
BuildSonic: Detecting and Repairing Performance-Related
Configuration Smells for Continuous Integration Builds

Chen Zhang
∗

School of Computer Science

Fudan University

Shanghai, China

Bihuan Chen
∗†

School of Computer Science

Fudan University

Shanghai, China

Junhao Hu
∗

School of Computer Science

Fudan University

Shanghai, China

Xin Peng
∗

School of Computer Science

Fudan University

Shanghai, China

Wenyun Zhao
∗

School of Computer Science

Fudan University

Shanghai, China

ABSTRACT
Despite the benefits, continuous integration (CI) can incur high costs.

One of the well-recognized costs is long build time, which greatly af-

fects the speed of software development and increases the cost in com-

putational resources.While there exist configuration options in the CI

infrastructure to accelerate builds, the CI infrastructure is often not op-

timally configured, leading to CI configuration smells. Attempts have

beenmade to detect or repair CI configuration smells. However, none

of them is specifically designed to improve build performance in CI.

In this paper, we first create a catalog of 20 performance-related CI

configuration smells (PCSs) in three tools (i.e., Travis CI, Maven and

Gradle) of the CI infrastructure for Java projects. Then, we propose

an automated approach, named BuildSonic, to detect and repair 15

types of PCSs by analyzing configuration files. We have conducted

large-scale experiments to evaluate BuildSonic. We detected 20,318

PCSs in 99.0% of the 4,140 Java projects, with a precision of 0.998 and

a recall of 0.991. We submitted 1,138 pull requests for sampled PCSs

of each PCS type, 246 and 11 ofwhich have been respectivelymerged

and accepted by developers. We successfully triggered CI builds be-

fore and after merging 288 pull requests, and observed an average

build performance improvement of 12.4% after repairing a PCS.

CCS CONCEPTS
• Software and its engineering→ Software performance; Soft-
ware configurationmanagement and version control systems.

KEYWORDS
continuous integration, configuration smells, build performance

∗
Also with Shanghai Key Laboratory of Data Science, and Shanghai Collaborative

Innovation Center of Intelligent Visual Computing.

†
Bihuan Chen is the corresponding author.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

ASE ’22, October 10–14, 2022, Rochester, MI, USA
© 2022 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 978-1-4503-9475-8/22/10. . . $15.00

https://doi.org/10.1145/3551349.3556923

ACM Reference Format:
Chen Zhang, Bihuan Chen, Junhao Hu, Xin Peng, and Wenyun Zhao. 2022.

BuildSonic: Detecting and Repairing Performance-Related Configuration

Smells for Continuous Integration Builds. In 37th IEEE/ACM International
Conference on Automated Software Engineering (ASE ’22), October 10–14,
2022, Rochester, MI, USA. ACM, New York, NY, USA, 13 pages. https://doi.

org/10.1145/3551349.3556923

1 INTRODUCTION
Continuous integration (CI) is a software engineering practice of al-

lowing developers to frequentlymerge their code changes to a shared

repository [14, 17]. CI has gradually gained wide adoption due to its

capability of automating the build process, including installing de-

pendencies, compiling source code, running static analysis, and exe-

cuting test cases. The adoption of CI can bring many benefits to soft-

ware development. For example, it helps to detect integration errors

earlier, achieve better code quality, improve developer productivity,

deliver faster, and reduce development risk [14, 27, 28, 64].

However, the adoption of CI can also incur high costs [28]. Partic-

ularly, one of thewell-known costs is long build time (i.e., the time du-

ration of a CI build is long) [21, 28, 70]. As evidenced by recent stud-

ies, long build time is common in open-source projects [9, 21], and it

has been recognized as a common barrier and pain point faced by de-

velopers adopting CI [27, 70]. On the one hand, long build timemakes

it hard to get quick CI feedback, and developers have to wait for the

long build to finish. As a result, developers may switch contexts and

activities. This fragmented work is known to affect the productivity

of developers and the speed of software development [14, 47], and

thus overshadows the benefits of adopting CI. On the other hand,

long build time consumes tremendous computational resources. For

example, the CI system costs millions of dollars for the computation

at Google [28] and Microsoft [26]. Hence, it is an important task to

reduce the time duration (or improve the performance) of CI builds.

Multiple techniques have been proposed to improve the perfor-

mance of CI builds. One line of work tries to lazily retrieve part of de-

pendencies to reduce retrieval time [8] and design incremental build

techniques to accelerate builds (e.g., [18, 63]). One thread of work at-

tempts to skip the execution of some specific builds for saving their

whole build time through manual identification [10, 12], automated

identification techniques (e.g., [2, 32]) and build outcome prediction

techniques (e.g., [9, 24]). Another thread of work is focused on test

case prioritization (e.g., [15, 73]) and test case selection (e.g., [40, 60])

https://doi.org/10.1145/3551349.3556923
https://doi.org/10.1145/3551349.3556923
https://doi.org/10.1145/3551349.3556923

ASE ’22, October 10–14, 2022, Rochester, MI, USA Chen Zhang, Bihuan Chen, Junhao Hu, Xin Peng, and Wenyun Zhao

techniques to minimize test execution time in CI builds. However,

these techniques can be considered as heavyweight as they need to be
integrated as new tools/plugins into the existing CI infrastructure.

Complementary to the heavyweight techniques, one lightweight
technique is to properly configure the existing CI infrastructure (e.g.,

Travis CI for the CI tool, and Maven for the automated build tool) to

improve the build performance. This technique is feasible because i)

some configuration options of the CI infrastructure may negatively

affect the build performance, and ii) designers of the CI infrastruc-

ture are also aware of the significance of build performance and thus

provide some configuration options to accelerate CI builds. For ex-

ample, it is expected to have a speed improvement of 20%–50% by

enabling parallel builds in Maven 3 [53].

However, there is a learning curve in grasping the usage of all the

configuration options, while the configuration can be complex even

for a simple CI pipeline [27]. In addition, during software evolution,

the configuration can become less effective or more difficult to main-

tain in a timely fashion [13, 29, 77]. As a result, the CI infrastructure

is often not optimally configured, leading to misconfigurations (i.e.,

CI configuration smells) that potentially violate best CI practices [14,
29] and thus hinder the correctness, maintainability, performance or

security of CI builds. Initial attempts [20, 66] have been made to de-

tect or repair CI configuration smells; i.e., Gallaba andMcIntosh [20]

detect four types of configuration smells in Travis CI and repair three

of them, while Vassallo et al. [66] detect four types of configuration

smells in GitLab. However, neither of them is specifically designed

from the perspective of improving build performance in CI.

In this paper, we first create a catalog of 20 performance-related CI

configuration smells (PCSs) by analyzing official documentations of

the three tools (i.e., one CI tool, Travis CI, and two automated build

tools, Maven and Gradle) in the CI infrastructure for Java projects.

These PCSs capture the potential build performance issues caused by

developers’ misconfigurations. Then, we propose BuildSonic to au-

tomatically detect and repair PCSs so as to automatically improving

build performance. It is enabled to detect and repair 15 types of PCSs

by analyzing configuration files. To the best of our knowledge, our

work is the first to systematically investigate PCSs.

We conduct large-scale experiments to evaluateBuildSonicwith

4,140 Java projects hosted on GitHub. First, we investigate the preva-

lence of the 15 types of PCSs in the wild. Surprisingly, we detect a to-

tal of 20,318 PCSs, covering all PCS types and affecting 99.0% of the

projects; and each project contains an average of 5 PCSs. Second, we

achieve a precision of 0.998 in a sample of 1,171 detected PCSs, and a

recall of 0.991 in a sample of 200 projects. Third, we submit 1,138 pull

requests. 246 pull requests have beenmerged by developers with our

repairs adopted, and 11 pull requests have been accepted. Fourth,

we fork the projects, trigger a CI build before and after merging the

1,138 pull requests, and measure the build performance change. As

our CI environment might be different from the one used in each

project, we successfully trigger CI builds for 288 pull requests; and

on average, the build performance is improved by 12.4% after repair-

ing a PCS. Finally, we alsomeasure the efficiency of BuildSonic. On

average, BuildSonic takes 158.7 and 5.6 milliseconds to detect and

repair the PCSs in each project.

In summary, this paper makes the following contributions.

1. language: java
2. jdk: # two jobs running with different jdk versions
3. - openjdk8
4. - openjdk-ea
5. jobs:
6. fast_finish: true
7. allow_failures: # the job with openjdk-ea won’t affect build
8. - jdk: openjdk-ea
9. script: # run Maven and Gradle command
10. - travis_retry ./gradlew build
11. - travis_wait 60 ./mvnw install
12. - ./build.sh
13.git:
14. depth: 9999
15.cache:
16. directories:
17. - $HOME/.m2

1. gradle --no-parallel --no-daemon --no-build-cache
--no-watch-fs --no-configure-on-demand build

2. mvn –T 1 install

(a) .travis.yml

1. language: java
2. jdk: # two jobs running with different jdk versions
3. - openjdk8
4. - openjdk-ea
5. jobs:
6. fast_finish: true
7. allow_failures: # the job with openjdk-ea won’t affect build
8. - jdk: openjdk-ea
9. script: # run Maven and Gradle command
10. - travis_retry ./gradlew build
11. - travis_wait 60 ./mvnw install
12. - ./build.sh
13.git:
14. depth: 9999
15.cache:
16. directories:
17. - $HOME/.m2

1. gradle --no-parallel --no-daemon --no-build-cache
--no-watch-fs --no-configure-on-demand build

2. mvn –T 1 install

(b) build.sh

Figure 1: Example Excerpt of Travis CI Configuration

• We created a catalog of 20 performance-related CI configuration

smells in three tools of the CI infrastructure for Java projects.

• We proposed an automated approach, BuildSonic, to detect and

repair 15 types of performance-related CI configuration smells.

• We conducted large-scale experiments with 4,140 Java projects to

demonstrate the effectiveness and efficiency of BuildSonic.

2 PRELIMINARIES
As we focus on configuration smells, we briefly introduce the con-

figuration files of the three tools (see Sec. 3.1) selected in this work.

TravisCI. In Travis CI, a build is a group of jobs, and a job is an au-
tomated process that clones a repository into a virtual environment

and carries out a series of phases such as compiling code and execut-

ing tests. The configuration file of Travis CI is .travis.yml. An ex-

ample excerpt is presented in Fig. 1a. It defines the language support,

two jobs that run with different JDK versions, and the script phase
that invokes the shell script of theMaven and Gradle command. The

shell script can also be defined in a file (e.g., build.sh in Fig. 1b).

Maven.The configuration file of the automated build toolMaven

is pom.xml. Fig. 2 presents an example excerpt of Maven configura-

tion. It declares the project information, two modules of the project,

repositorieswhere dependencies can be retrieved, dependencies used

in the project, and two plugins that carry out the task of compilation

(i.e., the compiler plugin) and testing (i.e., the surefire plugin).
Gradle. Thework that Gradle performs on a project is defined by

one or more tasks. A task represents an atomic piece of work such as

compiling some classes and executing some tests. Gradle has three

configuration files, i.e., settings.gradle, gradle.properties and
build.gradle. An example excerpt is shown in Fig. 3. It defines the

project hierarchy (i.e., two modules) in settings.gradle. It spec-
ifies the execution behavior of Gradle in key-value pairs (e.g.,

whether to enable cache) in gradle.properties. It declares repos-
itories where dependencies can be retrieved, dependencies used in

the project, test configuration, and configuration of tasks of a spe-

cific type (i.e., the JavaCompile and Test type).

