
REPFINDER: Finding Replacements for Missing
APIs in Library Update

Kaifeng Huang, Bihuan Chen, Linghao Pan, Shuai Wu, Xin Peng
School of Computer Science and Shanghai Key Laboratory of Data Science, Fudan University, China

Abstract—Libraries are widely adopted in developing software
projects. Library APIs are often missing during library evolution
as library developers may deprecate, remove or refactor APIs. As
a result, client developers have to manually find replacement APIs
for missing APIs when updating library versions in their projects,
which is a difficult and expensive software maintenance task. One
of the key limitations of the existing automated approaches is that
they usually consider the library itself as the single source to find
replacement APIs, which heavily limits their accuracy.

In this paper, we first present an empirical study to understand
characteristics about missing APIs and their replacements. Specif-
ically, we quantify the prevalence of missing APIs, and summarize
the knowledge sources where the replacements are found, and the
code change and mapping cardinality between missing APIs and
their replacements. Then, inspired by the insights from our study,
we propose a heuristic-based approach, REPFINDER, to automati-
cally find replacements for missing APIs in library update. We de-
sign and combine a set of heuristics to hierarchically search three
sources (deprecation message, own library, and external library)
for finding replacements. Our evaluation has demonstrated that
REPFINDER can find replacement APIs effectively and efficiently,
and significantly outperform the state-of-the-art approaches.

I. INTRODUCTION

Libraries are widely adopted in developing software projects

[86]. Developers need to update library versions in their projects

under various circumstances, e.g., using new functionalities and

bug fixes [21], solving dependency conflicts [87, 88], mitigating

vulnerability risks [11, 20, 62, 63, 86, 101], and harmonizing in-

consistent library versions [34]. As libraries evolve (i.e., new li-

brary versions are released), library developers might introduce

missing APIs (i.e., APIs that are missing in the new library ver-

sions) by deprecating, removing or refactoring APIs. As a conse-

quence, client projects fail to compile after library update, while

client developers have to manually investigate how to replace us-

ages of missing APIs. Due to this difficult and expensive manual

analysis, client developers may choose not to update library ver-

sions and thus cause technical lags [16, 19, 21, 39, 44, 69, 97].

To achieve automated library update, various API adaptation

approaches have been introduced [15, 91]. In general, API adap-

tation can be decomposed into two tasks; i.e., the first is to find

what is the replacement of a missing API (e.g., [13, 18, 89, 95]),

and the second is to identify how usages of a missing API are ac-

tually replaced by usages of its replacement API (e.g., [24, 81]).

The first task, which is the focus of this paper, has been achieved

by four groups of approaches. Manual approaches [13, 29, 60]

require library developers to specify the mapping between miss-

ing APIs and their replacements or to record API refactoring

actions in IDE. However, the involvement of library developers

is often not available. Similarity-based approaches [26, 37, 95]

utilize textual, metric and structural similarities to build the map-

ping. Usage-based approaches [17, 18, 74] identify the mapping

from API usage changes in library’s instantiation code or own

code. However, they become infeasible when missing APIs are

not used in library’s instantiation code or own code. Hybrid ap-

proaches [50, 89] combine and extend similarity-based and

usage-based approaches, and hence also share their limitation.

All approaches share the same limitation that they consider the

library itself as the single source to find replacement APIs, and

only Wu et al. [89] further consider libraries of the same vendor.

Therefore, the accuracy of these approaches are limited.

To address the limitations, we first conduct an empirical study

to characterize missing APIs and their replacement APIs. Here,

we regard public methods in public classes as APIs. Specifically,

we quantify the prevalence of missing APIs in 85 major version

updates, 771 minor version updates and 1,048 patch version up-

dates from 200 widely-used libraries. On average, 720, 330 and

244 APIs are missing in major, minor and patch version updates.

Moreover, we manually find the replacement APIs for 738 miss-

ing APIs in 99 version updates, and summarize the knowledge

sources where the replacements are found, and the code change

and mapping cardinality between missing APIs and their re-

placements. Deprecation message, own library, and external li-

brary are the three sources to find replacements, respectively

accounting for 13.6%, 50.8% and 14.6% of the missing APIs.

Code change from missing APIs to their replacements can be

categorized into refactoring (64.4%), substitution (4.2%) and

deletion (13.6%). One-to-one mapping (91.1%) is the common-

est cardinality between missing APIs and their replacements.

Then, inspired by our study, we propose a heuristic-based ap-

proach, named REPFINDER, to automatically find replacement

APIs for missing APIs in library update. REPFINDER takes as

inputs the old library version before update, the new library

version after update, and an API that resides in the old library

version but is missing in the new library version, and returns the

replacement APIs. REPFINDER searches the three sources, i.e.,

deprecation message, own library and external library, to find

replacement APIs. Specifically, we design a set of heuristics for

each source based on our empirical study, and hierarchically

combine them to find replacement APIs.

To evaluate the effectiveness of REPFINDER, we compared

REPFINDER with two state-of-the-art approaches, i.e., REFD-

IFF [75] and AURA [89], on 683 missing APIs. REPFINDER

significantly outperformed REFDIFF and AURA in recall by

up to 213.6% while having a slight decrease in precision by

5.4%. Further, we evaluated the efficiency of REPFINDER.

REPFINDER took one seconds on average to find replacements

for a missing API. Moreover, we applied REPFINDER to li-

brary update on 32 projects. REPFINDER successfully found

replacements for all missing APIs for 65.6% projects.

In summary, this work makes the following contributions.

• We conduct an empirical study to characterize missing APIs

and their replacement APIs in library update.

• We propose a heuristic-based approach, named REPFINDER,

to find replacements for missing APIs in library update.

• We conduct extensive experiments to demonstrate the effec-

tiveness and efficiency of REPFINDER.

II. AN EMPIRICAL STUDY

In this section, we present an empirical study to characterize

missing APIs and their replacements to inspire approach design.

A. Study Design

We designed our study to answer the following four research

questions about missing APIs and their replacements.

• RQ1 Prevalence Analysis: How prevalent are missing APIs

in library evolution? (Sec. II-C)

• RQ2 Source Analysis: What are the knowledge sources for

finding replacements for missing APIs? (Sec. II-D)

• RQ3 Change Analysis: What is the code change between

missing APIs and their replacements? (Sec. II-E)

• RQ4 Cardinality Analysis: What is the mapping cardinality

between missing APIs and their replacements? (Sec. II-F)

Before elaborating our RQ design, we define some library terms

to avoid confusion. Library update refers to updating an old li-

brary version to a new library version. Hereafter, old library ver-

sion refers to the library version before library update, and new

library version refers to the library version after library update.

We designed RQ1 to quantify the prevalence of missing APIs

in library evolution. To this end, for each of the collected library

version updates (Sec.II-B), we analyzed the number of public

classes and the number of public methods in public classes

that are defined in the old library version but are missing in the

new library version through code differencing [33]. Defined by

semantic versioning [64], version numbers must take the form

of X.Y.Z, where X, Y and Z denotes the major, minor and patch

version. Bug fixes not affecting APIs increment Z, backwards

compatible API changes or additions increment Y, and back-

wards incompatible API changes increment X. Generally, client

developers need no integration effort if updating to a patch

or minor version, but need some integration effort if updating

to a major version. Therefore, we conducted our prevalence

analysis via distinguishing major version updates (the old and

new library version have different major version), minor version

updates (the old and new library version have the same major

version but different minor version), and patch version updates

(the old and new library version have the same major and minor

version but different patch version). Our results from RQ1
aim to motivate the need of an automated approach to find

replacements for missing APIs.

Fig. 1. Prevalence of Missing APIs in Library Evolution

We designed RQ2, RQ3 and RQ4 to characterize the knowl-

edge sources for finding replacements for missing APIs, and the

code change and mapping cardinality between missing APIs and

their replacements. To this end, for each of the collected missing

APIs in the collected library version updates (Sec. II-B), two of

the authors separately found its replacements by analyzing API

usages in client projects, looking at library documentations, and

searching internet resources, and recorded its knowledge source,

code change and mapping cardinality. Then, they discussed and

investigated inconsistent cases together to reach consensus, and

categorized knowledge sources, code change and mapping car-

dinality. Our results from RQ2, RQ3 and RQ4 aim to capture

the characteristics of missing APIs and their replacements to

inspire the design of an automated approach.

B. Data Collection

To prepare library version updates for our RQs, we decided

to choose libraries that were truly used by client projects so that

i) the characteristics about missing APIs and their replacements

would be more realistic and more representative and ii) our man-

ual analysis would become more accurate as we could use client

projects to help to confirm whether the replacements we found

were correct. Hence, we selected the GitHub Java projects that

were created after 2013, used Maven as the build tool, and had

more than 20 stars. These criteria were adopted to ensure project

quality and ease the extraction of libraries, which restricted our

selection to 2,567 projects. From these projects, we extracted a

total of 11,419 used libraries and 31,393 used library versions,

and collected library API calls using JavaParser [76].

For RQ1, we chose 200 libraries that were most widely used

according to our collected library API calls. 3,030 library ver-

sions from these libraries were used, from which we generated a

version update for any two adjacent major, minor and patch

versions. If multiple library versions shared the same major,

minor or patch version, we randomly selected one of them. Fi-

nally, we prepared 85 major version updates, 771 minor version

updates, and 1,048 patch version updates.

