
BuildFast: History-Aware Build Outcome Prediction for Fast
Feedback and Reduced Cost in Continuous Integration

Bihuan Chen
School of Computer Science and Shanghai

Key Laboratory of Data Science
Fudan University
Shanghai, China

Linlin Chen
School of Computer Science and Shanghai

Key Laboratory of Data Science
Fudan University
Shanghai, China

Chen Zhang
School of Computer Science and Shanghai

Key Laboratory of Data Science
Fudan University
Shanghai, China

Xin Peng
School of Computer Science and Shanghai

Key Laboratory of Data Science
Fudan University
Shanghai, China

ABSTRACT

Long build times in continuous integration (CI) can greatly increase
the cost in human and computing resources, and thus become a com-
mon barrier faced by software organizations adopting CI. Build out-
come prediction has been proposed as one of the remedies to reduce
such cost. However, the state-of-the-art approaches have a poor pre-
diction performance for failed builds, and are not designed for practi-
cal usage scenarios. To address the problems, we first conduct an em-
pirical study on 2,590,917 builds to characterize build times in real-
world projects, and a survey with 75 developers to understand their
perceptions about build outcome prediction. Then, motivated by our
study and survey results, we propose a new history-aware approach,
named BuildFast, to predict CI build outcomes cost-efficiently and
practically.We developmultiple failure-specific features from closely
related historical builds via analyzing build logs and changed files,
and propose an adaptive prediction model to switch between two
models based on the build outcome of the previous build. We inves-
tigate a practical online usage scenario of BuildFast, where builds
are predicted in chronological order, and measure the benefit from
correct predictions and the cost from incorrect predictions. Our
experiments on 20 projects have shown that BuildFast improved
the state-of-the-art by 47.5% in F1-score for failed builds.

CCS CONCEPTS

• Software and its engineering→ Maintaining software.
KEYWORDS

Continuous Integration, Build Failures, Failure Prediction
ACM Reference Format:

Bihuan Chen, Linlin Chen, Chen Zhang, and Xin Peng. 2020. BuildFast:
History-Aware Build Outcome Prediction for Fast Feedback and Reduced

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ASE ’20, September 21–25, 2020, Virtual Event, Australia

© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-6768-4/20/09. . . $15.00
https://doi.org/10.1145/3324884.3416616

Cost in Continuous Integration. In 35th IEEE/ACM International Conference

on Automated Software Engineering (ASE ’20), September 21–25, 2020, Virtual

Event, Australia. ACM, New York, NY, USA, 12 pages. https://doi.org/10.
1145/3324884.3416616

1 INTRODUCTION

Continuous integration (CI) is a software development practicewhere
developers are required to merge their code into a shared repository
frequently [15, 19]. Each integration is then verified through an au-
tomated build, including dependency installation, code compilation
and test case execution. CI brings multiple benefits to a software or-
ganization; e.g., it helps to find and fix integration errors earlier and
faster, improve developer productivity, improve product quality and
reduce development and delivery time [15, 27, 28, 52].

Apart from the benefits, CI can incur high costs [28]. In particular,
one of the well-recognized costs in CI is caused by the time duration
of a build (a.k.a. build time) [22, 28]. As reported by a recent study on
open-source projects, over 40% of the builds have a time duration of
over 30 minutes [22], which far exceeds the acceptable build time of
10 minutes [19, 27]. Such long build times greatly increase the cost
in human and computing resources, and hence become a common
barrier faced by software organizations adopting CI [27, 53].

On the one hand, developers need to wait for a long time to get in-
tegration feedback before they continue to work on the verified, lat-
est code base. As a result, developers lose focus and become less pro-
ductive, which hinders parallel development and overshadows the
benefits of CI. On the other hand, computing resources required for
running builds are usually in proportion to build times [42]. Hence, a
tremendous investment in computing resources (e.g., millions of
dollars in Google [28]) is needed to support slow builds.