BuildSonic: Detecting and Repairing Performance-Related Configuration Smells for CI Builds ASE ’22, October 10–14, 2022, Rochester, MI, USA

1. <groupId>com.example</groupId>
2. <artifactId>maven-example</artifactId>
3. <version>1.0.0</version>
4. <packaging>pom</packaging>
5. <modules> <!-- two modules-->
6. <module>sub-a</module>
7. <module>sub-b</module>
8. </modules>
9. <repositories> <!--repository declaration-->
10. <repository>
11. <id>codehausSnapshots</id>
12. <name>Codehaus Snapshots</name>
13. <url>http://snapshots.maven.codehaus.org/maven2</url>
14. </repository>
15. <repository>
16. <id>central</id>
17. <name>Maven Repository Switchboard</name>
18. <url>https://repo1.maven.org/maven2</url>
19. </repository>
20. </repositories>
21. <dependencies> <!--dependency declaration-->
22. <dependency>
23. <groupId>junit</groupId>
24. <artifactId>junit</artifactId>
25. <version>4.8.2</version>
26. <scope>test</scope>
27. </dependency>
28. </dependencies>
29. <build>
30. <plugins>
31. <plugin>
32. <groupId>org.apache.maven.plugins</groupId>
33. <artifactId>maven-compiler-plugin</artifactId>
34. <version>3.9.0</version>
35. <configuration>
36. <fork>false<fork>
37. <useIncrementalCompilation>false</useIncrementalCompilation>
38. <maxmem>512m</maxmem>
39. </configuration>
40. </plugin>
41. <plugin>
42. <groupId>org.apache.maven.surefire</groupId>
43. <artifactId>surefire</artifactId>
44. <version>2.18.1</version>
45. <configuration>
46. <parallel>false</parallel>
47. <forkCount>1</forkCount>
48. <disableXmlReport>false</disableXmlReport>
49. <excludes>
50. <exclude>**/Bar.class</exclude>
51. </excludes>
52. </configuration>
53. </plugin>
54. </plugins>
55. <build>

Figure 2: Example Excerpt of Maven Configuration
(pom.xml)

3 METHODOLOGY
We first introduce our process of creating a catalog of performance-

related CI configuration smells (PCSs), and then elaborate the details

of our approach BuildSonic to detect and repair PCSs.

3.1 Creating PCS Catalog
Collection Scope.There aremanyCI tools (e.g., Travis CI and Jenk-

ins) available to build the CI infrastructure so that developers are en-

abled to customize CI pipelines. According to a study of 34,544 open-

source projects on GitHub, 40% of the projects adopt CI, and 90% of

them adopt Travis CI as their CI tool [28]. To be beneficial towide au-

diences, our work is focused on Travis CI. Apart from the CI tool, the

tool chain of the CI infrastructure contains specialized tools to au-

tomate the build process (e.g., dependency installation, source code

compilation, static analysis and test case execution). This tool chain

depends on the programming language used in a project. We decide

to focus on Java in this work because it is widely used, and choose two

automated build tools, Maven and Gradle, because they are the two

most dominant tools for Java [42]. In summary, we define our scope to

one CI tool, Travis CI, and two automated build tools, Maven and

1. rootProject.name = 'gradle-example' // project name
2. include 'sub-a', 'sub-b' // two modules

1. org.gradle.parallel = false
2. org.gradle.daemon = false
3. org.gradle.caching = false
4. org.gradle.vfs.watch = false
5. org.gradle.configureondemand = false
6. org.gradle.jvmargs = -Xmx1024M

1. repositories { // repository declaration
2. mavenCentral()
3. maven {
4. url "https://repo.spring.io/release"
5. }
6. }
7. dependencies { // dependency declaration
8. implementation 'junit:junit:4.8.2'
9. }
10.test {
11. exclude '**/Bar.class'
12.}
13.tasks.withType(JavaCompile).configureEach {
14. options.fork = false
15. options.incremental = false
16.}
17.tasks.withType(Test).configureEach {
18. maxParallelForks = 1
19. forkEvery = 0
20. reports.html.required = true
21. reports.junitXml.required = true
22.}

(a) settings.gradle
1. include 'sub-a', 'sub-b' // two modules
2. rootProject.name = 'gradle-example' // project name

1. org.gradle.parallel = false
2. org.gradle.daemon = false
3. org.gradle.caching = false
4. org.gradle.vfs.watch = false
5. org.gradle.configureondemand = false
6. org.gradle.jvmargs = -Xmx1024M

1. repositories { // repository declaration
2. mavenCentral()
3. maven {
4. url "https://repo.spring.io/release"
5. }
6. }
7. dependencies { // dependency declaration
8. implementation 'junit:junit:4.8.2'
9. }
10.test {
11. exclude '**/Bar.class'
12.}
13.tasks.withType(JavaCompile).configureEach {
14. options.fork = false
15. options.incremental = false
16.}
17.tasks.withType(Test).configureEach {
18. maxParallelForks = 1
19. forkEvery = 0
20. reports.html.required = true
21. reports.junitXml.required = true
22.}

(b) gradle.properties

1. include 'sub-a', 'sub-b' // two modules
2. rootProject.name = 'gradle-example' // project name

1. org.gradle.parallel = false
2. org.gradle.daemon = false
3. org.gradle.caching = false
4. org.gradle.vfs.watch = false
5. org.gradle.configureondemand = false
6. org.gradle.jvmargs = -Xmx1024M

1. repositories { // repository declaration
2. mavenCentral()
3. maven {
4. url "https://repo.spring.io/release"
5. }
6. }
7. dependencies { // dependency declaration
8. implementation 'junit:junit:4.8.2'
9. }
10.test {
11. exclude '**/Bar.class'
12.}
13.tasks.withType(JavaCompile).configureEach {
14. options.fork = false
15. options.incremental = false
16.}
17.tasks.withType(Test).configureEach {
18. maxParallelForks = 1
19. forkEvery = 0
20. reports.html.required = true
21. reports.junitXml.required = true
22.}

(c) build.gradle

Figure 3: Example Excerpt of Gradle Configuration

Gradle, for Java projects. We will extend our scope to other CI tools,

automated build tools and programming languages in future.

Collection Process.We define PCSs as misconfigurations of the

CI infrastructure, which potentially violate best CI practices [14, 29]

and hinder the performance of CI builds. Similar to previous ap-

proaches [20, 66], we collect PCSs by analyzing tool documentations.

Specifically, two of the authors separately read documentations of

Travis CI [11], Maven [44] and Gradle [22], look for configuration

options that can affect the build performance, and record how they af-

fect the build performance, following an open coding procedure [57].

Then, they discuss the collected configuration options together to de-

rive a catalog of PCSs thatmisconfigure these options, and a third au-

thor is involved to resolve disagreements and reach consensus. It is

worth mentioning that our manual effort, involved in our PCS col-

lection process, requires about three man-months.

OurCatalog. Following the above process, we finally create a cat-
alog of 20 PCSs, as listed in the first column of Table 1. The rationale

that we regard it as a PCS will be introduced in Sec. 3.2 with the ap-

proach to detect and repair the PCS. As shown by the second column

of Table 1, Travis CI, Maven and Gradle respectively have 6, 9 and 14

of the 20 types of PCSs. Maven and Gradle share 9 types of PCSs.

Moreover, we explore whether these PCSs are covered in literature

[13, 20, 66, 77]. The result is reported in the third column of Table 1.

Specifically, only three types of PCSs (marked by ✓) have been cov-

ered in literature and their detection or repairing techniques have

been proposed. Only two types of PCSs (marked by ⃝) have been

covered in literature but no detection and repairing techniques have

been proposed for them. The remaining 15 types of PCSs (marked by

×) are uncovered in literature. Therefore, our work fills this gap.

ASE ’22, October 10–14, 2022, Rochester, MI, USA Chen Zhang, Bihuan Chen, Junhao Hu, Xin Peng, and Wenyun Zhao

Table 1: Our Catalog of PCSs (Lit. = Literature, Exp. = Ex-
plicit, Imp. = Implicit, Det. = Detection, and Rep. = Repair-
ing)

PCS Tool Lit. Exp. Imp. Det. Rep.

Deep Clone Travis CI × ✓ × ✓ ⃝

No Dependency Cache Travis CI × ✓ ✓ ✓ ⃝

Retry Failed Command Travis CI ✓ ✓ × ✓ ✓
Wait Long Command Travis CI × ✓ × ✓ ✓

Slow Finish Travis CI × ✓ × ✓ ✓
Heavy Job Travis CI × ✓ × × ×

Sequential Build Maven, Gradle ⃝ ✓ ✓ ✓ ⃝

No Compiler Daemon Maven, Gradle × ✓ ✓ ✓ ✓
Sequential Test Maven, Gradle ⃝ ✓ ✓ ✓ ⃝

Non-Fork Test Maven, Gradle × ✓ ✓ ✓ ⃝

Generate Test Report Maven, Gradle × ✓ ✓ ✓ ✓
Improper Repository Maven, Gradle × ✓ × × ×

Unused Dependency Maven, Gradle ✓ ✓ × × ×

Unnecessary Test Maven, Gradle ✓ ✓ × × ×

Small Heap Size Maven, Gradle × ✓ ✓ × ×

Non-Incremental Compile Gradle × ✓ ✓ ✓ ✓
No Gradle Daemon Gradle × ✓ ✓ ✓ ✓
No Gradle Cache Gradle × ✓ ✓ ✓ ✓

No File System Watch Gradle × ✓ ✓ ✓ ✓
No On-Demand Configure Gradle × ✓ ✓ ✓ ✓

3.2 Detecting and Repairing PCSs
Wepropose and design BuildSonic as a linter that can statically and
efficiently detect and repair PCSs bymainly analyzing configuration

files. Five of the 20 types of PCSs (marked by× in the last two columns

of Table 1) are not supported inBuildSonic because heavyweight anal-

ysis (e.g., program analysis) is needed to detect them and hence the

principle (i.e., to be efficient) of a linter is violated. For the other 15

types of PCSs,BuildSonic can automatically detect all of them and au-

tomatically repair ten of them (marked by✓ in the last two columns

of Table 1), and repair five of them semi-automatically (marked by⃝

in the last column of Table 1) by allowing developers to set a spe-

cific value (e.g., the number of parallel threads) when there exist

multiple feasible values.

Further, we distinguishwhether a PCS can be explicitly and/or im-

plicitly introduced according to default configurations. We consider

a PCS as explicitly introduced if developers manually set configura-

tion options (by using or changing the default value). It means that

developers are aware of the configuration options but might still in-

troduce PCSs.We regard a PCS as implicitly introduced if developers

do not manually set configuration options but adopt their default

configurations. It means that developers might not be aware of the

configuration options, but the default configurations introduce PCSs.

The results are reported in the fourth and fifth columns of Table 1.

Below, for each PCS, we first present our rationale of regarding it

as a PCS, and then introduce the approach to detect and repair it.

PCS01: Deep Clone.
Rationale. Travis CI needs to clone repository of a project to the

build server after a CI build is triggered. As a projectmay have a long

commit history, the clonemay take a long time. To address this issue,

Travis CI provides the configuration option depth, as shown at Line
14 in Fig. 1a, to control the clone depth (i.e., to clone a limited depth

of depth commits). A smaller value of depth indicates a faster clone.
However, restarting historical CI builds on old commits will fail if

the old commits are outside of the clone depth. Hence, Travis CI rec-

ommends to set depth to 50, which is its default value. However, de-
velopers may set depth to a large value, and introduce a PCS.