For RQ2, RQ3 and RQ4, we selected libraries whose library

APIs were called by more than ten times across projects to in-

crease the possibility of finding missing APIs called by projects,

which resulted in 999 libraries. Of these libraries, 230 libraries

had at least two library versions used in projects. 841 library

TABLE I. Examples of Missing APIs and Their Replacements in Library Update

No. Library
Version
Update

Missing API Replacement API Source

1
org.mapdb
mapdb

0.9.3
0.9.13

org.mapdb.
DBMaker.writeAheadLogDisable()

org.mapdb.
DBMaker.transactionDisable()

Deprecation
Message

2
org.apache.lucene
lucene-core

5.1.0
6.0.0

org.apache.lucene.search.
PhraseQuery.add(Term)

org.apache.lucene.search.
PhraseQuery.Builder.add(Term)

Own Library

3
org.apache.lucene
lucene-core

3.0.3
4.0.0

org.apache.lucene.analysis.standard.
StandardAnalyzer.StandardAnalyzer(Version)

org.apache.lucene.analysis.standard.
StandardAnalyzer.StandardAnalyzer(Version)

Vendor
Library

4
org.elasticsearch
elasticsearch

1.7.1
2.0.0

org.elasticsearch.common.joda.time.format.
DateTimeFormatter.print(long)

org.joda.time.format.
DateTimeFormatter.print(long)

Dependency
Library

5
org.elasticsearch
elasticsearch

0.20.6
1.2.1

org.elasticsearch.common.trove.list.array.
TIntArrayList.toArray()

gnu.trove.list.array.
TIntArrayList.toArray()

Similar
Library

6
org.jsoup
jsoup

1.7.2
1.13.1

org.jsoup.select.
Elements.contains(Object)

java.util.
ArrayList.contains(Object)

JDK Library

7
org.apache.solr
solr-solrj

4.10.4
6.6.2

org.apache.solr.client.solrj.util.
ClientUtils.toSolrInputDocument(SolrDocument)

NA
Deprecation
Message

versions from these 230 libraries were used in projects, from

which we generated version updates in three ways. First, we se-

lected the smallest and the largest version as a version update to

simulate the largest version gap in library update. Second, we se-

lected any two adjacent versions as a version update to simulate

timely library update. Third, we selected any two adjacent major

versions as a version update to simulate major library version

update where missing APIs are very common. If multiple library

versions had the same major version, we selected the version

with the highest API usage. We generated 183 major version

updates, 320 minor version updates, and 149 patch version

updates. Of these version updates, 77 major version updates, 19

minor version updates and 3 patch version updates had missing

APIs called across projects, resulting in 738 missing APIs that

were from 37 libraries and truly called across projects.

C. Prevalence Analysis (RQ1)

Fig. 1 presents the average number of missing public classes

and missing public methods in major, minor and patch version

updates. We can observe that major version updates introduce

the most missing public classes and missing public methods,

which is consistent to semantic versioning; and minor version

updates and patch version updates also introduce some missing

public classes and missing public methods, which actually vio-

lates semantic versioning. Averagely, 81 public classes and 215

public methods are missing in a major version update. If we in-

clude the public methods in missing public classes, a total of

720 public methods are missing. In a minor and patch version

update, 17 and 4 public classes and 27 and 6 public methods are

missing. These results indicate that missing APIs are prevalent

and severe in major version updates, and also occur in minor

and patch version updates.

D. Source Analysis (RQ2)

We summarize three sources, i.e., deprecation message, own

library, and external library, where the replacement APIs can be

found. First, for 100 (13.6%) of the 738 missing APIs, the depre-

cation message in JavaDoc gives the hint about the replacement

APIs. Specifically, 94.0% of the deprecation messages include a

link tag for developer to navigate to the replacement API, while

others (6.0%) do not include a link but list the replacement in

text. However, the deprecation message is not always in the

JavaDoc of the old library version, but can be in the JavaDoc of

a library version that is released before the new library version.

This result indicates that API changes might not be always doc-

umented in JavaDoc.

Example 2.1: The second row of Table I reports an example

that the API org.mapdb.DBMaker.writeAheadLogDisable() in

the old version 0.9.3 of the library mapdb is missing in the new

version 0.9.13. There is no deprecation message in the JavaDoc

of the old version 0.9.3. It turns out that the deprecation mes-

sage is in the JavaDoc of the version 0.9.4, and says that “use

transactionDisable() instead” with a link to the replacement.

Second, for 375 (50.8%) of the 738 missing APIs, their re-

placement APIs can be found in their own library, i.e., the new

library version. As refactoring is a common practice in library

evolution, some APIs are refactored to become missing in the

new library version (see Sec. II-E for a detailed discussion).

Notice that for the missing APIs whose replacements are found

by deprecation message, their replacements are actually also in

the new library version, but here we do not include them.

Example 2.2: For the second example in Table I, no depreca-

tion message can be found in the versions of the library lucene-
core for the missing API org.apache.lucene.search.Phrase-
Query.add(Term) in the version 6.0.0. After investigating the

source code of the version 6.0.0, we find that the missing API

is moved from the class PhraseQuery to its inner class Builder.

Third, for 108 (14.6%) of the 738 missing APIs, their replace-

ments can be found in related external libraries. Specifically, the

replacements are found in the library with the same vendor (i.e.,

vendor library) for 45 missing APIs, the library that is declared

as a direct dependency (i.e., dependency library) for 29 missing

APIs, the library that provides a similar API to the missing API

(i.e., similar library) for 18 missing APIs, and the JDK library

for 16 missing APIs.

Example 2.3: In the third example in Table I, the API locates

in the version 3.0.3 of the library lucene-core, but is missing in

the version 4.0.0. It turns out that the lucene project evolves into

a multiple module project, and it reorganizes its modules after

the version 3.0.3. As a result, the API, originally a part of the

module corresponding to the library lucene-core, is moved into

another module corresponding to the library lucene-analyzer-
common that shares the same vendor.

Example 2.4: In the fourth example in Table I, the library

TABLE II. Code Change between Missing APIs and their Replacements

Code Change Change Level Change Action Deprecation Message Own Library External Library None

Refactoring

Class
Move Class - 71 56 -
Rename Class 15 62 - -

Method

Pull Up Method 46 62 39 -
Push Down Method - 5 - -
Change Method Signature 8 89 3 -
Move Method 3 16 - -

Substitution
Class

Substitute by Method with Different
Name from Another Class

18 - - -

Substitute by Method with Same
Name from Another Class

8 - - -

Method
Substitute by Method with Different
Name from Own Class

- 5 - -

Deletion
Class Delete Class - - - 33

Method Delete Method - - - 67
Composition NA NA 2 65 10 -

joda-time is used by the library elasticsearch by copy-and-

paste in the version 1.7.1; i.e., the source code of joda-time is

directly included in the packages of elasticsearch. However, in

the version 2.0.0, the source code of joda-time has already been

removed from elasticsearch, which introduces the missing API.

elasticsearch declares joda-time as a direct dependency as it

itself also uses the APIs in joda-time.
Example 2.5: The fifth example in Table I is similar to Exam-

ple 2.4. The library trove is used by the library elasticsearch by

copy-and-paste in the version 0.20.6. However, in the version

1.2.1, the source code of trove has already been removed from

elasticsearch, which introduces the missing API. The difference

from Example 2.4 is that elasticsearch does not declare trove
as a direct dependency after removing the source code of trove.

Example 2.6: The sixth example in Table I shows that the API

jsoup.select.Elements.contains(Object) in the old version 1.7.2

of library jsoup is missing in the new version 1.13.1. It turns out

that the class Elements in the old version 1.7.2 inherits the

class ArrayList in the JDK library, and overrides the method

contains(Object). However, in the new version 1.7.2, the method

contains(Object) is removed but the inheritance still exists, and

thus the replacement API is the method contains(Object) in

the class ArrayList in the JDK library.
Finally, of the remaining 155 missing APIs, 100 (13.6%)

missing APIs have no replacement; i.e., these missing APIs are

simply removed. Here we take a conservative approach to con-

clude that a missing API has no replacement. We first use the

previous three sources to check whether we can find a replace-

ment. If not, we then look for clear evidences of no replacement;

e.g., deprecation message and release note that clearly say the

removal of a functionality, and the functionality of the missing

API is inlined in other methods. Still, we fail to find replacement

for 55 missing APIs but cannot conclude no replacement.
Example 2.7: The last example in Table I shows that the API

org.apache.solr.client.solrj.util.ClientUtils.toSolrInputDocu-
ment(SolrDocument) in the old version 4.10.4 of the library

solr-solrj is missing in the new version 6.6.2. The deprecation

message clearly says that “this method will be removed in

Solr 6.0”, and we make the conclusion of no replacement.

E. Change Analysis (RQ3)
We categorize three basic code changes from missing APIs to

their replacements, i.e., refactoring, substitution and deletion,

and a composition of these basic code changes. Table II reports

a detailed categorization and its correlation to the sources

discussed in Sec. II-D. Here, we denote the old library version

as lo, the missing API as mo, the residing class of mo in lo
as co, the replacement API as mn, the residing class of mn

as cn, and the residing library of mn as ln.

The first category is refactoring, covering 475 (64.4%) of

the missing APIs. If mn does not reside in lo, we consider the

change from mo to mn as refactoring. Specifically, as shown

in the second column, refactoring can be conducted at two

different levels. At the class level, co can be moved into a dif-

ferent package in ln, while mn is the same to mo except for

the residing package name. co can be renamed in ln, while mn

is the same to mo except for the residing class name. At the

method level, mo can be pushed up or pushed down along

the inheritance tree. The signature of mo can be changed in

ln, including its return type, method name and parameter type.

mo can also be move into a different class in ln.