To reduce such cost in CI, a number of techniques have been pro-
posed from different perspectives. One line of work is focused on de-
veloping test case prioritization techniques [9, 16, 36, 39, 60] and test
case selection techniques [41, 49] into CI in order tominimize test ex-
ecution times and speed up builds. Complementary to them, one line
of work attempts to skip specific builds (e.g., only having non-
source code changes) for saving their whole build times via man-
ual configurations [12, 13] or automated rule-based/learning-based
methods [3, 4]. More aggressively, build outcome prediction [18,
25, 26, 33, 44, 47, 56, 59] leverages machine learning techniques

https://doi.org/10.1145/3324884.3416616
https://doi.org/10.1145/3324884.3416616
https://doi.org/10.1145/3324884.3416616

ASE ’20, September 21–25, 2020, Virtual Event, Australia Bihuan Chen, Linlin Chen, Chen Zhang, and Xin Peng

to predict build outcomes such that the cost of the builds that are
predicted to pass can be reduced. As our empirical study reports
that over 70% of the builds are passed (Sec. 2.1), build outcome
prediction can potentially lead to high cost reduction.

Despite recent advances, build outcome prediction still suffers the
following problems, heavily hindering their practical adoption in CI.
First, failed builds have a poor prediction performance. Since passed
builds often account for a very large portion of all builds in a project,
existing techniques tend to predict builds as passed such that they can
still yield an overall good performance although they have a poor per-
formance on failed builds. However, failed builds, if incorrectly pre-
dicted, can incur high cost.More importantly, existing techniques fail
to utilize features that can better capture the characteristics of build
failures. Specifically, some techniques [25, 33, 47, 56] leverage social
and technical factors to learn predictionmodels without distinguish-
ing passed and failed builds. More recently, some techniques [26, 44]
try to leverage failure-specific features, but in a coarse-grained way
(e.g., failure ratio [44] and types of build failures [26]).

Second, practical usage scenarios are not well considered. As CI builds
arrive in chronological order, a build’s outcome should be predicted
based on a prediction model learned from its previous builds. Hence,
the performance of existing techniques obtained bywidely-used cross-
validation deviates the performance in practical online scenarios. Such
negative deviations have also been empirically reported [57]. More-
over, the cost from incorrect predictions and the benefit from correct
predictions are important indicators, which are closely relevant to
practical usage scenarios. However, without accounting for usage
scenarios, existing techniques only measure the prediction perfor-
mance, but do not systematically analyze the cost and benefit.

In this paper, we first conduct a large-scale empirical study, using
2,590,917 builds from 1,621 GitHub projects, to investigate the time
duration of CI builds. Our study is designed to characterize the sever-
ity of slow builds in practice and motivate the potential of build out-
come prediction. We also conduct an online survey with 75 develop-
ers to retrieve first-hand information about developers’ perceptions
of build outcome prediction. Our survey results reveal consistent
concerns with the above two problems of build outcome prediction.

Then, to address the two problems, we propose a history-aware ap-
proach, BuildFast, to predict CI build outcomes cost-efficiently and
practically. It can help to obtain fast integration feedback and reduce
integration cost. Specifically, to address the first problem, we design
multiple failure-specific features via digging deep into historical
builds, i.e., analyzing build logs and changed files from closely re-
lated historical builds.We also develop an adaptive predictionmodel
to switch between twomodels based on the outcome of the previous
build. These two models are separately trained, respectively using a
representative set of builds. To address the second problem, we in-
vestigate a practical online usage scenario of BuildFast, where the
builds are predicted in chronological order, to measure the benefit
from correct predictions and the cost from incorrect predictions.

To evaluate the effectiveness and efficiency of BuildFast, we com-
pared BuildFast with three state-of-the-art approaches [26, 44, 59]
on 20 Java open-source projects. Our evaluation results have demon-
strated that BuildFast can significantly improve the best of the state-
of-the-art approaches by 47.5% in F1-score for failed builds without
losing F1-score for passed builds. The benefit of BuildFast exceeds
its cost; and the average time overhead to predict a build is 1.3

seconds, which is practical. We also demonstrated the contribution
of each component in BuildFast to its effectiveness improvement.

In summary, this paper makes the following contributions.