Detection. The configuration option depth is enabled by default.
Hence, this PCS can only be explicitly introduced. We detect a Deep
Clone if .travis.yml contains the configuration option depth and
its value is set to false (i.e., all commits) or a larger value than 50.

Repairing.We repair this PCS by removing depth (i.e., using the
default one) or asking developers to set depth to a smaller value.

PCS02: No Dependency Cache.
Rationale.A project often directly and transitively depends on a

lot of library dependencies [69]. As a result, a CI buildmay take a long

time to download and install the dependencies [8]. Moreover, the de-

pendencies that a project depends on are not often changed, and thus

it wastes time to download and install dependencies in every CI build.

To solve this issue, Travis CI provides the configuration option cache,
as illustrated at Lines 15–17 in Fig. 1a, to cache dependencies in spec-

ified directories for Maven and Gradle projects. When developers do

not enable this configuration option, they introduce a PCS.

Detection. The configuration option cache is disabled by de-

fault for Maven and Gradle projects. Hence, this PCS can be explic-

itly or implicitly introduced. We detect an explicit No Dependency
Cache if .travis.yml contains the configuration option cache
and its value is set to false; and we detect an implicit one if

.travis.yml does not contain the configuration option cache.
Repairing.We repair this PCS by enabling the configuration op-

tion cache and specifying directories. For Maven projects, we set

directories to $HOME/.m2. For Gradle projects, we set directories
to $HOME/.gradle/caches/ and $HOME/.gradle/wrapper/. These
above directories are the default ones. As developers can choose ar-

bitrary directories as the cache directories, we allow developers to

set directories to their own specified directories.

PCS03: Retry Failed Command.
Rationale. The build process should be deterministic. However,

some non-deterministic behaviors, e.g., flaky tests [39] and unstable

network, make a CI build sometimes fail but sometimes pass. To

partially mitigate this problem, Travis CI allows developers to wrap

a command in the travis_retry function such that the command,

if failed, can be re-run up to two times (e.g., Line 10 in Fig. 1a), or to

add the ----retry n option to a command such that the com-

mand, if failed, can be re-run up to n-1 times. In fact, this con-

figuration slows down CI builds, while only reducing the build

failure ratio by 3% according to a recent study [21]. Moreover, this

configuration may not only hide the non-determinism and the po-

tentially deeper underlying issues, but also make issues harder to

debug [66]. In that sense, developers introduce a PCS when they

configure this retry feature.

Detection.The retry feature is not enabled by default. Thus, Retry
Failed Command can only be explicitly introduced.We detect it if com-

mands in .travis.yml and shell script file contain the travis_retry
function, or contain the ----retry n option with n larger than

one.

Repairing. We repair this PCS by removing the travis_retry
function or the ----retry n option in the detected commands.

PCS04: Wait Long Command.

BuildSonic: Detecting and Repairing Performance-Related Configuration Smells for CI Builds ASE ’22, October 10–14, 2022, Rochester, MI, USA

Rationale.One of the best CI practices is that a CI build provides
feedback as quickly as possible (often in under 10 minutes) [13]. To

follow this practice, Travis CI will interrupt a CI build andmark it as

failed when a command in this CI build takes longer than 10minutes

without producing any output. To enable a long running command,

Travis CI allows develops towrap the command in the travis_wait
n function so that the waiting time for the command to finish is ex-

tended to nminutes, as illustrated at Line 11 in Fig. 1a. If n is not spec-
ified, the waiting time is extended to 20 minutes. Although this

feature improves flexibility, it hinders quick feedback, and poten-

tially hides the underlying real problems in long running commands.

In that sense, a PCS is introduced when developers use this feature.

Detection.Thewait feature is not enabled by default. Hence, this
PCS can only be explicitly introduced. We detect a Wait Long Com-
mand if commands in .travis.yml contain the travis_wait n func-
tion, and n is not specified or n is larger than 10.

Repairing. We repair this PCS by removing the travis_wait
n function in the detected commands.

PCS05: Slow Finish.
Rationale.ACI build ismarked as passed if all jobs are passed. How-

ever, developers maywant to add in some experimental and prepara-

tory jobs (e.g., to test against runtime versions that developers are not

ready to officially support) whose failure does notmatter. Thus, Travis

CI provides the configuration option allow_failures to define the
jobs that are allowed to fail without causing the entire CI build to fail

(e.g., Lines 7–8 in Fig. 1a indicate that the job runningwith a JDK ver-

sion of openjdk-ea is allowed to fail). If some jobs are allowed to fail,

the CI build will not be marked as finished until they have finished,

causing the long build time and slow feedback. To address this issue,

Travis CI provides the configuration option fast_finish (e.g., Line
6 in Fig. 1a) such that the CI build is marked as finished as soon as all

the required jobs finish, while the other jobs that are allowed to fail con-

tinue to run. Therefore, when developers configure allow_failures
but do not set fast_finish to true, they introduced a PCS.

Detection. As both configuration options allow_failures and
fast_finish are not enabled by default, Slow Finish can only be ex-

plicitly introduced. We detect it if .travis.yml contains the con-
figuration option allow_failures, but does not contain the con-

figuration option fast_finish or fast_finish is set to false.
Repairing. We repair this PCS by adding the configuration op-

tion fast_finish and/or setting it to true.

PCS06: Heavy Job.
Rationale. In Travis CI, one virtualmachine is created for each job

in a CI build. Therefore, multiple jobs can run in parallel across vir-

tual machines. To speed up a CI build, it can be reconfigured by split-

ting up independent tasks into different jobs instead of adding them

into one job. For example, unit testing and integration testing can be

split up into two jobs; and testing and static analysis can be split up

into two jobs. Developers may introduce a PCSwhen they addmany

independent tasks into one job because they maymiss the efficiency

benefit of parallel jobs across virtual machines.

Detection & Repairing. This PCS can only be explicitly intro-

duced because heavy jobs are defined by developers. It is difficult to

decide whether a job contains independent tasks by only analyzing

configuration files. For example, testing code analysis is also needed

to split up unit testing and integration testing. Therefore, we cannot

provide lightweight detection and repairing support for this PCS.

PCS07: Sequential Build.
Rationale.Modular development can reduce development com-

plexity and risk and make code easier to write, test and read. Hence,

multi-module projects are quite common.Modules in amulti-module

project can be potentially built in parallel rather than sequentially to

speed up builds. Maven and Gradle build all modules sequentially

by default, but can be configured to enable parallel builds. Particu-

larly, Maven allows developers to add the --T n option to the mvn
build command, where n specifies the number of parallel threads, as

shown at Line 2 in Fig. 1b. Gradle allows developers to set the config-

uration option org.gradle.parallel to true/false (e.g., Line 1 in
Fig. 3b) or add the ----parallel/----no-parallel option to the gradle
build command (e.g., Line 1 in Fig. 1b) to enable/disable the build of

modules in parallel in one virtual machine. Developers introduce a

PCS when they do not enable parallel builds.

Detection. Parallel builds are not enabled by default, and thus this
PCS can be both explicitly and implicitly introduced. We first decide

whether a project is multi-module by analyzing the modules sec-
tion (e.g., Lines 5–8 in Fig. 2) in pom.xml and include section (e.g.,

Line 2 in Fig. 3a) in settings.gradle. If yes, we then detect an ex-

plicit Sequential Build in a Maven project if the mvn command in

.travis.yml and shell script file contains the --T 1 option, and de-
tect an implicit one if the mvn command does not contain the --T n op-
tion. We detect an explicit Sequential Build in a Gradle project if the

configuration option org.gradle.parallel in gradle.properties
is set to false, or the gradle command in .travis.yml and shell

script file contains the ----no-parallel option, and detect an

implicit one if gradle.properties does not contain the configura-

tion option org.gradle.parallel, or the gradle command does

not contain the ----no-parallel and ----parallel option.
Repairing.We repair this PCS in a Maven project by adding the

--T n option in the mvn command and/or asking developers to decide

n. We repair it in a Gradle project by setting the configuration option

org.gradle.parallel to true, or adding the ----parallel op-

tion and removing the ----no-parallel option in the gradle
command.

PCS08: No Compiler Daemon.
Rationale.The compilation of a large number of source code files

is memory-intensive. Maven and Gradle provide a compiler daemon

feature to allow running the compiler in a separate process. It leads to

much less garbage collection in the main build daemon, making the

build run faster. To configure this feature, Maven provides the con-

figuration option fork in the compiler plugin (e.g., Line 36 in Fig. 2),
and Gradle provides the configuration option options.fork in the

JavaCompile task (e.g., Line 14 in Fig. 3c). When developers do not

enable compiler daemon for a large project, they introduce a PCS.

Detection.Compiler daemon is disabled by default, and thus this

PCS can be both explicitly and implicitly introduced. We first decide

whether a project is large by countingwhether the number of source

code files is larger than 1,000, as suggested in Gradle’s documenta-

tion [22]. If yes, we then detect an explicit No Compiler Daemon in a

Maven project if the configuration option fork in the compiler plu-
gin in pom.xml is set to false, and detect an implicit one if the

ASE ’22, October 10–14, 2022, Rochester, MI, USA Chen Zhang, Bihuan Chen, Junhao Hu, Xin Peng, and Wenyun Zhao

compiler plugin does not set fork. We detect an explicit No Com-
piler Daemon in a Gradle project if options.fork in the JavaCompile
task in build.gradle is set to false, and detect an implicit one if

the JavaCompile task does not set options.fork.
Repairing.We repair this PCS in a Maven/Gradle project by set-

ting the configuration option fork/options.fork to true.

PCS09: Sequential Test.
Rationale.A large proportion of the build time is taken by test ex-

ecution. To speed up tests, Maven and Gradle provide a parallel test

execution feature to run parallel tests across threads in a single vir-

tualmachine process. Specifically, this feature is supported by the con-

figuration option parallel in the surefire plugin in Maven (e.g.,

Line 46 in Fig. 2) and the configuration option maxParallelForks
in the Test task in Gradle (e.g., Line 18 in Fig. 3c). Developers in-

troduce a PCS when they do not enable parallel test execution.

Detection. Parallel test execution is disabled by default. Thus, this
PCS can be both explicitly and implicitly introduced.We detect an ex-

plicit Sequential Test in aMaven project if i) the configuration option

parallel in the surefire plugin in pom.xml is set to false or none,
or ii) parallel is not set to false or none, useUnlimitedThreads
(indicating that one thread is created per CPU core) is not set or set

to false, threadCount (indicating the number of created threads) is

set to 1 and perCoreThreadCount (indicating that threadCount is
defined per CPU core) is set to false, and detect an implicit one if

the surefire plugin does not configure parallel. We detect an ex-

plicit Sequential Test in a Gradle project if the configuration option

maxParallelForks in the Test task in build.gradle is set to 1, and
detect an implicit one if the Test task does not set maxParallelForks.

Repairing. We repair this PCS in a Maven project by setting

parallel to classes and useUnlimitedThreads to true, or ask-
ing developers to configure parallel to the granularity of methods,
classes, suites or a combination of them and determine thread

configuration. We repair it in a Gradle project by asking developers

to set maxParallelForks to a larger value than 1.