The second category is substitution, covering 31 (4.2%) of

the missing APIs. Substitution means that there exists another

API that can do the similar job to the missing API. Both

APIs can co-exist and later the missing API is deprecated and

finally removed. Thus, if mn also resides in lo, we consider

the change from mo to mn as substitution. In particular, as

shown in the second column, substitution can be conducted at

two different levels. At the class level, mo can be substituted

by a method from another class, either with the same method

name or a different method name. At the method level, mo

can be substituted by a different method from its own class.

The third category is deletion, covering 100 (13.6%) of the

missing APIs, which means there is no need in the functionali-

ties the API provides and the library developer simply removes

it in the new library version. Thus, only the 100 missing APIs

we conclude no replacement (i.e., the last column in Table II)

belong to this category. As shown in the second column,

deletion can be conducted at two different levels. At the class

level, co can be deleted and thus mo in co is also deleted. At

the method level, mo can be deleted while co still exists.

Apart from these basic code changes, there are more complex

code changes, which are a composition of the three basic code

changes. For example, the signature of mo can be changed in

ln, and then the method is pushed up into its super class; or

TABLE III. Examples of Missing APIs and Their Replacements with Various Cardinality

No. Library
Version
Update

Missing API Replacement APIs

1
redis.clients
jedis

2.2.1
2.5.1

redis.clients.jedis.
JedisPoolConfig.setMaxActive(int)

org.apache.commons.pool2.impl.GenericObjectPoolConfig.setMaxTotal(int)
org.apache.commons.pool2.impl.GenericObjectPoolConfig.setMaxIdle(int)

2
org.apache.lucene
lucene-core

3.0.3
4.0.0

org.apache.lucene.document.
NumericField.setIntValue(int)

org.apache.lucene.document.IntField.setIntValue(int)
org.apache.lucene.document.LongField.setIntValue(int)
org.apache.lucene.document.FloatField.setIntValue(int)
org.apache.lucene.document.DoubleField.setIntValue(int)

3
org.apache.lucene
lucene-core

2.9.3
3.5.0

org.apache.lucene.search.
Hits.iterator()

org.apache.lucene.search.IndexSearcher.search(Query, int)
org.apache.lucene.search.ScoreDoc.doc
org.apache.lucene.search.IndexSearcher.doc(int)

co is moved into a different package in ln, while the signature

of mo is changed. This category accounts for a total of 77

(10.4%) missing APIs.

F. Cardinality Analysis (RQ4)

From the 583 missing APIs that we find replacements, we

categorize five types of mapping cardinality, i.e., one-to-one,

one-to-many, one-to-some, many-to-one and many-to-many. We

observe that most of the missing APIs (531, 91.1%) have a one-

to-one mapping to their replacements. The first six examples in

Table I belong to this category. Besides, 26, 6, 4 and 16 missing

APIs have a one-to-many, one-to-some, many-to-one and many-

to-many mapping to their replacements. Here, one-to-some

mapping means the missing API has more than one replacement,

and which one to use depends on the API usage context.

Example 2.8: The first example in Table I shows an example

of one-to-many mapping. The missing API sets the field max-
Active. Its two replacements respectively set the field maxTotal
and maxIdle. As maxTotal - maxIdle equals maxActive, the

missing API can be replaced by the two replacements together.

Example 2.9: The second example in Table I shows an exam-

ple of one-to-some mapping. The missing API belongs to the

class NumericField, which is later replaced by specific classes

IntField, LongField, FloatField and DoubleField. Depending

on the type of numeric field used, the missing API can be

replaced by the API from one of the four classes.

Example 2.10: The third example in Table I shows an exam-

ple of many-to-many mapping. The missing API is the method

iterator() from the class Hits, which is often used in the scenario

to iterate over all hits for a search query and get the document

for each hit. However, in the version 3.5.0, lucene-core provides

another set of APIs to realize this scenario. Therefore, these

APIs, often used together, should be replaced together.

G. Insights

From our study results, we have several insights. I1: tools are

needed to help developers find replacement APIs for missing

APIs in library update, as missing APIs are prevalent, especially

in major version updates. I2: multiple sources should be lever-

aged together to find replacements for missing APIs, as a single

source alone usually fails to find replacements for all missing

APIs. I3: replacement APIs can be found by searching depre-

cation message in JavaDoc or searching similar methods in the

own library or some external libraries, as missing APIs might

have deprecation message to indicate their replacements, and

are often refactored or substituted into a similar method in the

Searching
Deprecation

Message

Searching
Own

Library

Searching
External
Library

Library
Database

Replacement
APIs

Missing
API

Library
Update

Fig. 2. Approach Overview of REPFINDER

own library or some external libraries. I5: it is still useful to

only find one-to-one mapping for missing APIs, as most missing

APIs have a one-to-one mapping to their replacements.

III. OUR APPROACH

Based on the insights from our study, we propose a heuristic-

based approach, named REPFINDER, to automatically find re-

placements for missing APIs in library update. As shown in

Fig. 2, it takes as inputs a library update (i.e., an old library ver-

sion lo before the update and a new library version ln after the

update) and a missing API mo that is resides in lo but is missing

in ln, and returns a set of replacement APIs M. REPFINDER

has three steps, i.e., parsing deprecation message, searching

own library and searching external library, to find M. Each

step leverages one of the three sources to heuristically find M.

REPFINDER has a library database, where the jar file, JavaDoc

file and POM file for all library releases and JDK libraries are

stored. We have a pipeline to regularly crawl them from Maven.

To ease the approach presentation, we formally define two

terms. A library version l is denoted as a three-tuple 〈group,
artifact, version〉, where group and artifact denote the ven-

dor and name of the library, and version denotes the version

number of the library. An API, which is considered as a public

method in a public class in this work, is denoted as a six-tuple

〈lib, pkg, cls, ret, name, param〉, where lib, pkg and cls de-

note its residing library version, package and class, ret denotes

its return type, name denotes its method name, and param de-

notes a list of its parameter types.

A. Searching Deprecation Message

Given lo, ln and mo, the first step of REPFINDER is to find re-

placement APIs by searching deprecation message. As depreca-

tion often follows a deprecate-replace-remove cycle, mo might

be deprecated in a library version before ln. Thus, REPFINDER

first retrieves a sorted list of the JavaDoc files for all the library

versions from lo to ln, denoted as D, from our library database.

As revealed by our empirical study, a deprecation message may

use a hyper link or a text to indicate the replacements. Besides,

there is no deprecation message for mo if mo.cls is deprecated

P1. Use [the] text
P2. Use [the] <code>text</code>
P3. Use [the] text [instead]
P4. Replaced [by][with] text
P5. Replaced [by][with] text
P6. In favor of text
P7. In favor of text
P8. Rename to text
P9. Rename to text
P10. Call text
P11. Move to [the] text
P12. [may][will] be removed

Fig. 3. Matching Patterns for Deprecation Message

as a whole. Thus, REPFINDER then iterates over D in a reverse

order to search deprecation messages with following heuristics.

• Method Deprecation with Link. REPFINDER analyzes the dep-

recation message by matching patterns in Fig. 3 summarized

through our empirical study. If a pattern is matched, it extracts

the hyper link of the replacement APIs and resolves their pkg,

cls, ret, name and param from the documentation.

• Method Deprecation with Text. REPFINDER extracts the tex-

tual information (e.g., cls, name and param) about the re-

placement APIs by matching patterns in Fig. 3. If matched, it

uses the textual information to validate the existence of the re-

placement APIs in JavaDoc. If validated, it resolves their pkg,

cls, ret, name and param from their documentation.

• Class Deprecation with Link. REPFINDER extracts the hyper

link of the replacement class of mo.cls by matching patterns

in Fig. 3. If matched, it identifies the replacement API whose

method name equals to mo.name and whose parameter types

equal to mo.param. If identified, it resolves its pkg, cls, ret,
name and param from the documentation.

• Class Deprecation with Text. REPFINDER extracts the name

of the replacement class of mo.cls by matching patterns in

Fig. 3. If matched, it validates the existence of the replace-

ment class in JavaDoc. If validated, it finds the replacement

API whose method name equals to mo.name and whose pa-

rameter types equal to mo.param. If found, it resolves its

pkg, cls, ret, name and param from the documentation.

It is worth mentioning that i) we use exact matching to find re-

placement classes and APIs to improve the accuracy; ii) we may

find multiple replacement APIs as the method deprecation mes-

sage might list multiple replacement APIs; and iii) once the last

pattern in Fig. 3 is matched, we conclude no replacement.

Finally, REPFINDER validates whether the replacement APIs

exist in ln by searching the JavaDoc file of ln because the re-

placement APIs might be resolved from the JavaDoc file of a

library version before ln. If validated, REPFINDER resolves the

lib, puts the replacement APIs to M, and returns M. If not,

REPFINDER continues to the next two steps.

B. Searching Own Library

Given lo, ln and mo, the second step of REPFINDER is to find

the replacement API by searching ln. REPFINDER retrieves the

jar file of ln from our library database and finds the replacement

API by sequentially applying following heuristics. Our idea is to

first find the API with identical name in super or similar classes

as mo may be moved to such classes (see Table II), and then

find the API with similar name in super or similar classes as

mo may be moved to such classes and changed (see Table II).