• We conducted an empirical study to characterize build times in real-
world projects aswell as a developer survey to understand their per-
ceptions on build outcome prediction.

• Weproposed a history-aware approach, named BuildFast, to pre-
dict CI build outcomes cost-efficiently and practically.

• We conducted large-scale experiments on 20 open-source projects
to demonstrate the effectiveness and efficiency of BuildFast.

The rest of the paper is structured as follows. Section 2 presents
an empirical study of build times and a developer survey tomotivate
build outcome prediction. Section 3 introduces the proposed ap-
proach in detail. Section 4 evaluates the proposed approach. Sec-
tion 5 reviews related work before Section 6 draws conclusions.

2 MOTIVATION

In this section, we first present an empirical study of build times in a
large corpus of open-source projects and then report our surveywith
developers to better motivate build outcome prediction.

2.1 Build Time Study

Our empirical study of build times is focused on open-source projects
due to their publicly available build data.We start with the dataset pro-
posed by Zhang et al. [62], which contains the CI build history of 3,799
open-source Java projects hosted onGitHub. To the best of our knowl-
edge, this is the largest dataset of CI builds. To further ensure that the
projects use CI frequently, we exclude the projects that have less than
300 builds, which results in 1,621 projects with a total of 2,612,775
builds. In detail, 2,590,917 (99.2%) of themhave a build state of passed,
errored or failed. An errored or failed build is called a broken build.
The difference is that the error that causes an errored build occurs in
an earlier build phase than the error that causes a failed build. The re-
maining 21,858 (0.8%) of builds have uncommon states (i.e., canceled
and started), and thus are not considered in this study.

Using 2,590,917 builds from 1,621 projects, our study is designed to
answer the following three research questions.

RQ1: How long is the time duration of passed, errored and failed CI
builds across all the projects?

RQ2: How many passed, errored and failed CI builds can be con-
sidered as slow in each project?

RQ3: Howmuch build time is consumed by the passed, errored and
failed CI builds in each project?

InRQ1, we report the overall build time distribution respectively for
all passed, errored and failed builds in the 2,590,917 builds. InRQ2, we
measure for each project the ratio of slow builds among all passed, er-
rored and failed builds respectively, and report the ratio distribution
across all projects. Here, we regard a build as slow if it has a build time
ofmore than 10minutes, because the acceptable build time is 10min-
utes [19, 27]. Our results fromRQ1 andRQ2 aim to characterize the
generality and severity of the incurred high costs by build times, and
motivate the potential value of build outcome prediction in reducing
costs. InRQ3, we measure for each project the total build time of all
passed, errored and failed builds respectively, analyze its ratio to the

BuildFast: History-Aware Build Outcome Prediction for Fast

Feedback and Reduced Cost in Continuous Integration ASE ’20, September 21–25, 2020, Virtual Event, Australia

All Passed Errored Failed Failed and Errored
Build State

0

5

10

15

20

Bu
ild

 T
im

e
in

 L
og

ar
ith

m
ic

 S
ca

le
 (S

ec
on

d)

(a) Build Time

Passed Errored Failed Errored and Failed
Build State

0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

R
at

io
 o

f S
lo

w
 B

ui
ld

s
in

 a
 P

ro
je

ct
(b) Ratio of Slow Builds

Passed Errored Failed Errored and Failed
Build State

0.0

0.2

0.4

0.6

0.8

1.0

R
at

io
 o

f B
ui

ld
 T

im
e

in
 a

 P
ro

je
ct

(c) Ratio of Build Time

Figure 1: Distributions of Build Time, Ratio of Slow Builds and Ratio of Build Time w.r.t. Build States

total build time of all builds in each project, and report the ratio dis-
tribution across all projects. Our results from RQ3 aim to represent
the space of cost reduction that can be potentially explored by build
outcome prediction. It is alsoworthmentioning that, of the 2,590,917
builds, 72.2%, 10.5% and 17.3% are passed, errored and failed, respec-
tively. Only about one quarter of the builds are broken; and such im-
balance between passed and broken builds can challenge learning-
based build outcome prediction (as discussed in Sec. 1).