PCS10: Non-Fork Test.
Rationale.Apart from parallel tests across threads,Maven andGra-

dle support parallel tests across processes via forking to avoid po-

tentially heavy garbage collection that slows the tests down. Particu-

larly, this feature is supported by the configuration option forkCount
(i.e., the number of forked processes) in the surefire plugin inMaven

(e.g., Line 47 in Fig. 2) and the configuration option forkEvery (i.e., the
maximumnumber of test classes to execute in a forked process) in the

Test task inGradle (e.g., Line 19 in Fig. 3c). A PCS is introducedwhen

developers do not enable process-level parallel tests.

Detection. Parallel test execution across processes is disabled by
default, and hence this PCS can be both explicitly and implicitly in-

troduced.We detect an explicitNon-Fork Test in aMaven project if the

configuration option forkCount in the surefire plugin in pom.xml
is set to 1, and detect an implicit one if the surefire plugin does not
configure forkCount. We detect an explicit Non-Fork Test in a Gra-

dle project if the configuration option forkEvery in the Test task

in build.gradle is set to 0, and detect an implicit one if the Test
task does not configure forkEvery.

Repairing.We repair this PCS in aMaven/Gradle project by ask-

ing developers to set the configuration option forkCount/forkEvery.

PCS11: Generate Test Report.
Rationale.Test reports are automatically generated by default in

both Maven and Gradle, which takes time and slows the entire build

down. However, developersmay only focus onwhether the tests suc-

ceed or fail but not want to look at the reports, or only need the re-

ports for some specific builds but not every build. In that sense, de-

velopers may introduce a PCS if they enable test report generation.

Detection.Test report generation is enabled by default. Thus, this
PCS can be both explicitly and implicitly introduced.We detect an ex-

plicit Generate Test Report in a Maven project if the configura-

tion option disableXmlReport in the surefire plugin in pom.xml
is set to false, and detect an implicit one if the surefire plugin
does not configure disableXmlReport. We detect an explicit Gen-
erate Test Report in a Gradle project if the configuration option

reports.html.required or reports.junitXml.required in the

Test task in build.gradle is set to true, and detect an implicit

one if the Test task does not configure reports.html.required
and reports.junitXml.required.

Repairing.We repair it in aMaven and Gradle project by setting

disableXmlReport to true and setting reports.html.required
and reports.junitXml.required to false.

PCS12: Improper Repository.
Rationale.To resolve a dependency,Maven andGradle search each

repository in the order that they are declared in the repositories sec-
tion in pom.xml and build.gradle (e.g., Lines 9–20 in Fig. 2 and Lines
1–6 in Fig. 3c) until they find the dependency. Hence, the repository

that hosts the largest number of the declared dependencies should

be declared first to reduce dependency resolution time; otherwise, a

PCS might be introduced due to the improper order of repositories

or the improper selection of repositories.

Detection&Repairing.There existmany repositories to host de-

pendencies. As a result, it is difficult to determine whether the selec-

tion and order of declared repositories are reasonable by looking at

the configuration files. Hence, we cannot provide lightweight de-

tection and repairing support for this PCS.

PCS13: Unused Dependency.
Rationale. It is common that some dependencies are declared in

the dependencies section in pom.xml and build.gradle (e.g., Lines
21–28 in Fig. 2 and Lines 7–9 in Fig. 3c), but are not used in a Maven

and Gradle project [61, 62]. This leads to wasted dependency reso-

lution time and slows the build down, and thus introduces a PCS.

Detection & Repairing. It is difficult to detect unused depen-

dencies by static analysis due to dynamic features like reflection, not

to mention by analyzing configuration files. Therefore, we cannot

provide lightweight detection and repairing support for this PCS.

PCS14: Unnecessary Test.
Rationale. Code changes in a build can be small, and only af-

fect a small number of tests. Therefore, only the tests that are af-

fected by code changes but not all tests need to be executed in

each build so as to speed up test execution. Maven and Gradle pro-

vide the configuration option exclude (e.g., Line 11 in Fig. 3c and

Line 50 in Fig. 2) to exclude such unnecessary tests from execu-

tion. Developers may introduce a PCS when they do not exclude

unnecessary tests.

BuildSonic: Detecting and Repairing Performance-Related Configuration Smells for CI Builds ASE ’22, October 10–14, 2022, Rochester, MI, USA

Detection&Repairing. Test case selection [40, 45, 60] has been
proposed to select test cases that are affected by code changes. How-

ever, such techniques often involve program analysis. Hence, we can-

not provide lightweight detection and repairing support for this PCS.

PCS15: Small Heap Size.
Rationale.By default, Maven andGradle reserve 512MB and 1024

MB of heap space for a build. The heap size can be changed by the con-

figuration option maxmen inMaven (e.g., Line 38 in Fig. 2) and the con-

figuration option org.gradle.jvmargs in Gradle (e.g., Line 6 in Fig. 3b).
However, large projects might need more memory than the default

size to build. In such cases, the build might become slow if the heap

size is not increased, and thus a PCS is introduced.

Detection & Repairing. Dynamic techniques like memory pro-

filing are needed to decide a suitable heap size. Therefore, we cannot

provide lightweight detection and repairing support for this PCS.

PCS16: Non-Incremental Compile.
Rationale. Besides compiler daemon, Gradle supports an incre-

mental compilation feature to recompile only the classes that are af-

fected by a changed class) so as to make compilation run faster. The

configuration option options.incremental in the JavaCompile
task, as illustrated at Line 15 in Fig. 3c, is used to configure this fea-

ture. A PCS is introduced when developers do not enable incremen-

tal compilation in a Gradle project.

Detection. Incremental compilation is enabled by default since

Gradle 4.10. Thus, this PCS can be explicitly introduced in all Gradle

versions. It can also be implicitly introduced in lower versions than

Gradle 4.10. We detect an explicit Non-Incremental Compile if the
configuration option options.incremental in the JavaCompile
task in build.gradle is set to false, and detect an implicit one

if the Gradle version is lower than 4.10 and the JavaCompile task
does not configure options.incremental.

Repairing. We repair this PCS by setting the configuration op-

tion options.incremental to true.

PCS17: No Gradle Daemon.
Rationale. Gradle runs on the JVM whose startup is expensive.

To avoid the cost of JVM startup for every build, Gradle provides the

Gradle daemon, a long-lived process, to start the JVM for once across

multiple builds. Besides, it is able to cache information about project

structure, files and tasks in memory to speed up builds. It can be con-

figured via the configuration option org.gradle.daemon (e.g., Line 2
in Fig. 3b) and the command option ----daemon/----no-daemon (e.g., Line
1 in Fig. 1b). A PCS is introduced when developers do not enable it.

Detection. The Gradle daemon is enabled by default since Gra-

dle 3.0. Thus, this PCS can be explicitly introduced in all Gra-

dle versions. It can also be implicitly introduced in lower ver-

sions than Gradle 3.0. We detect an explicit No Gradle Daemon if the
configuration option org.gradle.daemon in gradle.properties
is set to false, or the gradle command in .travis.yml and shell

script file adds the ----no-daemon option. We detect an implicit

one if the Gradle version is lower than 3.0, and gradle.properties
does not contain the configuration option org.gradle.daemon or

the gradle command does not contain the ----no-daemon and

----daemon option.

Repairing. We repair this PCS by setting the configuration op-

tion org.gradle.daemon to true, or adding the ----daemon op-

tion and removing the ----no-daemon option in the gradle com-

mand.

PCS18: No Gradle Cache.
Rationale. Different from the dependency cache mechanism in

Travis CI, Gradle provides the build cachemechanism to save time by

reusing outputs produced by previous builds. It works by fetching

stored build outputs from the cache if builds inputs have not changed.

The expensive output regeneration can thus be avoided. It can be set

via the configuration option org.gradle.caching (e.g., Line 3 in
Fig. 3b) and the command option ----build-cache/----no-build-cache
(e.g., Line 1 in Fig. 1b). A PCS is introduced when it is not enabled.

Detection.Thismechanism is disabled by default. Thus, this PCS

can be both explicitly and implicitly introduced. We detect an ex-

plicitNoGradle Cache if the configuration option org.gradle.caching
in gradle.properties is set to false, or the gradle command in

.travis.yml and shell script file adds the ----no-build-cache op-
tion. We detect an implicit one if gradle.properties does not set
the configuration option org.gradle.caching or the gradle com-

mand does not contain ----no-build-cache and ----build-cache.
Repairing. We repair this PCS by setting the configuration op-

tion org.gradle.caching to true, or adding ----build-cache
and removing ----no-build-cache in the gradle command.

PCS19: No File System Watch.
Rationale.Gradlemaintains a virtual file system (VFS) in-memory

for each build. To save the time to rebuild the VFS from disk for the next

build, Gradle watches the file system such that it can keep the VFS in

sync with the file system between builds. This feature can be config-

ured by the configuration option org.gradle.vfs.watch (e.g., Line
4 in Fig. 3b) and the command option ----watch-fs/----no-watch-fs
(e.g., Line 1 in Fig. 1b). A PCS is introduced when it is not enabled.

Detection. File system watch is enabled by default since Gradle

7.0. Thus, this PCS can be explicitly introduced in all Gradle versions.

It can also be implicitly introduced in lower versions than Gradle 7.0.

We detect an explicit No File System Watch if the configuration op-

tion org.gradle.vfs.watch in gradle.properties is set to false,
or the gradle command in .travis.yml and shell script file adds

the ----no-watch-fs option. We detect an implicit one if the Gra-

dle version is lower than 7.0, and gradle.properties does not con-
tain org.gradle.vfs.watch or the gradle command does not

contain the ----no-watch-fs and ----watch-fs option.
Repairing. We repair this PCS by setting the configuration op-

tion org.gradle.vfs.watch to true, or adding ----watch-fs and re-
moving ----no-watch-fs in the gradle command.

PCS20: No On-Demand Configure.
Rationale. Every module in a multi-module projects is config-

ured although only some of the modules participate in the build. To

reduce this configuration time, Gradle provides an on-demand con-

figuration feature to configure only the modules that are involved in

the build. This feature can be configured by the configuration option

org.gradle.configureondemand (e.g., Line 4 in Fig. 3b) and the com-

mand option ----configure-on-demand/----no-configure-on-demand
(e.g., Line 1 in Fig. 1b). A PCS is introduced when it is not enabled.

ASE ’22, October 10–14, 2022, Rochester, MI, USA Chen Zhang, Bihuan Chen, Junhao Hu, Xin Peng, and Wenyun Zhao

Detection. On-demand configuration is disabled by default, and

thus this PCS can be both explicitly and explicitly introduced.We first

decide whether a project is multi-module (by the same way in Se-
quential Build). If yes, we then detect an explicitNoOn-Demand Con-
figure if the configuration option org.gradle.configureondemand
in gradle.properties is set to false, or the gradle command in

.travis.yml and shell script file adds ----no-configure-on-demand.
We detect an implicit one if gradle.properties does not contain

org.gradle.configureondemand or the gradle command does not

contain ----no-configure-on-demand and ----configure-on-demand.
Repairing.We repair it by setting org.gradle.configureondemand

to true, or adding ----configure-on-demand in the gradle com-

mand while removing ----configure-on-demand.

4 IMPLEMENTATION AND EVALUATION
Wehave implementedBuildSonic in 11.2K lines of code, i.e., 7.6K lines

of Groovy code, 2,1K lines of Java code, 0.9K lines of Python code and

0.6K lines of Ruby code. Overall, taking a project as the input, Build-

Sonic is implemented by first parsing configuration files in the project

to extract related configuration options and their configured values,

then detecting the PCSs in the project by the approaches in Sec. 3.2

based on the extracted information, and finally updating the con-

figuration files by the approaches in Sec. 3.2 to repair the PCSs.