• Search Identical API in Super Classes. REPFINDER checks

whether mo.cls exists in ln. If yes, it analyzes mo.cls to ob-

tain its parent class and grant parent class. Here, we empiri-

cally only track two super classes based on observations from

our empirical study. Then, it checks whether each super class

exists in ln. If yes, it analyzes the super class in ln to find the

replacement API whose name equals to mo.name and whose

parameter types equal to mo.param. If found, it puts the

replacement API to M and returns M. Notice that if we find

the replacement API from both its parent class and grant par-

ent class, we use the replacement API from its parent class.

• Search Identical API in Similar Classes. REPFINDER checks

whether mo.pkg exists in ln. If yes, it iterates over each class

cls under mo.pkg in ln to compute the distance from cls to

mo.cls by tokenizing class name according to camel case and

changing plurals into singles before applying Levenshtein dis-

tance [52]. For the classes that are similar to mo.cls (i.e., the

class distance is smaller than thc), it analyzes the class from

the smallest class distance to the largest class distance to find

the replacement API whose name equals to mo.name and

whose parameter types equal to mo.param. Once it finds the

replacement API, it puts it to M and returns M. Besides, if

mo.pkg does not exist in ln, it searches across all packages

in ln in the same way to the above procedure.

• Search Similar API in Super Classes. This heuristic shares the

same procedure to the first heuristic except that it finds the re-

placement API that is similar but not identical to mo. To this

end, we borrow the distance metric from Nguyen et al.’s work

[59], which is computed as a weighted sum of the distances of

return types, method names and parameter types, as shown in

Eq. 1, where dis() computes the Levenshtein distance [52].

dis(mo,mn) = 0.25 ∗ dis(mo.ret,mn.ret)

+ 0.50 ∗ dis(mo.name,mn.name)

+ 0.25 ∗ dis(mo.param,mn.param)

(1)

For the APIs whose distance to mo is smaller than th1
m, it se-

lects the API with the smallest distance as the candidate API,

which will be finally determined in the last step.

• Search Similar API in Similar Classes. This heuristic has the

same procedure to the second heuristic except that it finds the

replacement API that is similar but not identical to mo. Thus,

it applies the same distance metric to the third heuristic to find

candidate API except that a different threshold th2
m is used.

C. Searching External Library

Given lo, ln, mo and the candidate API, the last step of

REPFINDER is triggered only when REPFINDER does not find

the replacement APIs or only finds the candidate API in the

previous steps. Our idea is to find the API with identical name

in super or identical classes in some external libraries as mo

may be moved to such classes (see Table II).

To this end, it first collects four lists of external libraries, re-

spectively for JDK library, dependency library, vendor library

and similar library (see Sec. II-D). Specifically, it retrieves the

jar file of a specific JDK library version, which can be config-

ured by users as they often know the JDK library version their

projects use, from our library database, and puts it to Lj . Be-

sides, it retrieves the POM file of ln, uses the method in Wang

et al. [86] to parse the POM file for a list of direct library depen-

dencies of ln, retrieves their jar file from our library database,

and puts them to Ld. Further, it queries our library database for

all the libraries with the same group to lo.group but a different

artifact to lo.artifact. For each of such vendor libraries, it

selects the same version number to ln.version if exists; other-

wise, it selects the version number whose release date is no later

than ln but is closest to ln, and then retrieves its jar file from

our library database and puts it to Jv . Finally, it uses tokens in

mo.pkg, mo.cls and mo.name to query our library database,

which is indexed with libraries’ group and artifact, selects the

top ten hits as similar libraries, selects their version number

whose release date is no later than ln but is closest to ln, and

puts their jar files to Js.

Then, REPFINDER sequentially iterates over the four types

of external libraries Lj , Ld, Lv and Ls to find the replacement

API. This order is inspired by our empirical study as Lj has the

highest possibility to provide the replacement while Ls has the

lowest possibility. Once a replacement API is found during the

iteration, REPFINDER returns it. Only if no replacement API is

found in these external libraries, REPFINDER returns the candi-

date API as the replacement. REPFINDER uses following two

heuristics to find the replacement in an external library le.

• Search Identical API in Super Classes. This heuristic has the

same procedure as the first heuristic in Sec. III-B except that

it checks whether each super class exists in le but not ln, and

if yes, it finds the identical API in the super class in le.

• Search Identical API in Identical Classes. This heuristic is

similar to the second heuristic in Sec. III-B. It checks whether

mo.pkg exists in le. If yes, it iterates over each class cls un-

der mo.pkg in le to find the class whose name is identical to

mo.cls. If found, it analyzes the class to find the replacement

API whose name is identical to mo.name and whose pa-

rameter types are identical to mo.param. Once it finds the

replacement API, it puts it to M and returns M. Besides, if

mo.pkg does not exist in le, it searches across all packages

in le in the same way to the above procedure.

IV. EVALUATION

We have implemented a prototype of REPFINDER in 18.2K

lines of Java code, and released the source code at our website

https://repfinder.github.io/ with our experimental data set.

A. Evaluation Setup

To evaluate the effectiveness and efficiency of REPFINDER,

we designed our evaluation to answer four research questions.

• RQ5 Effectiveness Evaluation: How is the effectiveness of

REPFINDER, compared with state-of-the-art approaches?

TABLE IV. Effectiveness Comparison to State-of-the-Art

Approach TP FP FN Pre. Rec.

AURA 159 135 576 0.54 0.22
REFDIFF 201 18 534 0.92 0.27

REPFINDER 509 75 226 0.87 0.69

• RQ6 Efficiency Evaluation: How is the time overhead of

REPFINDER in finding replacement APIs?

• RQ7 Sensitivity Analysis: How is the sensitivity of each pa-

rameter in REPFINDER to the effectiveness of REPFINDER?

• RQ8 Application Analysis: How is effectiveness of apply-

ing REPFINDER to library update in real-life projects?

Data Set. We used the 683 missing APIs whose replacements

were found or considered as none in our study (see Sec. II) as

the data set for answering RQ5, RQ6 and RQ7; i.e., we did not

include the 55 uncertain missing APIs. Besides, to answer RQ8,

we used 32 GitHub Java projects to update their used libraries.

Comparison Approaches. For RQ5, we selected two state-

of-the-art approaches: i) AURA [89], which is a hybrid approach

that combines similarity-based and usage-based approaches. We

selected it because it achieved the best performance over previ-

ous approaches. ii) REFDIFF [75], which is the state-of-the-art

refactoring detection tool. Although REFDIFF is not designed to

find replacement APIs, we selected it because our study showed

that a large part of missing APIs were refactored into their re-

placement APIs. Notice that we failed to compare REPFINDER

with HIMA [50] which is another hybrid approach, as it requires

libraries to use SVN but now libraries seldom use SVN. AURA

and REFDIFF take as inputs two library versions, and detect all

API mappings or API refactorings between the two versions. To

align with our data set, we filtered their results to check whether

they found the replacements for the missing API in our data set.

Evaluation Metrics. We used precision and recall as the in-

dicator of effectiveness as they were widely used in prior work.

For the ease of computation for precision and recall, similar to

AURA [89], we converted a one-to-many mapping as many one-

to-one mappings, a one-to-some mapping as a one-to-one map-

ping (i.e., we treated finding one of the some replacements as

correct), and a many-to-one mapping as a one-to-one mapping

and a many-to-many mapping as many one-to-one mappings

(i.e., we only targeted the missing API). Due to such conversion,

we had 735 mappings to find for 683 missing APIs.

B. Effectiveness Evaluation (RQ5)

Table IV reports the overall results of AURA, REFDIFF and

REPFINDER with respect to true positive (TP), false positive

(FP), false negative (FN), precision (Pre.) and recall (Rec.). We

can see that REPFINDER significantly increased the number of

true positives and reduced the number of false negatives, and

thus significantly outperformed AURA and REFDIFF in recall

by 213.6% and 155.6%. However, REPFINDER had a higher

number of false positives than REFDIFF, resulting in a 5.4%

decrease in precision than REFDIFF; but REPFINDER had a

lower number of false positives than AURA, resulting in a 61.1%

increase in precision than AURA. Besides, although REFDIFF

was not originally designed for finding replacements, it achieved

the highest precision as it could accurately detect refactorings.

TABLE V. Effectiveness Comparison w.r.t. Sources

Source Num.
AURA REFDIFF REPFINDER

TP FP FN Pre. Rec. TP FP FN Pre. Rec. TP FP FN Pre. Rec.

Deprecation Message 111 11 9 100 0.55 0.10 51 1 60 0.98 0.46 94 15 17 0.86 0.85
Own Library 400 74 95 326 0.44 0.19 54 14 346 0.79 0.14 249 72 151 0.81 0.62

External Library 124 0 31 124 0.00 0.00 0 3 124 0.00 0.00 83 11 41 0.97 0.73
None 100 74 0 26 1.00 0.74 96 0 4 1.00 0.96 84 0 16 1.00 0.75

TABLE VI. Effectiveness Comparison w.r.t. Code Changes

Code Change Change Level Change Action Num.
AURA REFDIFF REPFINDER

Pre. Rec. Pre. Rec. Pre. Rec.