Overall BuildTime (RQ1). Fig. 1a gives the overall build time dis-
tribution for all builds, passed builds, errored builds, failed builds and
broken builds in violin plot in logarithmic scale. The three lines in each
plot respectively denote the upper quartile, themedian and the lower
quartile.We observe that themedian time duration of all builds is 9.3
minutes, which ismuch shorter than reported in a previous study [22]
(i.e., 20minutes). This large difference could be attributed to the small
dataset (i.e., 104,442 builds in 67 projects) of the previous study [22].
We also observe that passed, errored, failed and broken builds have a
median time duration of 9.4, 5.2, 10.5 and 8.9minutes respectively. Ex-
cept for errored builds, themedian time duration of passed, failed and
broken builds is very close to the acceptable 10-minute build time [19,
27], denoted by the blue line in Fig. 1a.More specifically, 47.7%, 40.7%,
51.4% and 47.4% of the passed, errored, failed and broken builds are
slow builds. Further, one quarter of the passed, errored, failed and bro-
ken builds have a time duration of over 22.3, 26.2, 30.2 and 28.9 min-
utes, while 8.1%, 12.6%, 14.1% and 13.5% of the passed, errored, failed
and broken builds even take more than an hour to run. These results
demonstrate that CI builds often take a moderately long time to run.
In that sense, developers need to wait for a moderately long time to
get the integration feedback, which incurs moderately high costs.

Ratio of SlowBuilds (RQ2). Fig. 1b shows the distribution of the
ratio of slow builds among passed, errored, failed and broken builds
across all projects in violin plot. Using the medians, we observe that
at least 15.2%, 13.3%, 9.1% and 12.6% of the passed, errored, failed and
broken builds are slow in half of the projects. 106 (6.5%) projects have
no slow build. At first glance, this result seems to be inconsistent
with the result in Fig. 1a (i.e., around half of the builds are slow). This
can be explained by the observation that projects with a larger lines
of code aremore likely to have a larger number of builds and a higher
ratio of slow builds, and the difference is statistically significant (i.e.,
p <0.0001 inWilcoxon Signed-Rank test). Moreover, using the upper
quartiles, we surprisingly observe thatmore than 61.9%, 40.0%, 46.7%
and 42.7% of the passed, errored, failed and broken builds are slow in

Table 1: Survey Questions

Q1 Are you a professional or part-time software developer?
Q2 How large is your company?
Q3 How many years of Java programming experience do you have?
Q4 How many projects have you worked on?
Q5 How many years of CI experience do you have?
Q6 How often does your team trigger CI builds of your projects?
Q7 Are CI builds of your projects time-consuming?

Q8 Would CI build outcome prediction techniques be useful for CI-
based software development?

Q9 Why would CI build outcome prediction be useful?
Q10 Why would CI build outcome prediction not be useful?

one quarter of the projects. These results indicate that slow builds are
a moderately common problem faced by developers adopting CI, es-
pecially in large-scale projects.

Ratio of Build Time (RQ3). Fig. 1c presents the distribution of
the ratio of build time consumed by the passed, errored, failed and bro-
ken builds across all projects in violin plot.We can observe thatmore
than 72.4%, 83.6% and 90.2% of the build time is consumed by passed
builds in 75%, 50% and 25% of the projects, whereas atmost 9.8%, 16.4%
and 27.6% of the build time is consumed by broken builds in 25%, 50%
and 75% of the projects. This is consistent with the imbalanced num-
ber of passed and broken builds. These results demonstrate that a
considerably large amount of time is spent in passed builds, which rep-
resents the optimal cost reduction that can be potentially achieved by
build outcome prediction (see Sec. 3.4 for a detailed discussion).

2.2 Developer Survey

Our online survey is designed for developers who participated in CI-
based software development. Therefore, we randomly select 15,000 de-
velopers from 57,939 developers who triggered CI builds in the 1,621
projects used in our empirical study.We send an email to each of the
15,000 developers to introduce the background on build outcome pre-
diction and invite them to take our online questionnaire survey. We
promise that their participation would remain confidential, and our
analysis and reporting would be based on aggregated responses. In
response to our invitation, 75 developers finished the questionnaire
within one week (i.e., a participation rate of 0.5%).