In detail, we use SnakeYAML to parse .travis.yml, use VTD-XML to
parse pom.xml, use Groovy’s syntax parser to parse settings.gradle
and build.gradle (which are often written in Groovy), use Apache
Commons Configuration to parse gradle.properties, and use

Tree-sitter to parse shell script files to extract Maven and Gradle

commands. Besides, as the version of Maven and Gradle is used in

detecting and repairing some PCSs, we extract this version informa-

tion from the maven-wrapper.properties file in a Maven project

and the gradle-wrapper.properties file in a Gradle project.

We have released the source code of BuildSonic and all the eval-

uation data at https://buildsonic.github.io.

4.1 Evaluation Setup
ResearchQuestion. To evaluate the effectiveness and efficiency of

BuildSonic, we designed experiments to answer five RQs.

• RQ1: How prevalent are PCSs in the CI infrastructure?

• RQ2: How accurate is BuildSonic in detecting/repairing PCSs?

• RQ3: Are developers willing to repair PCSs?

• RQ4: How much build time is reduced after repairing PCSs?

• RQ5: How efficient is BuildSonic in detecting/repairing PCSs?

Data Set.We followed themethod proposed by Zhang et al. [78] to

construct the data set of open-source Java projects.We first crawled the

list of non-forked open-source Java projects as of June 5, 2020 via the

GitHubAPI, which resulted in 7,328,086 projects. To ensure the qual-

ity and frequent Travis CI usage, we chose the projects that hadmore

than 25 stars and 50 Travis CI builds, which restricted our selection

to 5,606 projects. We further filtered projects that did not contain

.travis.yml, which led to 4,329 projects. Of these projects, we only
kept the projects that used Maven or Gradle as the automated build

tool. This resulted in 2,547 projects using Maven and 1,622 projects

using Gradle. Configuration files of Gradle can be written in Groovy

or Kotlin, and we found that 1,593 of the 1,622 projects used Groovy

and only 29 of the 1,622 projects used Kotlin. Due to the small usage

of Kotlin, our current implementation of BuildSonic only supports

Groovy, and we only kept the 1,593 projects that used Groovy. Fi-

nally, we had a set of 4,140 projects, i.e., 2,547 (61.5%)Maven projects

and 1,593 (38.5%) Gradle projects, and crawled their repositories.

4.2 Prevalence Analysis (RQ1)
Weanalyzed the prevalence of the 15 types of PCSs in thewild by run-

ning BuildSonic against the 4,140 projects. The number of explic-

itly and implicitly introduced PCSs are respectively reported under

the column Exp. and Imp. in Table 2. A project can contain multiple

instances of a PCS type, and we counted them as one in our analysis.

Overall,BuildSonic detected 484 explicitly introduced PCSs across

all the 15 PCS types except for No Compiler Daemon, affecting 426
(10.3%) of the projects.BuildSonic also detected 19,834 implicitly in-

troduced PCSs across all the 11 PCS types, affecting 4,096 (98.9%) of

the projects. These results indicate that all PCS types are quite preva-

lent in the wild, and PCSs are often implicitly introduced by default

configurations, which motivates the need of BuildSonic to auto-

matically detect them. Moreover, for the five, five and ten PCS types

in Travis CI,Maven andGradle,BuildSonic detected 2,864, 7,920 and

9,534 PCSs respectively, affecting 2,769 (66.9%) of the projects, 2,332

(91.6%) of theMaven projects and 1,592 (99.9%) of the Gradle projects.

These results indicate that PCSs are prevalent in all three tools. Be-

sides, 209 (5.0%), 112 (2.7%), 448 (10.8%), 1,203 (29.1%) and 2,126 (51.4%)

of the projects respectively contained one, two, three, four andmore

than four PCSs. On average, each project contained 5 PCSs.

Summary. We found a total of 20,318 PCSs, covering all the 15 types

of PCSs and affecting 99.0% of the projects. Each project contained an

average of 5 PCSs. Therefore, PCSs are prevalent in the wild.

4.3 Accuracy Evaluation (RQ2)
To evaluate the detection precision of BuildSonic, we randomly sam-

pled 50 detected PCSs for each PCS type while distinguishing explic-

itly and implicitly introduced PCSs. If the number of detected PCSswas

smaller than 50, we sampled all of them. We finally sampled 371 ex-

plicitly introduced PCSs and 800 implicitly introduced PCSs, as re-

ported under the column Sam. in Table 2. These sample sizes achieved

an error margin of ±2.5% and ±3.4% with a confidence level of 95%.

Then, two of the authors individually validated these PCSs, and a third

author was involved to resolve disagreements. Finally, we found two

false positives, as listed under the column F.P. in Table 2, and achieved
a precision of 0.998. The reason of the false positive for Sequential
Build is that the white space in the --T n option can be skipped but

our detection is not aware of that. The reason of the false positive for

Sequential Test is that the configuration option maxParallelForks
is dynamically configured in an echo command.

Moreover, to evaluate the detection recall of BuildSonic, we ran-

domly sampled 200 projects. Two of the authors individually ana-

lyzed the configuration files to locate PCSs, and a third authorwas in-

volved to resolve disagreements. We eventually identified 983 PCSs,

covering 15 PCS types. BuildSonic detected 974 of them, achieving

a recall of 0.991. One project uses bothMaven andGradle, but Build-

Sonic detects it as aMaven project without further checkingwhether

it is a Gradle project, causing six false negatives. The other three false

negatives are caused by the dynamic configuration of Gradle projects.

https://buildsonic.github.io

BuildSonic: Detecting and Repairing Performance-Related Configuration Smells for CI Builds ASE ’22, October 10–14, 2022, Rochester, MI, USA

Table 2: Results of Detection, Accuracy and Pull Requests (Exp. = Explicit, Imp. = Implicit, Sam. = Sampled, F.P. = False Positive,
P.R. = Pull Request,Mer. =Merged, Acc. = Accepted, Rej. = Rejected, Ign. = Ignored, Pen. = Pending, and P.F. = Positive Feedback)

PCS Tool Exp. Sam. F.P. P.R. Mer. Acc. Rej. Ign. Pen. P.F. Imp. Sam. F.P. P.R. Mer. Acc. Rej. Ign. Pen. P.F

Deep Clone Travis CI 63 50 0 50 9 0 7(12) 1 21 52.9 – – – – – – – – – –

No Dependency Cache Travis CI 20 20 0 15 1 0 0(1) 0 13 100 2,604 50 0 50 18 2 1(16) 2 11 87.0

Retry Failed Command Travis CI 41 41 0 34 6 0 2(6) 2 18 60.0 – – – – – – – – – –

Wait Long Command Travis CI 80 50 0 50 10 0 8(9) 2 21 50.0 – – – – – – – – – –

Slow Finish Travis CI 56 50 0 48 16 0 2(15) 3 12 76.2 – – – – – – – – – –

Sequential Build

Maven 0 – – – – – – – – – 1,088 50 1 49 11 0 6(8) 1 23 61.1

Gradle 8 8 0 4 0 1 0(1) 0 2 100 808 50 0 50 14 0 1(3) 1 31 87.5

No Compiler Daemon

Maven 0 – – – – – – – – – 228 50 0 50 6 1 6(9) 2 26 46.7

Gradle 0 – – – – – – – – – 75 50 0 50 8 1 6(5) 2 28 52.9

Sequential Test

Maven 9 9 0 8 0 1 0(0) 0 7 100 2,165 50 0 50 12 0 10(1) 1 26 52.2

Gradle 15 15 0 8 1 0 0(0) 0 7 100 1,155 50 1 49 14 0 10(5) 4 16 50.0

Non-Fork Test

Maven 82 50 50 7 0 3(0) 0 40 70.0 2,122 50 0 50 4 0 5(7) 3 31 33.3

Gradle 0 – – – – – – – – – 1,169 50 0 50 9 1 8(4) 4 24 45.5

Generate Test Report

Maven 6 6 0 4 1 0 0(0) 0 3 100 2,220 50 0 50 5 0 4(7) 1 33 50.0

Gradle 0 – – – – – – – – – 1,192 50 0 50 14 0 11(5) 4 16 48.3

Non-Incremental Compile Gradle 1 1 0 1 0 0 0(1) 0 0 – 757 50 0 50 7 1 1(3) 4 34 61.5

No Gradle Daemon Gradle 82 50 0 50 1 2 5(1) 2 39 30.0 294 50 0 50 1 0 1(2) 2 44 25.0

No Gradle Cache Gradle 2 2 0 1 0 0 0(0) 0 1 – 1,559 50 0 50 31 0 3(5) 2 9 86.1

No File System Watch Gradle 1 1 0 1 0 0 1(0) 0 0 0 1,550 50 0 50 23 0 2(1) 1 23 88.5

No On-Demand Configure Gradle 18 18 0 16 2 1 0(2) 0 11 100 848 50 0 50 15 0 1(3) 1 30 88.2

Overall 484 371 0 340 54 5 28(48) 10 195 60.8 19,834 800 2 798 192 6 76(84) 35 405 64.1

Except for the false positives and false negatives that are caused by

dynamic configurations in Gradle projects, other false positives and

false negatives can be removed by future iterations of BuildSonic.

Further, to evaluate the repairing accuracy of BuildSonic, we re-

moved the two false positives from the 371 + 800 PCSs sampled in our

detection precision analysis, and appliedBuildSonic to repair the re-

maining 1,169 PCSs. Two of the authors individually validated the re-

paired configuration files, and a third author was involved to resolve

disagreements. Finally, of the 669 PCSs that should be automatically

repaired, BuildSonic correctly repaired all of them; and of the 500

PCSs that should be semi-automatically repaired, BuildSonic cor-

rectly located the configuration options where developer interven-

tion was needed for all of them.

Summary. BuildSonic detected PCSs with a precision of 0.998

and a recall of 0.991 and repaired PCSs with a perfect accuracy.

4.4 Developer Feedback (RQ3)
To evaluate the practical usefulness of BuildSonic, we removed the

false positives from the 371 + 800 PCSs sampled in our detection pre-

cision analysis (Sec. 4.3), appliedBuildSonic to repair the other 1,169

PCSs (human interventionwas involved in repairing the PCS types that

were semi-automatically repairing by BuildSonic), and submitted

repaired configuration files as pull requests. Finally, we submitted

1,138 pull requests, as listed under the column P.R. in Table 2. We did

not submit pull requests for 31 PCSs because the projects were read-

only on GitHub. At the time of writing, we have received developer

feedback from 538 pull requests. We classified feedback into five cat-

egories, i.e.,merged (a pull request has beenmerged by adopting our

repair), accepted (a pull request has been accepted by confirming our

detected PCSs), rejected (a pull request has been rejected with nega-

tive feedback, or due to irresistible factors, e.g., developers no longer

adopt Travis CI as it has been no longer free since November 2, 2020,

and developers regard us as a spam bot because we have submitted

toomany pull requests), ignored (a pull request has been closedwith-
out any feedback), and pending (a pull request is still open and under
discussion). The result of each category is shown under the column

Mer.,Acc., Rej., Ign. and Pen. in Table 2. The column Rej. is reported in
the form of a(b), where a denotes the ones rejected with negative

feedback and b denotes the ones rejected due to irresistible factors.

We measured a positive feedback rate (under the column P.F.) as the
ratio of merged and accepted pull requests among all feedbacked

pull requests except for the rejected ones due to irresistible factors.

