

are required to confirm themaliciousness, with 5 participants receiv-

ing the reports from SpiderScan and 5 participants not receiving

the reports. Wemeasure the taken time and the accuracy for the two

groups. Table 15 reports the results of the user study. With the help

of our reports, the time taken to confirm each package is reduced

from 102 seconds to 69 seconds. Meanwhile, the accuracy of correct

confirmation is improved from 75% to 90%.

Summary: SpiderScan successfully identifies 249 new mali-

cious packages in NPM in three months, achieving the lowest

false positives and false negatives among the state-of-the-art.

SpiderScan’s report helps to reduce manual effort and im-

prove confirmation accuracy. These results indicate the prac-

tical usefulness of SpiderScan in real-world detection.

4.4 Ablation Study (RQ3)

Table 16 presents the results of our ablation study. Removing any of

these components greatly increases the false positive rate, but does

not improve true positives. The removal of our verifier results in the

largest increase in false positive rate, reaching 50.4%. These results

indicate that our verifier, edge types and fine-grained behavior cat-

egories all play an important role in reducing false positives.

Summary:Considering the edge types and incorporating fine-

grained behaviors in our graph representation, along with our

maliciousness verifier, are all essential for maintaining a lower

false positive rate and ensuring the practical usefulness.

5 RELATEDWORK

Empirical Studies on Malicious Packages. Ohm et al. [48] con-

ducted the first systematic analysis of 174 malicious packages from

real-world repositories NPM, PyPI and RubyGems. Zhou et al. [82]

conducted an empirical study of packages in these three ecosystems.

Differently, they focused on the fine-grained information. Guo et

al. [22] conducted a deeper empirical study of 4,669 malicious code

files from PyPI, and investigated characteristics of malicious code.

These studies provide good insights on designing detection tools.

Malicious PackageDetection inNPM.Various tools have been

developed to detect malicious NPM Packages. Some researchers [12,

15, 16] focused on the obfuscated malicious JavaScript code. While

the purpose of these tools is to detect malicious code, these tools

detect the presence of obfuscation [57], and thus can be ineffective

for non-obfuscated code. Besides, these tools are not designed for

complete NPM packages but only for pure JavaScript code.

Some researchers [50, 59] used differential analysis, investigating

changes introduced during upgrades, or analyzing discrepancies be-

tween source code and distributed artifact, to detect malicious pack-

ages. These tools work under a different setting from ours where

only the source code of packages on the NPM repository is available.

Rule-based tools heavily rely on a set of predefined rules. Zahan

et al. [80] utilized the metadata of NPM packages. Gonzalez et al.

[19] designed a set of rules based only on commit logs and reposi-

tory metadata to detect potentially malicious commits. While these

tools are lightweight, they often incur high false positives.

Learning-based tools can be categorized into unsupervised learn-

ing and supervised learning. For unsupervised learning, Garrett et

al. [18] identified eight features from packages’ metadata and source

code, and used clustering to build a model of benign packages. Dif-

ferently, Ohm et al. [47] applied clustering on AST representations

of malicious packages. For supervised learning, Ohm et al. [46] ex-

plored the detection capability of supervised learning models. Sejfia

et al. [61] designed Amalfi, which adopted and expanded Garrett et

al.’s feature set [18] to train a classifier. Halder et al. [23] developed

MeMPtec which utilized features from package metadata informa-

tion. Huang et al. [26] introduced DONAPI which combined static

and dynamic analysis. These tools are required to manually define a

set of sensitive built-in APIs, which increases the labor and the risk

of missing sensitive APIs. SpiderScan relieves this burden by lever-

aging LLM to identify sensitive APIs. Moreover, except forDONAPI,

these tools fail to capture the behaviors of packages. DONAPI relies

on predefined behaviors, while SpiderScan derives the graph-based

behavior semi-automatically. Besides, these tools fail to localize the

malicious code, but SpiderScan uses matching for localization.

With the development of LLMs, LLM-based tools have been emerg-

ing. Zahan et al. [79] used prompting techniques to detect malicious

packages. However, the high cost of GPT makes it impractical to an-

alyze the tens of thousands of packages published daily. In contrast,

SpiderScan is cost-effective and suitable for long-term monitoring.

Malicious Package Detection in PyPI. Several tools have also

been proposed to identify malicious packages in the PyPI ecosys-

tem [14, 36, 37, 71, 72, 74, 75]. However, these tools fail to model

malicious behavior, incurring high false positives.

Malicious PackageDetectionAcross Ecosystems. Some tools

have been equipped with multi-ecosystem malicious detection ca-

pabilities. Specifically, rule-based ones [9, 11, 42] often suffer high

false positives. Learning-based ones [35, 81] rely on pre-defined

sensitive APIs, hindering their effectiveness.

6 CONCLUSIONS

We have presented SpiderScan, a practical malicious NPM package

detector based on our novel graph-based behavior modeling and

matching. Our experiments have demonstrated its effectiveness and

usefulness. SpiderScan has detected 249 new malicious packages.

We plan to reduce its false positives and adapt it to other ecosystems.
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