As reported in Table 1, our survey consists of 10 questions to learn
about all the participants’ professional background, CI usage, and

ASE ’20, September 21–25, 2020, Virtual Event, Australia Bihuan Chen, Linlin Chen, Chen Zhang, and Xin Peng

perceptions of build outcome prediction. The complete question-
naire with options is available at our website [2].

Professional Background (Q1-Q4). Of all participants, 93.3% are
professional developers, and only 6.7% are part-time developers. 45.3%
work in a company ofmore than 100 employees, 12.0%work in a com-
pany of 51 to 100 employees, and 42.7%work in a company of up to 50
employees. 42.7% have over 10 years of experience in Java program-
ming, 32.0% have 6 to 10 years, and 25.3% have up to 5 years. 58.7% have
participated in the development of more than 15 projects, 5.3% have
participated in 11 to 15 projects, and 36.0% have participated in up to
10 projects. We believe that the participants have considerably good
experience in parallel software development.

CIUsage (Q5-Q7). 16.0% of the participants have used CI for over
10 years, 41.3% and 34.7% have respectively used CI for 6 to 10 years
and 2 to 5 years, and only 8.0% have used CI for less than 2 years.With
respect to the build frequency, for 52.0% of the participants, their team
averagely triggers a CI build every hour, and for 34.7% of the partici-
pants, their team averagely triggers a CI build everyminute. 9.3% also
comment their team triggers a CI build for every commit.When asked
aboutwhether CI builds are time-consuming, 69.3% fully agree, while
26.7% clearly disagree and 4% are not sure.

Perception of Build Outcome Prediction (Q8-Q10). 48.0% of
the participants think that build outcome predictionwould be useful,
but 26.7% think that it would not be useful. 25.3% are not sure mostly
because it depends on how it works and how well it works. Further,
the participants report three major reasons for the usefulness, i.e.,
obtaining fast feedback of CI builds (61.3%), saving time overhead of
CI builds (50.7%), and accelerating software development (41.3%). On
the other hand, the participants also reveal fourmajor reasons for the
uselessness, i.e., lacking prediction performance (especially for failed
builds) (81.3%), delaying the discovery of bugs due to incorrect pre-
dictions (73.3%), lacking explainability (and hence developers do not
trust it) (48.0%), and increasing the difficulty of bug fixing due to in-
correct predictions (44.0%). Besides, around half of the participants
commented that CI builds had to be ran to obtain the build artifacts
that would be needed by other projects, especially for passed builds.

Insights. From our survey results, we believe that build outcome
prediction has its own potential merit for fast feedback and reduced
cost in CI. However, the prediction performance (especially for failed
builds) should be taken great care of, as a majority of the developers
have concerns on it. The cost and benefit of build outcome predic-
tion should be holistically investigated under a practical usage sce-
nario so that developers can have a holistic view rather than fearing
the cost and can have more trust to try build outcome prediction.

3 METHODOLOGY

In this section, we first present an overview of BuildFast, and then
elaborate each step of BuildFast in detail.

3.1 Overview

Our history-aware build outcome prediction approach usesmachine
learning techniques, and hence has two basic phases: training phase
and prediction phase. In the training phase, BuildFast first extracts
three sets of features for each build in a target project (i.e., feature ex-
traction in Sec. 3.2). Then, BuildFast trains a novel adaptive pre-
diction model with the extracted features from a set of builds (i.e.,