Refactoring

Class
Move Class 141 0.26 0.11 0.00 0.00 0.89 0.78
Rename Class 80 0.88 0.54 1.00 0.05 0.95 0.86

Method

Pull Up Method 147 0.33 0.10 0.87 0.53 0.99 0.95
Push Down Method 5 0.25 0.20 1.00 0.20 0.80 0.80
Change Method Signature 103 0.30 0.08 0.81 0.20 0.82 0.62
Move Method 28 0.00 0.00 0.00 0.00 0.50 0.18

Substitution
Class

Substitute by Method with Different
Name from Another Class

26 0.00 0.00 0.00 0.00 0.48 0.50

Substitute by Method with Same
Name from Another Class

8 0.00 0.00 1.00 0.13 0.89 1.00

Method
Substitute by Method with Different
Name from Own Class

5 0.00 0.00 0.00 0.00 0.25 0.20

Deletion
Class Delete Class 33 1.00 0.79 1.00 1.00 1.00 0.73

Method Delete Method 67 1.00 0.72 1.00 0.87 1.00 0.76
Composition NA NA 92 0.16 0.03 0.00 0.00 0.54 0.23

Moreover, Table V breaks down the effectiveness results ac-

cording to the sources where the replacements are found, where

the second column (i.e., Num.) reports the number of mappings

each approach should find (i.e., their sum should be 735). We

can observe that AURA and REFDIFF achieved 0 precision and

recall for missing APIs whose replacements were found in ex-

ternal libraries, while REPFINDER had a precision and recall of

0.97 and 0.73. It owes to the fact that AURA and REFDIFF are

designed to not use the source of external libraries. Besides, for

the source of deprecation message, AURA and REFDIFF could

still find some replacement APIs by using the libraries, but

REPFINDER achieved the highest recall by directly leveraging

the knowledge in deprecation message. For the source of own

library, REPFINDER achieved the highest precision and recall

as our heuristics are designed based on a deep understanding of

the characteristics of missing APIs and their replacements. For

the missing APIs with no replacement, REPFINDER had a lower

recall. These results demonstrate the importance of combining

different knowledge sources for finding replacements.

In addition, Table VI breaks down the effectiveness results ac-

cording to the code changes between missing APIs and their re-

placements. We can observe that for refactoring, REFDIFF had a

0 precision for move class and move method and a low recall,

because i) REFDIFF often works at the commit level but it may

work not well at the library version level due to the large amount

of changes between versions, and ii) replacements can be

in external libraries. AURA achieved low precision and re-

call across most change actions, because i) some missing

APIs have limited usages and ii) replacements can be in ex-

ternal libraries. Instead, REPFINDER achieved a balanced

precision and recall except for move method, because the

missing API can be moved into a class that has a dissimilar

name from its original residing class. For substitution, AURA

and REFDIFF almost failed to find replacements. REPFINDER

also achieved low precision and recall because the missing API

can be substituted by a dissimilar method (in a dissimilar class).

For deletion, REPFINDER had a lower recall than AURA and

REFDIFF because AURA and REFDIFF found no replacement

for a large number of missing APIs. For composition, all

approaches had low precision and recall, while REPFINDER

was the best. These results indicate that syntactic similarity

measures used in REPFINDER may not be good enough to find

replacement APIs, and some semantic similarity measures may

be designed to further improve REPFINDER.

REPFINDER significantly improved the state-of-the-art ap-

proaches in recall by up to 213.6%, while having a slight

decrease in precision by 5.4%. We believe a slight decrease

in precision is acceptable as recall increases satisfactorily.

C. Efficiency Evaluation (RQ6)

REPFINDER took 689 seconds for finding replacements for

683 missing APIs. On average, REPFINDER took about one

second to find the replacements for a missing API. We believe

the efficiency of REPFINDER is good, and it can be practically

used by developers. The good efficiency of REPFINDER owes to

the availability of a library database as well as our lightweight

design of heuristics. Notice that we did not compared the time

overhead of AURA and REFDIFF because they found all API

mappings or refactorings between two library versions.

REPFINDER took about one second to find the replace-

ments for a missing API, which was acceptable for prac-

tical usage by developers.

D. Sensitivity Analysis (RQ7)

Three thresholds, i.e., the class distance threshold thc and

two method distance thresholds th1
m and th2

m, are configurable

in the second step of REPFINDER (see Sec. III-B). The default

configuration is 2, 1.5 and 2, which is used in the experiment for

(a) thc (b) th1
m (c) th2

m

Fig. 4. Results of Parameter Sensitivity Analysis

TABLE VII. Code Change between Missing APIs and their Replacements

Code Change Change Level Change Action Deprecation Message Own Library External Library None

Refactoring

Class
Move Class - 5 50 -
Rename Class - 3 - -

Method

Pull Up Method 15 8 - -
Push Down Method - - - -
Change Method Signature 1 5 1 -
Move Method - - - -

Substitution
Class

Substitute by Method with Different
Name from Another Class

1 - 2 -

Substitute by Method with Same
Name from Another Class

4 1 - -

Method
Substitute by Method with Different
Name from Own Class

1 - - -

Deletion
Class Delete Class - - - -

Method Delete Method - - - 4
Composition NA NA - 1 - -

RQ5, RQ6 and RQ8. To evaluate their sensitivity to the effec-

tiveness of REPFINDER, we re-configured one threshold and

fixed the other two, and re-ran REPFINDER against our data set.

Specifically, thc was configured from 1 to 5 by a step of 1, and

th1
m and th2

m were configured from 0.5 to 5 by a step of 0.5.

Fig. 4 presents the impact of three thresholds on the precision

and recall of REPFINDER, where x-axis denotes the value of

threshold, and y-axis denotes the precision or recall. Overall, as

thc increased, the recall of REPFINDER first increased and then

stabilized, while its precision was almost stable. Thus, we be-

lieve 2.0 is a good value for thc. As th1
m increased, the

recall and precision of REPFINDER were first stable and then

decreased. Thus, we believe 1.5 is a good value for th1
m.

As th2
m increased, the recall of REPFINDER first greatly

increased and then slightly decreased, while its precision

slightly decreased. Hence, we believe 2 is a good value for th2
m.

Overall, the sensitivity of the configurable parameters to

the effectiveness of REPFINDER is acceptable.

E. Application Analysis (RQ8)

To apply REPFINDER to library update in real-life projects,

we initially selected 168 GitHub Java projects which had more

than 1000 stars and used Maven as the build tool. We analyzed

the library dependencies in these projects, and found that 121

projects used 690 outdated library versions. Here we set our

goal to update these outdated library versions to their latest

version. Thus, we analyzed library API usage in these projects,

and found that 59 outdated library versions in 33 projects had

105 used APIs missing in their latest version. Two of the authors

TABLE VIII. Effectiveness Comparison to State-of-the-Art

Approach TP FP FN Pre. Rec.

AURA 10 25 104 0.29 0.09
REFDIFF 29 5 85 0.85 0.25

REPFINDER 84 4 30 0.95 0.74

followed the same procedure to Sec. II-A to manually find the

replacements, but could not determine the replacements for 3

missing APIs. Hence, we ran REPFINDER against these 102

missing APIs, involving 57 outdated library versions in 32

projects. Notice that these 102 missing APIs had a overlap

of 6 missing APIs to our data set in RQ5. Moreover, we

also categorized code changes of these missing APIs to their

replacements in Table VII. Compared to the results in Table II,

three change actions, i.e., push down method, move method,

and delete class, were not covered, indicating a relatively good

representativity of this data set.

REPFINDER achieved a precision of 0.95 and a recall of 0.74

on the 114 mappings for these 102 missing APIs, which were

comparable to the results in RQ5, demonstrating the generality

of REPFINDER. Specifically, REPFINDER successfully found

replacements for all missing APIs for 21 (65.6%) projects,

for partial missing APIs for 7 (21.9%) projects, but for no

missing APIs for 4 (12.5%) projects. This result indicates that

REPFINDER can be effectively used in real-life projects.

Moreover, we also compared REPFINDER with AURA and

REFDIFF on this data set, as reported in Table VIII. While

REFDIFF and REPFINDER achieved similar performance when

compared to the results in Table IV, AURA had a performance

degradation. Besides, we also broke down the effectiveness

results on this data set according to the sources and code

TABLE IX. Effectiveness Comparison w.r.t. Sources

Source Num.
AURA REFDIFF REPFINDER

TP FP FN Pre. Rec. TP FP FN Pre. Rec. TP FP FN Pre. Rec.

Deprecation Message 22 0 12 22 0.00 0.00 18 1 4 0.95 0.82 21 1 1 0.96 1.00
Own Library 35 9 4 26 0.70 0.26 8 2 27 0.80 0.23 17 1 18 0.94 0.49

External Library 53 0 9 53 0.00 0.00 0 2 53 0.00 0.00 34 11 19 0.96 0.81
None 4 1 0 3 1.00 0.25 3 0 1 1.00 0.75 2 0 2 1.00 0.50

TABLE X. Effectiveness Comparison w.r.t. Code Changes

Code Change Change Level Change Action Num.
AURA REFDIFF REPFINDER

Pre. Rec. Pre. Rec. Pre. Rec.