Overall, 246 and 11 pull requests have been merged and accepted

by developers, gaining a positive feedback rate of 63.3%. Developers

commented that “I’m not very familiar with travis and I’m not aware
of this feature. Thanks for this PR”, “Thank you a lot for your contri-
bution, this improved build time from 3 to 1 minute on my computer”,
and “This PR attend[s] to improve Build Performance. We can see the
improvement here: ... So total improvement is 13.26%”.

Moreover, 104 pull requests have been rejectedwith negative feed-

back. One common reason is that developers think the build is fast

and hence there is no need to further improve it. Inspired by this, we

plan to improve BuildSonic by scanning projects only when their

historical builds take a long time to run. Besides, for Deep Clone, the
main reason of rejection is that the full commit history is required by

static analysis tools like SonarCloud and SonarQube. Therefore, we

plan to skip the detection of this PCS for projects that use such tools.

For Retry Failed Command and Wait Long Command, the main rea-

son of rejection is that developers have to use the retry and wait fea-

ture to deal with unstable behaviors and long running commands as

it is difficult and expensive to fundamentally fix them. For Sequential
Build, Sequential Test andNon-Fork Test, the main reason of rejection

is that there are dependencies among modules or tests, and hence

parallelism might cause failures, and it is also expensive to refactor

modules or tests for enjoying the benefit of parallelism. For No Com-
piler Daemon, the main reason of rejection is the small performance

improvement. We plan to increase the threshold of the number of

ASE ’22, October 10–14, 2022, Rochester, MI, USA Chen Zhang, Bihuan Chen, Junhao Hu, Xin Peng, and Wenyun Zhao

Table 3: Build Performance Change after Repairing PCSs
(Suc. = Succeed, Pos. = Positive, and Neg. = Negative)

PCS Tool

Suc.

(#)

Fail

(#)

∆
(%)

Pos.

(#)

Pos.

(%)

Neg.

(#)

Neg.

(%)

Deep Clone Travis CI 43 0 7.6 43 7.6 0 0

No Dependency Cache Travis CI 14 0 23.2 14 23.2 0 0

Retry Failed Command Travis CI 11 0 33.9 11 33.9 0 0

Wait Long Command Travis CI 15 0 58.4 15 58.4 0 0

Slow Finish Travis CI 15 0 4.9 15 4.9 0 0

Sequential Build

Maven 11 0 9.6 11 9.6 0 0

Gradle 10 0 4.3 10 4.3 0 0

No Compiler Daemon

Maven 13 0 10.2 8 22.4 5 -9.3

Gradle 10 0 3.6 9 4.7 1 -6.2

Sequential Test

Maven 11 6 18.7 11 18.7 0 0

Gradle 11 0 7.5 11 7.5 0 0

Non-Fork Test

Maven 15 3 11.3 15 11.3 0 0

Gradle 20 0 6.4 20 6.4 0 0

Generate Test Report

Maven 15 0 15.0 15 15.0 0 0

Gradle 11 0 7.8 11 7.8 0 0

Non-Incremental Compile Gradle 9 0 11.8 9 11.8 0 0

No Gradle Daemon Gradle 12 0 5.6 12 5.6 0 0

No Gradle Cache Gradle 16 0 4.3 16 4.3 0 0

No File System Watch Gradle 14 0 6.2 14 6.2 0 0

No On-Demand Configure Gradle 12 0 4.2 12 4.2 0 0

Overall 288 9 12.4 282 12.8 6 -8.8

source code files used in our detection. For Generate Test Report, the
main reason of rejection is that developers need test report, and they

suggest to conditionally skip the test report. For No Gradle Daemon,
themain reason of rejection is that their builds are not very frequent,

and thus the long-lived process may overshadow the benefit.

Summary. 257 pull requests have beenmerged or accepted by de-

velopers, achieving a positive feedback rate of 63.3%. The positive

feedback has demonstrated the usefulness and practical value of

BuildSonic for CI developers. We also received useful suggestions

to enhance BuildSonic from the 104 rejected ones.

4.5 Benefit Analysis (RQ4)
To evaluate the practical benefit of repairing PCSs, we measured the

build performance change after repairing PCSs. Specifically, for each

of our 1,138 pull requests, we forked the project, triggered a CI build

before and aftermerging our pull request, andmeasured the build per-

formance change. As our Travis CI environment might be different

from the one used in a project, the CI build before merging our pull

request failed for 840 pull requests. For the remaining 297 pull re-

quests, the CI build after merging our pull request succeeded for 288

pull requests but failed for 9 pull requests, as reported under the col-

umn Suc. and Fail in Table 3. The reason of failed build after repair-

ing Sequential Test and Non-Fork Test is that there exist dependen-
cies among tests, and thus parallel testing causes failure. In fact, this

problem is also reflected by our developer study (see Sec. 4.4).

On average, the build performance was improved by 12.4% after

repairing a PCS (as listed under the column ∆). The highest perfor-
mance improvementwas achieved by repairingNoDependency Cache,
Retry Failed Command,Wait Long Command, Sequential Test and
Generate Test Report. While we achieved performance improvement

in 282 pull requests with an average improvement of 12.8% (as shown

under the columns Pos.), we suffered performance degradation in 6

pull requests with an average degradation of 8.8% (as shown under

the columns Neg.). The reason of performance degradation after re-

pairing No Compiler Daemon is that the projects are relatively small-

scale, and thus cannot take the full advantage of compiler daemon.

In fact, this is consistent with our developer study (see Sec. 4.4).

Summary. The build performance was averagely improved by

12.4% after a PCS was repaired by BuildSonic.

4.6 Efficiency Evaluation (RQ5)
Wemeasured the time overhead of detecting and repairing PCSs in the

4,140 projects. On average, BuildSonic respectively took 158.7 and

5.6 milliseconds to detect and repair all PCSs in one project. We

believe this time overhead is practically acceptable for a linter.

Summary. It averagely took 158.7 and 5.6milliseconds forBuild-

Sonic to detect and repair all PCSs in one project.

4.7 Threats
First, our PCS catalog is derived from three tools in the CI infrastruc-

ture for Java projects. However, to the best of our knowledge, this is

the first work to study PCSs. Our catalog is served as a starting point

for future studies to include more tools and support more languages.

Second, a detected PCS is not always a bad smell, as reflected by our

developer study (see Sec. 4.4). Specific contexts have to be leveraged

to determine a bad smell, which often goes beyond the scope of a light-

weight linter. In fact, this threat is also shared with others [20, 66].

Third, manual analysis is involved in our evaluation, whichmight in-

troduce biases. Tomitigate it, three authorsmake great effort to care-

fully carry out our analysis by following an open coding procedure.

Fourth, we currently look at individual configuration options in iso-

lation (but not interactions of configuration options). However, it

could be that tweaking one option negatively affects another option.

We plan to consider combinations of configuration options when

optimizing performance in future.

5 RELATEDWORK
Smells in CI/CD.Duvall et al. [14] and Humble and Farley [29] dis-

cuss best and bad practices in CI andCD in their classic books about CI

andCD. The benefits of CI/CD can be achieved by following best prac-

tices and avoiding bad practices. Duvall [13] create a catalog of 50 pat-

terns and their corresponding anti-patterns in the CI/CD lifecycle by

surveying related work in literature. Differently, Zampetti et al. [77]

compile a catalog of 79 CI bad smells by interviewing practitioners

and analyzing StackOverflow posts, where 35 CI bad smells cover 39

patterns/anti-patterns created by Duvall [13]. Their work aims at a

broader scope of smells than ours, and inspires our work.

Inspired by Duvall’s catalog, Vassallo et al. [65] first propose CI-

Odor to detect four CI anti-patterns (i.e., late merging, slow build,

broken master branch, and skipping failed tests) by analyzing build

logs and repository information. Vassallo et al. [66] then propose CI-

Linter to detect four CD configuration smells in GitLab (i.e., fake suc-

cess, retry failure, manual execution and fuzzy version) by analyzing

configuration files alone. Gallaba andMcIntosh [20] investigate how

Travis CI configurations are used, and designHansel/Gretel to de-

tect/repair four/three anti-patterns (i.e., redirecting scripts into in-

terpreters, bypassing security checks, using irrelevant properties and

commands unrelated to the phase) in Travis CI configuration files.

While some of these approaches [20, 66] explore CI configuration

BuildSonic: Detecting and Repairing Performance-Related Configuration Smells for CI Builds ASE ’22, October 10–14, 2022, Rochester, MI, USA

smells, to the best of our knowledge, our work is the first to system-

atically investigate performance-related CI configuration smells.

It is worth mentioning that smells in IaC (Infrastructure as Code)

scripts are also investigated. Sharma et al. [59] collect a catalog of 24

implementation and design configuration smells for IaC scripts de-

veloped in Puppet, and develop Puppeteer to detect design configu-

ration smells. They focus on themaintainability of Puppet code. Dif-

ferently, Rahman et al. [51] concern with the security of Puppet

code, and develop SLIC to detect seven security smells in IaC scripts.

Our work differs from their work by concentrating on configuration

smells that affect the performance of builds in CI.

TimeReduction in CI.Various techniques have been proposed
to reduce the consumed time of CI builds. To reduce dependency re-

trieval time, Celik et al. [8] lazily retrieve parts of libraries that are

needed during build execution. To accelerate CI build, build target

decomposition techniques [31, 63] are proposed to better suit incre-

mental build, where build targets that are not affected by code changes

are skipped [16, 18]. To reduce build time, some plugins [10, 12] are

designed into CI tools to skip some builds by manual configuration,

whereas some rule-based [2, 34], learning-based [1, 32] and search-

based [55] techniques are proposed to automatically identify builds

that can be CI skipped. In addition, build outcome prediction tech-

niques [9, 24, 49, 50, 54, 71, 72] are developed to save the time of the

builds that are predicted to pass. To reduce testing time, test case

prioritization [6, 7, 15, 43, 73] and test case selection [40, 45, 60] are

developed into CI to minimize test execution time. Recently, Jin and

Servant [33] systematically evaluate and compare the effectiveness

of the previous build-level and test-level time reduction techniques.

Zhang et al. [79] propose a change-aware approach to triage test

failures to reduce diagnosis time. BuildSonic is actually orthogo-

nal to these techniques; i.e., we focus on CI configuration which is

different from their focuses.

Build Repairing in CI. Several techniques have been proposed

to automatically repair broken builds. Gupta et al. [23], Santos et al.

[56] and Mesbah et al. [46] leverage deep learning techniques to au-

tomatically fix compilation errors in builds. Hassan and Wang [25]

repair build scripts with predefined fix-pattern templates. Instead of

relying on historical fixes, Lou et al. [37] design a search-basedmethod

to generate build script fixes from the present project and external

resources. Vassallo et al. [67] summarize the reasons of build fail-

ures and suggest potential fixes by linking related StackOverflow

discussions. Macho et al. [41] target dependency-related build fail-

ures and develop three rules to repair them. Besides, Lou et al. [38]

empirically investigate fix patterns of build failures in three build

systems (i.e., Maven, Ant andGradle). Differently,BuildSonic is not

designed to repair build failures but to fix configuration smells.

Empirical Studies aboutCI.With the increasing adoption of CI,

empirical studies have beenwidely conducted to understand and char-

acterize CI from different aspects, e.g., costs, benefits, barriers, pain

points and needs of using CI [27, 28, 64, 70], types of build failures

[30, 35, 52, 68], build failures caused by compilation errors [58, 78],

test failures [3, 36] and violations in static analysis [76], interplay

between pull requests and CI [5, 74], test code evolution in CI [48],

pipeline evolution and reconstruction in CI/CD [75], characteristics

of long builds in CI [21], and noise and heterogeneity [19] in dataset

of CI builds [4]. Several studies [21, 27, 28, 70, 75] have reported

that long build time is common; waiting for long builds to finish is a

common barrier and pain point faced by developers; and changing

configurations to improve performance is common. These studies

motivate the need to detect and repair performance-related CI con-

figuration smells to reduce build time and accelerate CI.