Table 2: Features about the Current Build

ID Feature Description
C1 src_churn # of lines of production code changed
C2 test_churn # of lines of test code changed
C3 src_ast_diff whether production code is changed in AST
C4 test_ast_diff whether test code is changed in AST
C5 line_added # of added lines in all files
C6 line_deleted # of deleted lines in all files
C7 files_added # of files added
C8 files_deleted # of files deleted
C9 files_modified # of files modified
C10 src_files # of production files changed
C11 test_files # of test files changed
C12 config_files # of build script files changed
C13 doc_files # of documentation files changed
C14 class_changed # of classes modified, added or deleted
C15 met_sig_modified # of method signatures modified
C16 met_body_modified # of method bodies modified
C17 met_changed # of methods added or deleted
C18 field_changed # of fields modified, added or deleted
C19 import_changed # of import statements added or deleted
C20 class_modified # of classes modified
C21 class_added # of classes added
C22 class_deleted # of classes deleted
C23 met_added # of methods added
C24 met_deleted # of methods deleted
C25 field_modified # of fields modified
C26 field_added # of fields added
C27 field_deleted # of fields deleted
C28 import_added # of import statements added
C29 import_deleted # of import statements deleted
C30 commits # of commits included
C31 fix_commits # of bug-fixing commits included
C32 merge_commits # of merge commits included
C33 committers # of unique committers
C34 by_core_member whether a core member triggers the build
C35 is_master whether the build occurs on master branch
C36 time_interval time interval since the previous build
C37 day_of_week day of week when the build starts
C38 time_of_day time of day when the build starts

prediction model generation in Sec. 3.3). In the prediction phase,
BuildFast extracts the same sets of features for a build under pre-
diction, and uses the trained model to predict its build outcome.
Moreover, we systematically explore a practical usage scenario of
BuildFast to measure the cost and benefit (i.e., cost-benefit analy-
sis in Sec. 3.4). Although currently implemented for Java projects
that use Travis as the CI service, BuildFast can be easily extended
to support other programming languages and other CI services by
providing specific implementations for feature extraction.

3.2 Feature Extraction

We survey the features adopted in the state-of-the-art approaches [26,
44, 45, 59], and find that their features aremostly directly taken from
the TravisTorrent database [7], which is a general-purpose database
but is not specialized for build outcome prediction. As a result, high-
level coarse-grained features are used without further digging deep

BuildFast: History-Aware Build Outcome Prediction for Fast

Feedback and Reduced Cost in Continuous Integration ASE ’20, September 21–25, 2020, Virtual Event, Australia

Table 3: Features about the Previous Build

ID Feature Description
P1 pr_state build state (i.e., passed, errored or failed)
P2 pr_compile_error whether compilation error occurs
P3 pr_test_exception whether tests throw exceptions
P4 pr_tests_ok # of tests passed
P5 pr_tests_fail # of tests failed
P6 pr_duration overall time duration of the build
P7 pr_src_churn # of lines of production code changed
P8 pr_test_churn # of lines of test code changed

into the characteristics about build failures. Therefore, we introduce
several fine-grained failure-specific features to enhance the existing
features based on a detailed analysis of build logs and changed files.
Build logs contain historical knowledge about previous build fail-
ures [30, 32, 46, 54] which can be learned to predict future build out-
comes, while how files are changed in a build can affect its build out-
come. In general, we derive the features of a build (i.e., the current
build) in three dimensions, i.e., features about the current build, fea-
tures about the previous build, and features about historical builds.

Features about the Current Build. As the build log of the cur-
rent build is unavailable (at prediction time), we derive the features
from file changes in the current build. Table 2 gives the features with
our new features in bold. C1–C6 represent line-level changes, where
C3 and C4 are newly derived to analyze changes at the level of ab-
stract syntax tree (AST) so that formatting changes (e.g., removing a
space) that will not fail a build are distinguished. C7–C13 denote file-
level changes by distinguishing various kinds of files. C14–C19 are
class-, method-, field- and import-level changes. However, they fail
to distinguish how a class, method, field and import is changed. For
example, a deleted class has a higher probability to cause a build fail-
ure than an added class because the deleted class might be used but
its usage is not accordingly updated. Hence, we derive new features
C20–C29 to distinguish modified, added and deleted classes, meth-
ods, fields and imports. C30–C33 denote commit-level knowledge.
As a build includes a set of commits, we introduce C31–C32 to distin-
guish the types of commits as bug-fixing andmerging commits have
a high probability to cause build failures due to potential incomplete
fix or merging conflict, and C33 to measure the degree of collabora-
tion in the current build as a high degree of collaboration might lead
to a high possibility of conflicts. Finally, C34–C38 represent the meta
data about the current build, i.e., who triggers the current build, and
where and when the current build is triggered. Here we introduce
C34 and C35 because core members may less likely to fail a build
and developers work more carefully on master branches.