Refactoring

Class
Move Class 55 0.40 0.07 0.00 0.00 0.96 0.87
Rename Class 3 0.00 0.00 1.00 0.67 1.00 1.00

Method

Pull Up Method 23 0.13 0.09 0.95 0.87 0.96 0.96
Push Down Method - - - - - - -
Change Method Signature 7 0.75 0.43 0.33 0.14 1.00 0.43
Move Method - - - - - - -

Substitution
Class

Substitute by Method with Different
Name from Another Class

3 0.00 0.00 0.00 0.00 1.00 0.33

Substitute by Method with Same
Name from Another Class

5 0.00 0.00 0.00 0.00 0.80 0.80

Method
Substitute by Method with Different
Name from Own Class

1 0.00 0.00 0.00 0.00 1.00 1.00

Deletion
Class Delete Class - - - - - - -

Method Delete Method 4 1.00 0.25 1.00 0.75 1.00 0.50
Composition NA NA 13 0.00 0.00 0.00 0.00 0.00 0.00

changes, as shown in Table IX and X. Compared to the results

in Table V and VI, most of the findings still hold. These results

further demonstrate the generality of REPFINDER.

REPFINDER effectively found replacements for all missing

APIs for 65.6% projects when all their outdated library

versions were updated to the latest version.

F. Discussion

Limitations. First, REPFINDER mainly supports one-to-one

mappings, and only provides partial support for one-to-many

and one-to-some mappings by searching deprecation messages.

We believe it is still useful as the majority of missing APIs have

a one-to-one mapping to their replacements. One potential way

to enhance REPFINDER is to consider the APIs called around

the missing API and its found replacement to determine the

possibility of a many-to-many mapping. Second, REPFINDER

does not achieve good performance when the replacement

API is dissimilar from the missing API or the residing class

of replacement API is dissimilar from the residing class of

missing API because REPFINDER only leverages syntactic

similarity measures. We plan to leverage semantic similarity

measures (e.g., code representation learning [1, 98]) to improve

REPFINDER. Third, REPFINDER is currently implemented for

the Java programming language. It is interesting to explore the

generality of REPFINDER to other programming languages.

Threats. The main threat to our empirical study and evalua-

tion is the manual construction of the replacements for missing

APIs. To mitigate the threat, two of the authors conducted an

independent analysis followed by a group discussion to make

conclusions about replacement APIs. Further, we also intention-

ally focused on missing APIs that were actually used in client

projects such that we could use the API usage information to

help conclude whether the replacement APIs identified by two

of the authors were correct or not.

V. RELATED WORK

We discuss the closely relevant work in five aspects, i.e., API

adaptation, API deprecation, API breaking, API evolution and

refactoring detection.

A. API Adaptation

A number of API adaptation approaches have been developed

to update usages of missing APIs in client projects to usages of

their replacement APIs for the ease of library update. To find the

mapping between a missing API and its replacement, Chow and

Notkin [13] and Nita and Notkin [60] designed method to allow

library developers to manually specify the mapping. Henkel and

Diwan [29] developed an IDE plugin to allow library developers

to record API refactoring actions and allow client developers to

replay them. These approaches often provide accurate mappings

due to the manual involvement of library developers. In practice,

however, such involvement is often not available, which hinders

the generalizability of these approaches. Godfrey and Zou [26]

proposed a semi-automated origin analysis using similarities of

name, declaration, complexity metrics and call dependencies. In-

spired by this approach, Kim et al. [37] extended the similarity

measures and automated Godfrey and Zou’s approach. Xing and

Stroulia [95] used a set of heuristics to infer replacement APIs

based on API changes identified from logical design models of

two library versions. These similarity-based approaches identify

replacement APIs from the source of the library itself but do not

consider other sources. Schäfer et al. [74] proposed to mine the

mapping from API usage changes in library’s instantiation code

(e.g., client projects), and Dagenais and Robillard [17, 18] tried

to mine the mapping from API usage changes in library’s own

code. These usage-based approaches heavily rely on API usages

in instantiation code or own code, and are practically infeasible

as API usages are often not rich (since library’s own code does

not call every API, and only a small portion of APIs are called

across client projects [86]). Wu et al. [89] combined similarity-

based and usage-based approaches, and considered the source of

libraries of the same vendor. Meng et al. [50] analyzed commit

message to infer the mapping in two consecutive commits and

confirmed the mapping by analyzing source code, expanded the

mapping in the similar way to similarity-based and usage-based

approaches, and aggregated the mapping across commits. These

hybrid approaches share similar limitations to similarity-based

and usage-based approaches. Cossette and Walker [15] reported

a retroactive study with five Java libraries to manually evaluate a

set of techniques. Lamothe and Shang [42] explored how docu-

mentation and commits could be leveraged to find the mapping

for Android APIs. Wu et al. [91] investigated how imperfect

mappings affected client developers in updating libraries. It is

worth mentioning that several approaches have been proposed

for finding API mappings across similar libraries (e.g., [78, 79])

and different programming languages (e.g., [10, 99]).

To update usages of a missing API in client projects to usages

of its replacement, several approaches have been proposed, e.g.,

by replacing calls to a deprecated API with its bodies [61], by

type constraint analysis [2], by heuristic rules [81, 94], and by

historical update examples [24, 43, 59, 80, 96]. Our approach

is orthogonal to these approaches.

B. API Deprecation

Various empirical studies have been conducted to understand

API deprecation in different programming languages. Zhou et

al. [100] found that the classic deprecate–replace–remove cycle

is often not followed as many APIs were removed without prior

deprecation, many deprecated APIs were un-deprecated later,

and many removed APIs are even resurrected. Some studies ex-

plored why developers deprecated APIs [53, 70, 71], e.g., avoid-

ing bad code practices, functional and security bugs, redundant

methods, merged into existing methods, and renaming methods.

These studies reveal the importance of reacting to API depreca-

tion. Otherwise, the quality or maintainability of client projects

might be hurt. However, some studies studied how developers

reacted to API deprecation [45, 68, 70, 72, 73, 84], and found

that deprecated APIs were still widely used due to reasons like

no suitable replacements and high update effort. Besides, some

studies investigated the quality of documentation for deprecated

APIs [8, 9, 38, 45, 58, 84]. They found that 67%, 78%, 67%,

53% and 78% of the APIs were deprecated with replacement

messages in Java, C#, JavaScript, Python and Android. Apart

from API documentation, we leverage other sources for finding

replacement APIs. Except for API deprecation, Cogo et al. [14]

analyzed how often and why package releases were deprecated

in npm, and how client packages adopted deprecated releases.

C. API Breaking

Many empirical studies have investigated API breaking to an-

alyze how and why developers break APIs [4, 5, 7, 35, 93], how

API breaking impacts client projects [67, 92], etc. Besides, sev-

eral advances have been made to detect API breaking. Theorem

proving [25, 27, 41, 47, 48] and symbolic execution [56, 82] are

used to detect behavioral API breaking, but suffer scalability is-

sues. To be scalable, testing techniques are used to dynamically

detect behavioral API breaking in Java [12, 28, 77], and heuris-

tics are applied to statically detect signature API breaking (e.g.,

changes to API signatures) in Java [6]. In JavaScript, testing

techniques are used to identify signature breaking [51, 55] and

behavioral breaking [57], and heuristics are used to detect both

signature and behavioral breaking [54]. Our approach is focused

on signature API breaking as there is no need to find replace-

ments for behavioral breaking APIs.

D. API Evolution

Several empirical studies have explored API evolution to un-

derstand how refactoring affects API evolution [22, 23, 36, 40],

how client developers react to API evolution [30, 31, 85], how

API stability is measured [49, 66], how Android API evolution

affects apps’ user ratings [3], how APIs are changed and used in

Apache and Eclipse [90], how API evolution triggers stack over-

flow discussions [46], how and why APIs are evolved [32], etc.

Our empirical study on missing APIs has a different goal than

these studies, and provides insights for our approach.

E. Refactoring Detection

Several refactoring detection approaches have been proposed,

e.g., REFDIFF [75], REPFINDER [65] and RMINER [83]. How-

ever, such tool cannot be directly applied to find replacement

APIs because they are mostly work at the commit level and

library version-level changes would be much more complex

than commit-level changes.

VI. CONCLUSIONS

In this paper, we have presented an empirical study to under-

stand the characteristics of missing APIs and their replacements.

Inspired by our study results, we have propose a heuristic-based

approach, named REPFINDER, to automatically find replace-

ments for missing APIs in library update. The key idea of

REPFINDER is to leverage multiple sources to find replace-

ments. Our evaluation has demonstrated that REPFINDER can

find replacement APIs effectively and efficiently, and signifi-

cantly outperformed the state-of-the-art approaches.

ACKNOWLEDGMENT

This work was supported by the National Natural Science

Foundation of China (Grant No. 61802067). Bihuan Chen is

the corresponding author of this paper.

REFERENCES

[1] M. Allamanis, E. T. Barr, P. Devanbu, and C. Sutton, “A survey of
machine learning for big code and naturalness,” ACM Computing
Surveys, vol. 51, no. 4, p. 81, 2018.

[2] I. Balaban, F. Tip, and R. Fuhrer, “Refactoring support for class library
migration,” in OOPSLA, 2005, pp. 265–279.

[3] G. Bavota, M. Linares-Vasquez, C. E. Bernal-Cardenas, M. Di Penta,
R. Oliveto, and D. Poshyvanyk, “The impact of api change-and fault-
proneness on the user ratings of android apps,” IEEE Transactions on
Software Engineering, vol. 41, no. 4, pp. 384–407, 2014.

[4] C. Bogart, C. Kästner, J. Herbsleb, and F. Thung, “How to break an api:
Cost negotiation and community values in three software ecosystems,”
in FSE, 2016, pp. 109–120.