6 CONCLUSIONS
In this paper, we have created a catalog of 20 PCSs in three tools

(i.e., Travis CI, Maven and Gradle) of the CI infrastructure for Java

projects. We have proposed and implemented BuildSonic to de-

tect and repair 15 types of PCSs by analyzing configuration files.

We have conducted extensive experiments to demonstrate the effec-

tiveness and efficiency of BuildSonic. In future, we plan to include

more CI tools and support more programming languages.

ACKNOWLEDGMENTS
This work was supported by the National Key R&D Program of

China (2021ZD0112903).

REFERENCES
[1] Rabe Abdalkareem, Suhaib Mujahid, and Emad Shihab. 2021. AMachine Learning

Approach to Improve the Detection of CI Skip Commits. IEEE Transactions on
Software Engineering 47, 12 (2021), 2740–2754.

[2] Rabe Abdalkareem, Suhaib Mujahid, Emad Shihab, and Juergen Rilling. 2019.

Which commits can be CI skipped? IEEE Transactions on Software Engineering
47, 3 (2019), 448–463.

[3] Moritz Beller, Georgios Gousios, and Andy Zaidman. 2017. Oops, my tests broke

the build: An explorative analysis of Travis CI with GitHub. In Proceedings of the
IEEE/ACM 14th International Conference on Mining Software Repositories. 356–367.

[4] Moritz Beller, Georgios Gousios, and Andy Zaidman. 2017. Travistorrent: Syn-

thesizing travis ci and github for full-stack research on continuous integration.

In Proceedings of the IEEE/ACM 14th International Conference on Mining Software
Repositories. 447–450.

[5] João Helis Bernardo, Daniel Alencar da Costa, and Uirá Kulesza. 2018. Studying

the impact of adopting continuous integration on the delivery time of pull re-

quests. In Proceedings of the IEEE/ACM 15th International Conference on Mining
Software Repositories. 131–141.

[6] Antonia Bertolino, Antonio Guerriero, Breno Miranda, Roberto Pietrantuono,

and Stefano Russo. 2020. Learning-to-rank vs ranking-to-learn: Strategies for

regression testing in continuous integration. In Proceedings of the ACM/IEEE 42nd
International Conference on Software Engineering. 1–12.

[7] Benjamin Busjaeger and Tao Xie. 2016. Learning for Test Prioritization: An

Industrial Case Study. In Proceedings of the 24th ACM SIGSOFT International
Symposium on Foundations of Software Engineering. 975–980.

[8] Ahmet Celik, Alex Knaust, Aleksandar Milicevic, and Milos Gligoric. 2016. Build

System with Lazy Retrieval for Java Projects. In Proceedings of the 24th ACM SIG-
SOFT International Symposium on Foundations of Software Engineering. 643–654.

[9] Bihuan Chen, Linlin Chen, Chen Zhang, and Xin Peng. 2020. BuildFast: history-

aware build outcome prediction for fast feedback and reduced cost in continuous

integration. In Proceedings of the 35th IEEE/ACM International Conference on
Automated Software Engineering. 42–53.

[10] Travis CI. 2022. Customizing the Build - Skipping a Build. https://docs.travis-

ci.com/user/customizing-the-build/#skipping-a-build

[11] Travis CI. 2022. Travis CI User Documentation. https://docs.travis-ci.com

[12] Cloudbee. 2022. Jenkins Enterprise by CloudBees 14.5 User Guide - Using the Skip
Next Build plugin. https://docs.huihoo.com/jenkins/enterprise/14/user-guide-

14.5/skip-sect-using.html

[13] Paul Duvall. 2011. Continuous delivery: patterns and antipatterns in the software
lifecycle. https://dzone.com/refcardz/continuous-delivery-patterns

[14] Paul M Duvall, Steve Matyas, and Andrew Glover. 2007. Continuous integration:
improving software quality and reducing risk. Pearson Education.

[15] Sebastian Elbaum, Gregg Rothermel, and John Penix. 2014. Techniques for

Improving Regression Testing in Continuous Integration Development Envi-

ronments. In Proceedings of the 22nd ACM SIGSOFT International Symposium on
Foundations of Software Engineering. 235–245.

[16] Hamed Esfahani, Jonas Fietz, Qi Ke, Alexei Kolomiets, Erica Lan, Erik Mavrinac,

Wolfram Schulte, Newton Sanches, and Srikanth Kandula. 2016. CloudBuild:

Microsoft’s distributed and caching build service. In Proceedings of the 38th
International Conference on Software Engineering Companion. 11–20.

[17] Martin Fowler. 2000. Continuous Integration. http://martinfowler.com/articles/

originalContinuousIntegration.html

https://docs.travis-ci.com/user/customizing-the-build/#skipping-a-build
https://docs.travis-ci.com/user/customizing-the-build/#skipping-a-build
https://docs.travis-ci.com
https://docs.huihoo.com/jenkins/enterprise/14/user-guide-14.5/skip-sect-using.html
https://docs.huihoo.com/jenkins/enterprise/14/user-guide-14.5/skip-sect-using.html
https://dzone.com/refcardz/continuous-delivery-patterns
http://martinfowler.com/articles/ originalContinuousIntegration.html
http://martinfowler.com/articles/ originalContinuousIntegration.html

ASE ’22, October 10–14, 2022, Rochester, MI, USA Chen Zhang, Bihuan Chen, Junhao Hu, Xin Peng, and Wenyun Zhao

[18] Keheliya Gallaba, Yves Junqueira, John Ewart, and Shane Mcintosh. 2020. Accel-

erating Continuous Integration by Caching Environments and Inferring Depen-

dencies. IEEE Transactions on Software Engineering (2020).

[19] Keheliya Gallaba, Christian Macho, Martin Pinzger, and Shane McIntosh. 2018.

Noise and heterogeneity in historical build data: an empirical study of Travis

CI. In Proceedings of the 33rd ACM/IEEE International Conference on Automated
Software Engineering. 87–97.

[20] Keheliya Gallaba and Shane McIntosh. 2018. Use and misuse of continuous

integration features: An empirical study of projects that (mis) use travis ci. IEEE
Transactions on Software Engineering 46, 1 (2018), 33–50.

[21] Taher Ahmed Ghaleb, Daniel Alencar Da Costa, and Ying Zou. 2019. An empirical

study of the long duration of continuous integration builds. Empirical Software
Engineering 24, 4 (2019), 2102–2139.

[22] Gradle. 2022. Gradle User Manual. https://docs.gradle.org/current/userguide/

userguide.html

[23] Rahul Gupta, Soham Pal, Aditya Kanade, and Shirish Shevade. 2017. Deepfix:

Fixing common c language errors by deep learning. In Proceedings of the Thirty-
First AAAI Conference on Artificial Intelligence. 1345–1351.

[24] Foyzul Hassan and Xiaoyin Wang. 2017. Change-Aware Build Prediction Model

for Stall Avoidance in Continuous Integration. In Proceedings of the 11th ACM/IEEE
International Symposium on Empirical Software Engineering and Measurement.
157–162.

[25] Foyzul Hassan and Xiaoyin Wang. 2018. Hirebuild: An automatic approach

to history-driven repair of build scripts. In Proceedings of the IEEE/ACM 40th
International Conference on Software Engineering. 1078–1089.

[26] Kim Herzig, Michaela Greiler, Jacek Czerwonka, and Brendan Murphy. 2015. The

art of testing less without sacrificing quality. In Proceedings of the IEEE/ACM 37th
IEEE International Conference on Software Engineering, Vol. 1. 483–493.

[27] Michael Hilton, Nicholas Nelson, Timothy Tunnell, Darko Marinov, and Danny

Dig. 2017. Trade-offs in continuous integration: assurance, security, and flexi-

bility. In Proceedings of the 2017 11th Joint Meeting on Foundations of Software
Engineering. 197–207.

[28] Michael Hilton, Timothy Tunnell, Kai Huang, Darko Marinov, and Danny Dig.

2016. Usage, costs, and benefits of continuous integration in open-source projects.

In Proceedings of the 31st IEEE/ACM International Conference on Automated Soft-
ware Engineering. 426–437.

[29] Jez Humble and David Farley. 2010. Continuous delivery: reliable software releases
through build, test, and deployment automation. Pearson Education.

[30] Md Rakibul Islam andMinhaz F Zibran. 2017. Insights into continuous integration

build failures. In Proceedings of the IEEE/ACM 14th International Conference on
Mining Software Repositories. 467–470.

[31] Lukas Jendele, Markus Schwenk, Diana Cremarenco, Ivan Janicijevic, andMikhail

Rybalkin. 2019. Efficient automated decomposition of build targets at large-scale.

In Proceedings of the 12th IEEE Conference on Software Testing, Validation and
Verification. 457–464.

[32] Xianhao Jin and Francisco Servant. 2020. A Cost-efficient Approach to Building

in Continuous Integration. In Proceedings of the 42nd International Conference on
Software Engineering. 13–25.

[33] Xianhao Jin and Francisco Servant. 2021. What helped, and what did not? An

Evaluation of the Strategies to Improve Continuous Integration. In Proceedings
of the IEEE/ACM 43rd International Conference on Software Engineering. 213–225.

[34] Xianhao Jin and Francisco Servant. 2022. Which builds are really safe to skip?

Maximizing failure observation for build selection in continuous integration.

Journal of Systems and Software 188 (2022), 111292.
[35] Noureddine Kerzazi, Foutse Khomh, and Bram Adams. 2014. Why do auto-

mated builds break? an empirical study. In Proceedings of the IEEE International
Conference on Software Maintenance and Evolution. 41–50.

[36] Adriaan Labuschagne, Laura Inozemtseva, and Reid Holmes. 2017. Measuring the

cost of regression testing in practice: a study of Java projects using continuous

integration. In Proceedings of the 2017 11th JointMeeting on Foundations of Software
Engineering. 821–830.

[37] Yiling Lou, Junjie Chen, Lingming Zhang, Dan Hao, and Lu Zhang. 2019. History-

driven build failure fixing: how far are we?. In Proceedings of the 28th ACM
SIGSOFT International Symposium on Software Testing and Analysis. 43–54.

[38] Yiling Lou, Zhenpeng Chen, Yanbin Cao, Dan Hao, and Lu Zhang. 2020. Un-

derstanding build issue resolution in practice: symptoms and fix patterns. In

Proceedings of the 28th ACM Joint Meeting on European Software Engineering
Conference and Symposium on the Foundations of Software Engineering. 617–628.

[39] Qingzhou Luo, Farah Hariri, Lamyaa Eloussi, and DarkoMarinov. 2014. An empir-

ical analysis of flaky tests. In Proceedings of the 22nd ACM SIGSOFT international
symposium on foundations of software engineering. 643–653.

[40] Mateusz Machalica, Alex Samylkin, Meredith Porth, and Satish Chandra. 2019.

Predictive test selection. In Proceedings of the IEEE/ACM 41st International Con-
ference on Software Engineering: Software Engineering in Practice. 91–100.

[41] Christian Macho, Shane McIntosh, and Martin Pinzger. 2018. Automatically

repairing dependency-related build breakage. In Proceedings of the IEEE 25th
International Conference on Software Analysis, Evolution and Reengineering. 106–
117.