[5] A. Brito, M. T. Valente, L. Xavier, and A. Hora, “You broke my code:
understanding the motivations for breaking changes in apis,” Empirical
Software Engineering, vol. 25, no. 2, pp. 1458–1492, 2020.

[6] A. Brito, L. Xavier, A. Hora, and M. T. Valente, “Apidiff: Detecting
api breaking changes,” in SANER, 2018, pp. 507–511.

[7] A. Brito, L. Xavier, A. Hora, and M. T. Valente, “Why and how java
developers break apis,” in SANER, 2018, pp. 255–265.

[8] G. Brito, A. Hora, M. T. Valente, and R. Robbes, “Do developers
deprecate apis with replacement messages? a large-scale analysis on
java systems,” in SANER, 2016, pp. 360–369.

[9] G. Brito, A. Hora, M. T. Valente, and R. Robbes, “On the use of
replacement messages in api deprecation: An empirical study,” Journal
of Systems and Software, vol. 137, pp. 306–321, 2018.

[10] N. D. Bui, Y. Yu, and L. Jiang, “Sar: learning cross-language api
mappings with little knowledge,” in ESEC/FSE, 2019, pp. 796–806.

[11] M. Cadariu, E. Bouwers, J. Visser, and A. van Deursen, “Tracking
known security vulnerabilities in proprietary software systems,” in
SANER, 2015, pp. 516–519.

[12] L. Chen, F. Hassan, X. Wang, and L. Zhang, “Taming behavioral
backward incompatibilities via cross-project testing and analysis,” in
ICSE, 2020, pp. 112–124.

[13] K. Chow and D. Notkin, “Semi-automatic update of applications in
response to library changes,” in ICSM, 1996, pp. 359–368.

[14] F. R. Cogo, G. A. Oliva, and A. E. Hassan, “Deprecation of packages
and releases in software ecosystems: A case study on npm,” IEEE
Transactions on Software Engineering, 2021.

[15] B. E. Cossette and R. J. Walker, “Seeking the ground truth: a retroactive
study on the evolution and migration of software libraries,” in FSE,
2012, p. 55.

[16] J. Cox, E. Bouwers, M. van Eekelen, and J. Visser, “Measuring
dependency freshness in software systems,” in ICSE, vol. 2, 2015,
pp. 109–118.

[17] B. Dagenais and M. P. Robillard, “Semdiff: Analysis and recommenda-
tion support for api evolution,” in ICSE, 2009, pp. 599–602.

[18] B. Dagenais and M. P. Robillard, “Recommending adaptive changes
for framework evolution,” ACM Transactions on Software Engineering
and Methodology, vol. 20, no. 4, p. 19, 2011.

[19] A. Decan, T. Mens, and M. Claes, “An empirical comparison of
dependency issues in oss packaging ecosystems,” in SANER, 2017,
pp. 2–12.

[20] A. Decan, T. Mens, and E. Constantinou, “On the impact of security
vulnerabilities in the npm package dependency network,” in MSR, 2018,
pp. 181–191.

[21] E. Derr, S. Bugiel, S. Fahl, Y. Acar, and M. Backes, “Keep me updated:
An empirical study of third-party library updatability on android,” in
CCS, 2017, pp. 2187–2200.

[22] D. Dig and R. Johnson, “The role of refactorings in api evolution,” in
ICSM, 2005, pp. 389–398.

[23] D. Dig and R. Johnson, “How do apis evolve? a story of refactoring,”
J. Softw. Maint. Evol., vol. 18, no. 2, pp. 83–107, 2006.

[24] M. Fazzini, Q. Xin, and A. Orso, “Automated api-usage update for
android apps,” in ISSTA, 2019, pp. 204–215.

[25] D. Felsing, S. Grebing, V. Klebanov, P. Rümmer, and M. Ulbrich,
“Automating regression verification,” in ASE, 2014, pp. 349–360.

[26] M. W. Godfrey and L. Zou, “Using origin analysis to detect merging
and splitting of source code entities,” IEEE Transactions on Software
Engineering, vol. 31, no. 2, pp. 166–181, 2005.

[27] B. Godlin and O. Strichman, “Regression verification: proving the
equivalence of similar programs,” Software Testing, Verification and
Reliability, vol. 23, no. 3, pp. 241–258, 2013.

[28] A. Gyori, O. Legunsen, F. Hariri, and D. Marinov, “Evaluating regression
test selection opportunities in a very large open-source ecosystem,” in
ISSRE, 2018, pp. 112–122.

[29] J. Henkel and A. Diwan, “Catchup! capturing and replaying refactorings
to support api evolution,” in ICSE, 2005, pp. 274–283.

[30] A. Hora, R. Robbes, N. Anquetil, A. Etien, S. Ducasse, and M. T.
Valente, “How do developers react to api evolution? the pharo ecosystem
case,” in ICSME, 2015, pp. 251–260.

[31] A. Hora, R. Robbes, M. T. Valente, N. Anquetil, A. Etien, and
S. Ducasse, “How do developers react to api evolution? a large-scale
empirical study,” Software Quality Journal, vol. 26, no. 1, pp. 161–191,
2018.

[32] D. Hou and X. Yao, “Exploring the intent behind api evolution: A case
study,” in WCRE, 2011, pp. 131–140.

[33] K. Huang, B. Chen, X. Peng, D. Zhou, Y. Wang, Y. Liu, and W. Zhao,
“Cldiff: Generating concise linked code differences,” in Proceedings of
the 33rd ACM/IEEE International Conference on Automated Software
Engineering, 2018, p. 679–690.

[34] K. Huang, B. Chen, B. Shi, Y. Wang, C. Xu, and X. Peng, “Interactive,
effort-aware library version harmonization,” in ESEC/FSE, 2020, pp.
518–529.

[35] K. Jezek, J. Dietrich, and P. Brada, “How java apis break–an empirical
study,” Information and Software Technology, vol. 65, pp. 129–146,
2015.

[36] M. Kim, D. Cai, and S. Kim, “An empirical investigation into the role
of api-level refactorings during software evolution,” in ICSE, 2011, pp.
151–160.

[37] S. Kim, K. Pan, and E. J. Whitehead, “When functions change their
names: Automatic detection of origin relationships,” in WCRE, 2005,
pp. 10–pp.

[38] D. Ko, K. Ma, S. Park, S. Kim, D. Kim, and Y. Le Traon, “Api
document quality for resolving deprecated apis,” in APSEC, vol. 2,
2014, pp. 27–30.

[39] R. G. Kula, D. M. German, A. Ouni, T. Ishio, and K. Inoue, “Do
developers update their library dependencies?” Empirical Software
Engineering, vol. 23, no. 1, pp. 384–417, 2018.

[40] R. G. Kula, A. Ouni, D. M. German, and K. Inoue, “An empirical study
on the impact of refactoring activities on evolving client-used apis,”
Information and Software Technology, vol. 93, pp. 186–199, 2018.

[41] S. K. Lahiri, C. Hawblitzel, M. Kawaguchi, and H. Rebêlo, “Symdiff:
A language-agnostic semantic diff tool for imperative programs,” in
CAV, 2012, pp. 712–717.

[42] M. Lamothe and W. Shang, “Exploring the use of automated api
migrating techniques in practice: An experience report on android,”
in MSR, 2018, pp. 503–514.

[43] M. Lamothe, W. Shang, and T.-H. P. Chen, “A3: Assisting android
api migrations using code examples,” IEEE Transactions on Software
Engineering, 2020.

[44] T. Lauinger, A. Chaabane, S. Arshad, W. Robertson, C. Wilson, and
E. Kirda, “Thou shalt not depend on me: Analysing the use of outdated
javascript libraries on the web,” in NDSS, 2017.

[45] L. Li, J. Gao, T. F. Bissyandé, L. Ma, X. Xia, and J. Klein, “Cda: Char-
acterising deprecated android apis,” Empirical Software Engineering,
vol. 25, no. 3, pp. 2058–2098, 2020.

[46] M. Linares-Vásquez, G. Bavota, M. Di Penta, R. Oliveto, and D. Poshy-
vanyk, “How do api changes trigger stack overflow discussions? a study
on the android sdk,” in ICPC, 2014, pp. 83–94.

[47] S. McCamant and M. D. Ernst, “Predicting problems caused by
component upgrades,” in ESEC/FSE, 2003, pp. 287–296.

[48] S. McCamant and M. D. Ernst, “Early identification of incompatibilities
in multi-component upgrades,” in ECOOP, 2004, pp. 440–464.

[49] T. McDonnell, B. Ray, and M. Kim, “An empirical study of api stability
and adoption in the android ecosystem,” in ICSM, 2013, pp. 70–79.

[50] S. Meng, X. Wang, L. Zhang, and H. Mei, “A history-based matching
approach to identification of framework evolution,” in ICSE, 2012, pp.
353–363.

[51] G. Mezzetti, A. Møller, and M. T. Torp, “Type regression testing to
detect breaking changes in node. js libraries,” in ECOOP, 2018.

[52] F. P. Miller, A. F. Vandome, and J. McBrewster, Levenshtein Distance:
Information Theory, Computer Science, String (Computer Science),
String Metric, Damerau?Levenshtein Distance, Spell Checker, Hamming
Distance. Alpha Press, 2009.