[42] Simon Maple and Andrew Binstock. 2018. JVM Ecosystem report 2018 – About
your Tools. https://snyk.io/blog/jvm-ecosystem-report-2018-tools/

[43] Dusica Marijan, Arnaud Gotlieb, and Sagar Sen. 2013. Test Case Prioritization

for Continuous Regression Testing: An Industrial Case Study. In Proceedings of
the IEEE International Conference on Software Maintenance. 540–543.

[44] Maven. 2022. Maven Documentation. https://maven.apache.org/plugins/index.

html

[45] Atif Memon, Zebao Gao, Bao Nguyen, Sanjeev Dhanda, Eric Nickell, Rob Siem-

borski, and John Micco. 2017. Taming Google-Scale Continuous Testing. In

Proceedings of the 39th International Conference on Software Engineering: Software
Engineering in Practice Track. 233–242.

[46] Ali Mesbah, Andrew Rice, Emily Johnston, Nick Glorioso, and Edward Aftandilian.

2019. Deepdelta: learning to repair compilation errors. In Proceedings of the 27th
ACM Joint Meeting on European Software Engineering Conference and Symposium
on the Foundations of Software Engineering. 925–936.

[47] André N Meyer, Laura E Barton, Gail C Murphy, Thomas Zimmermann, and

Thomas Fritz. 2017. Thework life of developers: Activities, switches and perceived

productivity. IEEE Transactions on Software Engineering 43, 12 (2017), 1178–1193.
[48] Gustavo Sizilio Nery, Daniel Alencar da Costa, and Uirá Kulesza. 2019. An

Empirical Study of the Relationship between Continuous Integration and Test

Code Evolution. In Proceedings of the IEEE International Conference on Software
Maintenance and Evolution. 426–436.

[49] Ansong Ni and Ming Li. 2017. Cost-effective build outcome prediction using

cascaded classifiers. In Proceedings of the IEEE/ACM 14th International Conference
on Mining Software Repositories. 455–458.

[50] Ansong Ni and Ming Li. 2018. ACONA: Active Online Model Adaptation for

Predicting Continuous Integration Build Failures. In Proceedings of the IEEE/ACM
40th International Conference on Software Engineering: Companion. 366–367.

[51] Akond Rahman, Chris Parnin, and LaurieWilliams. 2019. The seven sins: Security

smells in infrastructure as code scripts. In Proceedings of the IEEE/ACM 41st
International Conference on Software Engineering. 164–175.

[52] Thomas Rausch, Waldemar Hummer, Philipp Leitner, and Stefan Schulte. 2017.

An empirical analysis of build failures in the continuous integration workflows

of Java-based open-source software. In Proceedings of the IEEE/ACM 14th Interna-
tional Conference on Mining Software Repositories. 345–355.

[53] Kristian Rosenvold. 2018. Parallel builds in Maven 3. https://cwiki.apache.org/

confluence/display/MAVEN/Parallel+builds+in+Maven+3

[54] Islem Saidani, Ali Ouni, Moataz Chouchen, and Mohamed Wiem Mkaouer. 2020.

Predicting continuous integration build failures using evolutionary search. Infor-
mation and Software Technology 128 (2020), 106392.

[55] Islem Saidani, Ali Ouni, and Wiem Mkaouer. 2021. Detecting skipped com-

mits in continuous integration using multi-objective evolutionary search. IEEE
Transactions on Software Engineering (2021).

[56] Eddie Antonio Santos, Joshua Charles Campbell, Dhvani Patel, Abram Hindle,

and José Nelson Amaral. 2018. Syntax and sensibility: Using language models

to detect and correct syntax errors. In Proceedings of the IEEE 25th International
Conference on Software Analysis, Evolution and Reengineering. 311–322.

[57] Carolyn B. Seaman. 1999. Qualitative methods in empirical studies of software

engineering. IEEE Transactions on Software Engineering 25, 4 (1999), 557–572.

[58] Hyunmin Seo, Caitlin Sadowski, Sebastian Elbaum, Edward Aftandilian, and

Robert Bowdidge. 2014. Programmers’ build errors: a case study (at google). In

Proceedings of the 36th International Conference on Software Engineering. 724–734.
[59] Tushar Sharma, Marios Fragkoulis, and Diomidis Spinellis. 2016. Does your con-

figuration code smell?. In Proceedings of the IEEE/ACM 13th Working Conference
on Mining Software Repositories. 189–200.

[60] August Shi, Peiyuan Zhao, and Darko Marinov. 2019. Understanding and improv-

ing regression test selection in continuous integration. In Proceedings of the IEEE
30th International Symposium on Software Reliability Engineering. 228–238.

[61] César Soto-Valero, Thomas Durieux, and Benoit Baudry. 2021. A longitudinal

analysis of bloated Java dependencies. In Proceedings of the 29th ACM Joint
Meeting on European Software Engineering Conference and Symposium on the
Foundations of Software Engineering. 1021–1031.

[62] César Soto-Valero, Nicolas Harrand, Martin Monperrus, and Benoit Baudry. 2021.

A comprehensive study of bloated dependencies in the maven ecosystem. Empir-
ical Software Engineering 26, 3 (2021), 1–44.

[63] Mohsen Vakilian, Raluca Sauciuc, J David Morgenthaler, and Vahab Mirrokni.

2015. Automated decomposition of build targets. In Proceedings of the IEEE/ACM
37th IEEE International Conference on Software Engineering, Vol. 1. 123–133.

[64] Bogdan Vasilescu, Yue Yu, Huaimin Wang, Premkumar Devanbu, and Vladimir

Filkov. 2015. Quality and productivity outcomes relating to continuous integra-

tion in GitHub. In Proceedings of the 10th Joint Meeting on Foundations of Software
Engineering. 805–816.

[65] Carmine Vassallo, Sebastian Proksch, Harald C Gall, and Massimiliano Di Penta.

2019. Automated reporting of anti-patterns and decay in continuous integra-

tion. In Proceedings of the IEEE/ACM 41st International Conference on Software
Engineering. 105–115.

[66] Carmine Vassallo, Sebastian Proksch, Anna Jancso, Harald C Gall, and Massi-

miliano Di Penta. 2020. Configuration smells in continuous delivery pipelines:

https://docs.gradle.org/current/userguide/userguide.html
https://docs.gradle.org/current/userguide/userguide.html
https://snyk.io/blog/jvm-ecosystem-report-2018-tools/
https://maven.apache.org/plugins/index.html
https://maven.apache.org/plugins/index.html
https://cwiki.apache.org/confluence/display/MAVEN/Parallel+builds+in+Maven+3
https://cwiki.apache.org/confluence/display/MAVEN/Parallel+builds+in+Maven+3

BuildSonic: Detecting and Repairing Performance-Related Configuration Smells for CI Builds ASE ’22, October 10–14, 2022, Rochester, MI, USA

a linter and a six-month study on gitlab. In Proceedings of the 28th ACM Joint
Meeting on European Software Engineering Conference and Symposium on the
Foundations of Software Engineering. 327–337.

[67] Carmine Vassallo, Sebastian Proksch, Timothy Zemp, and Harald C. Gall. 2018.

Un-break My Build: Assisting Developers with Build Repair Hints. In Proceedings
of the 26th International Conference on Program Comprehension. 41–51.

[68] Carmine Vassallo, Gerald Schermann, Fiorella Zampetti, Daniele Romano, Philipp

Leitner, Andy Zaidman, Massimiliano Di Penta, and Sebastiano Panichella. 2017.

A tale of CI build failures: An open source and a financial organization perspective.

In Proceedings of the IEEE international conference on software maintenance and
evolution. 183–193.

[69] Ying Wang, Bihuan Chen, Kaifeng Huang, Bowen Shi, Congying Xu, Xin Peng,

Yijian Wu, and Yang Liu. 2020. An empirical study of usages, updates and risks

of third-party libraries in java projects. In Proceedings of the IEEE International
Conference on Software Maintenance and Evolution. 35–45.

[70] David Gray Widder, Michael Hilton, Christian Kästner, and Bogdan Vasilescu.

2019. A conceptual replication of continuous integration pain points in the

context of Travis CI. In Proceedings of the 27th ACM Joint Meeting on European
Software Engineering Conference and Symposium on the Foundations of Software
Engineering. 647–658.

[71] Jing Xia and Yanhui Li. 2017. Could we predict the result of a continuous

integration build? An empirical study. In Proceedings of the IEEE International
Conference on Software Quality, Reliability and Security Companion. 311–315.

[72] Zheng Xie andMing Li. 2018. Cutting the Software Building Efforts in Continuous

Integration by Semi-Supervised Online AUC Optimization. In Proceedings of the
27th International Joint Conference on Artificial Intelligence. 2875–2881.

[73] Shin Yoo, Robert Nilsson, and Mark Harman. 2011. Faster fault finding at Google

using multi objective regression test optimisation. In Proceedings of the 8th Euro-
pean Software Engineering Conference and the ACM SIGSOFT Symposium on the
Foundations of Software Engineering.

[74] Fiorella Zampetti, Gabriele Bavota, Gerardo Canfora, and Massimiliano Di Penta.

2019. A study on the interplay between pull request review and continuous

integration builds. In Proceedings of the IEEE 26th International Conference on
Software Analysis, Evolution and Reengineering. 38–48.

[75] Fiorella Zampetti, Salvatore Geremia, Gabriele Bavota, andMassimiliano Di Penta.

2021. CI/CD Pipelines Evolution and Restructuring: A Qualitative and Quan-

titative Study. In Proceedings of the IEEE International Conference on Software
Maintenance and Evolution. 471–482.

[76] Fiorella Zampetti, Simone Scalabrino, Rocco Oliveto, Gerardo Canfora, and Mas-

similiano Di Penta. 2017. How open source projects use static code analysis

tools in continuous integration pipelines. In Proceedings of the IEEE/ACM 14th
International Conference on Mining Software Repositories. 334–344.

[77] Fiorella Zampetti, Carmine Vassallo, Sebastiano Panichella, Gerardo Canfora,

Harald Gall, and Massimiliano Di Penta. 2020. An empirical characterization of

bad practices in continuous integration. Empirical Software Engineering 25, 2

(2020), 1095–1135.

[78] Chen Zhang, Bihuan Chen, Linlin Chen, Xin Peng, and Wenyun Zhao. 2019.

A large-scale empirical study of compiler errors in continuous integration. In

Proceedings of the 2019 27th ACM Joint Meeting on European Software Engineering
Conference and Symposium on the Foundations of Software Engineering. 176–187.

[79] Chen Zhang, Bihuan Chen, Xin Peng, and Wenyun Zhao. 2022. Buildsheriff:

Change-Aware Test Failure Triage for Continuous Integration Builds. In Pro-
ceedings of the IEEE/ACM 44th International Conference on Software Engineering.
312–324.

	Abstract
	1 Introduction
	2 Preliminaries
	3 Methodology
	3.1 Creating PCS Catalog
	3.2 Detecting and Repairing PCSs

	4 Implementation and Evaluation
	4.1 Evaluation Setup
	4.2 Prevalence Analysis (RQ1)
	4.3 Accuracy Evaluation (RQ2)
	4.4 Developer Feedback (RQ3)
	4.5 Benefit Analysis (RQ4)
	4.6 Efficiency Evaluation (RQ5)
	4.7 Threats

	5 Related Work
	6 Conclusions
	Acknowledgments
	References