[53] A. Mirian, N. Bhagat, C. Sadowski, A. P. Felt, S. Savage, and G. M.
Voelker, “Web feature deprecation: a case study for chrome,” in ICSE-
SEIP, 2019, pp. 302–311.

[54] A. Møller, B. B. Nielsen, and M. T. Torp, “Detecting locations in
javascript programs affected by breaking library changes,” in OOPSLA,
2020, pp. 1–25.

[55] A. Møller and M. T. Torp, “Model-based testing of breaking changes
in node. js libraries,” in ESEC/FSE, 2019, pp. 409–419.

[56] F. Mora, Y. Li, J. Rubin, and M. Chechik, “Client-specific equivalence
checking,” in ASE, 2018, pp. 441–451.

[57] S. Mujahid, R. Abdalkareem, E. Shihab, and S. McIntosh, “Using
others’ tests to identify breaking updates,” in MSR, 2020, pp. 466–476.

[58] R. Nascimento, A. Brito, A. Hora, and E. Figueiredo, “Javascript api
deprecation in the wild: A first assessment,” in SANER, 2020, pp.
567–571.

[59] H. A. Nguyen, T. T. Nguyen, G. Wilson Jr, A. T. Nguyen, M. Kim,

and T. N. Nguyen, “A graph-based approach to api usage adaptation,”
in OOPSLA, 2010, pp. 302–321.

[60] M. Nita and D. Notkin, “Using twinning to adapt programs to alternative
apis,” in ICSE, 2010, pp. 205–214.

[61] J. H. Perkins, “Automatically generating refactorings to support api
evolution,” in PASTE, 2005, pp. 111–114.

[62] H. Plate, S. E. Ponta, and A. Sabetta, “Impact assessment for vul-
nerabilities in open-source software libraries,” in ICSME, 2015, pp.
411–420.

[63] S. E. Ponta, H. Plate, and A. Sabetta, “Beyond metadata: Code-centric
and usage-based analysis of known vulnerabilities in open-source
software,” in ICSME, 2018, pp. 449–460.

[64] T. Preston-Werner, “Semantic versioning 2.0. 0,” http://semver. org,
2013.

[65] K. Prete, N. Rachatasumrit, N. Sudan, and M. Kim, “Template-based
reconstruction of complex refactorings,” in ICSM, 2010, pp. 1–10.

[66] S. Raemaekers, A. Van Deursen, and J. Visser, “Measuring software
library stability through historical version analysis,” in ICSM, 2012, pp.
378–387.

[67] S. Raemaekers, A. van Deursen, and J. Visser, “Semantic versioning
and impact of breaking changes in the maven repository,” Journal of
Systems and Software, vol. 129, pp. 140–158, 2017.

[68] R. Robbes, M. Lungu, and D. Röthlisberger, “How do developers react
to api deprecation? the case of a smalltalk ecosystem,” in FSE, 2012,
pp. 1–11.

[69] P. Salza, F. Palomba, D. Di Nucci, C. D’Uva, A. De Lucia, and
F. Ferrucci, “Do developers update third-party libraries in mobile apps?”
in ICPC, 2018, pp. 255–265.

[70] A. A. Sawant, M. Aniche, A. van Deursen, and A. Bacchelli, “Under-
standing developers’ needs on deprecation as a language feature,” in
ICSE, 2018, pp. 561–571.

[71] A. A. Sawant, G. Huang, G. Vilen, S. Stojkovski, and A. Bacchelli,
“Why are features deprecated? an investigation into the motivation
behind deprecation,” in ICSME, 2018, pp. 13–24.

[72] A. A. Sawant, R. Robbes, and A. Bacchelli, “On the reaction to
deprecation of 25,357 clients of 4+ 1 popular java apis,” in ICSME,
2016, pp. 400–410.

[73] A. A. Sawant, R. Robbes, and A. Bacchelli, “To react, or not to react:
Patterns of reaction to api deprecation,” Empirical Software Engineering,
vol. 24, no. 6, pp. 3824–3870, 2019.

[74] T. Schäfer, J. Jonas, and M. Mezini, “Mining framework usage changes
from instantiation code,” in ICSE, 2008, pp. 471–480.

[75] D. Silva, J. Silva, G. J. D. S. Santos, R. Terra, and M. T. O.
Valente, “Refdiff 2.0: A multi-language refactoring detection tool,”
IEEE Transactions on Software Engineering, 2020.

[76] N. Smith, D. van Bruggen, and F. Tomassetti, “Javaparser: Visited,”
Leanpub, oct. de, 2017.

[77] G. Soares, R. Gheyi, D. Serey, and T. Massoni, “Making program
refactoring safer,” IEEE software, vol. 27, no. 4, pp. 52–57, 2010.

[78] C. Teyton, J.-R. Falleri, and X. Blanc, “Mining library migration graphs,”
in WCRE, 2012, pp. 289–298.

[79] C. Teyton, J.-R. Falleri, and X. Blanc, “Automatic discovery of function
mappings between similar libraries,” in WCRE, 2013, pp. 192–201.

[80] F. Thung, S. A. Haryono, L. Serrano, G. Muller, J. Lawall, D. Lo, and
L. Jiang, “Automated deprecated-api usage update for android apps:
How far are we?” in SANER, 2020, pp. 602–611.

[81] F. Thung, H. J. Kang, L. Jiang, and D. Lo, “Towards generating
transformation rules without examples for android api replacement,” in
ICSME, 2019, pp. 213–217.

[82] A. Trostanetski, O. Grumberg, and D. Kroening, “Modular demand-
driven analysis of semantic difference for program versions,” in SAS,
2017, pp. 405–427.

[83] N. Tsantalis, M. Mansouri, L. Eshkevari, D. Mazinanian, and D. Dig,
“Accurate and efficient refactoring detection in commit history,” in ICSE,
2018, pp. 483–494.

[84] J. Wang, L. Li, K. Liu, and H. Cai, “Exploring how deprecated python
library apis are (not) handled,” in ESEC/FSE, 2020, pp. 233–244.

[85] S. Wang, I. Keivanloo, and Y. Zou, “How do developers react to restful
api evolution?” in ICSOC, 2014, pp. 245–259.

[86] Y. Wang, B. Chen, K. Huang, B. Shi, C. Xu, X. Peng, Y. Wu, and
Y. Liu, “An empirical study of usages, updates and risks of third-party
libraries in java projects,” in ICSME, 2020, pp. 35–45.

[87] Y. Wang, M. Wen, Y. Liu, Y. Wang, Z. Li, C. Wang, H. Yu, S.-C. Cheung,
C. Xu, and Z. Zhu, “Watchman: monitoring dependency conflicts for

python library ecosystem,” in ICSE, 2020, pp. 125–135.
[88] Y. Wang, M. Wen, Z. Liu, R. Wu, R. Wang, B. Yang, H. Yu, Z. Zhu,

and S.-C. Cheung, “Do the dependency conflicts in my project matter?”
in ESEC/FSE, 2018, pp. 319–330.

[89] W. Wu, Y.-G. Guéhéneuc, G. Antoniol, and M. Kim, “Aura: a hybrid
approach to identify framework evolution,” in ICSE, 2010, pp. 325–334.

[90] W. Wu, F. Khomh, B. Adams, Y.-G. Guéhéneuc, and G. Antoniol,
“An exploratory study of api changes and usages based on apache and
eclipse ecosystems,” Empirical Software Engineering, vol. 21, no. 6,
pp. 2366–2412, 2016.

[91] W. Wu, A. Serveaux, Y.-G. Guéhéneuc, and G. Antoniol, “The impact
of imperfect change rules on framework api evolution identification: an
empirical study,” Empirical Software Engineering, vol. 20, no. 4, pp.
1126–1158, 2015.

[92] L. Xavier, A. Brito, A. Hora, and M. T. Valente, “Historical and impact
analysis of api breaking changes: A large-scale study,” in SANER, 2017,
pp. 138–147.

[93] L. Xavier, A. Hora, and M. T. Valente, “Why do we break apis? first
answers from developers,” in SANER, 2017, pp. 392–396.

[94] Y. Xi, L. Shen, Y. Gui, and W. Zhao, “Migrating deprecated api to
documented replacement: Patterns and tool,” in Internetware, 2019, pp.
1–10.

[95] Z. Xing and E. Stroulia, “Api-evolution support with diff-catchup,” IEEE
Transactions on Software Engineering, vol. 33, no. 12, pp. 818–836,
2007.

[96] S. Xu, Z. Dong, and N. Meng, “Meditor: inference and application of
api migration edits,” in ICPC, 2019, pp. 335–346.

[97] A. Zerouali, E. Constantinou, T. Mens, G. Robles, and J. González-
Barahona, “An empirical analysis of technical lag in npm package
dependencies,” in ICSR, 2018, pp. 95–110.

[98] F. Zhang, B. Chen, R. Li, and X. Peng, “A hybrid code representation
learning approach for predicting method names,” Journal of Systems
and Software, vol. 180, 2021.

[99] W. Zheng, Q. Zhang, and M. Lyu, “Cross-library api recommendation
using web search engines,” in ESEC/FSE, 2011, pp. 480–483.

[100] J. Zhou and R. J. Walker, “Api deprecation: a retrospective analysis
and detection method for code examples on the web,” in FSE, 2016,
pp. 266–277.

[101] M. Zimmermann, C. Staicu, C. Tenny, and M. Pradel, “Small world
with high risks: A study of security threats in the npm ecosystem,” in
USENIX Security, 2019.