Features about thePreviousBuild.As build failures often con-
secutively occur [26], the characteristics of the previous build often
serve as a good indicator. Table 3 reports the features about the pre-
vious build of the current build with our new features in bold. Specif-
ically, P1–P6 are derived from the build log of the previous build. We
introduce P4 and P5 to measure the degree of failure caused by test-
ing. Intuitively, a larger number of failed tests indicates a higher dif-
ficulty to fix the failed build, and thus a higher probability to have
a consecutive build failure. P6 measures the build time of the previ-
ous build. A longer build time indicates a higher complexity of the
code and thus a higher possibility to fail. P7 and P8 measure the

Table 4: Features about Historical Builds

ID Feature Description
H1 fail_ratio_pr % of broken builds in all the previous builds

H2 fail_ratio_pr_inc

increment of fail_ratio_pr at last broken build
to fail_ratio_pr at penultimate broken build

H3 fail_ratio_re % of broken builds in recent 5 builds

H4 fail_ratio_com_pr % of broken builds in all the previous builds
that were triggered by the current committer

H5 fail_ratio_com_re % of broken builds in recent 5 builds that were
triggered by the current committer

H6 last_fail_gap # of builds since the last broken build
H7 consec_fail_max maximum of # of consecutive broken builds
H8 consec_fail_avg average of # of consecutive broken builds
H9 consec_fail_sum sum of # of consecutive broken builds
H10 commits_on_files # of commits on the files in last 3 months

H11 file_fail_prob_max

maximum of the probability of each changed
file involved in previous broken builds

H12 file_fail_prob_avg

average of the probability of each changed file
involved in previous broken builds

H13 file_fail_prob_sum

sum of the probability of each changed file in-
volved in previous broken builds

H14 pr_src_files

of production files changed between the lat-
est passed build and the previous build

H15 pr_src_files_in

size of the intersection of src_files and
pr_src_files

H16 pr_test_files

of test files changed between the latest
passed build and the previous build

H17 pr_test_files_in

size of the intersection of test_files and
pr_test_files

H18 pr_config_files

of build script files changed between the lat-
est passed build and the previous build

H19 pr_config_files_in

size of the intersection of config_files and
pr_config_files

H20 pr_doc_files

of documentation files changed between the
latest passed build and the previous build

H21 pr_doc_files_in

size of the intersection of doc_files and
pr_doc_files

H22 log_src_files

of production files reported in the build log
of the previous build

H23 log_src_files_in

size of the intersection of log_src_files and
src_files

H24 log_test_files

of test files reported in the build log of the
previous build

H25 log_test_files_in

size of the intersection of log_test_files and
test_files

H26 team_size size of team contributing in last 3 months

degree of code changes in the previous build; and a high degree of
code changes may also increase the difficulty to fix the failed build.

Features about Historical Builds. Table 4 reports the features
about historical builds with our new features in bold. In particular,
H1–H5 represent statistics about previous broken builds by distin-
guishing all previous builds, the recent five builds, and all previous
builds and the recent five builds triggered by the committer of the
current build. Here we introduce H2 to measure the increment be-
tween the failure ratio at the last and penultimate broken build. A
positive value indicates an increasing trend in build failures. H6–H9
are newly introduced to model the distance to the last broken build,
and the number of historical consecutive broken builds. A larger

ASE ’20, September 21–25, 2020, Virtual Event, Australia Bihuan Chen, Linlin Chen, Chen Zhang, and Xin Peng

value of these features indicate a higher possibility of build failures.
H10–H25 are newly designed to measure the connection of the files
changed in the current build (hereafter referred to as current files for
the ease of presentation) to historical builds. In detail, H10 measures
the number of commits in the last three months that change the cur-
rent files. A high value of this feature denotes that the current build
changes frequently changed files. As frequently changed files often
have high potential of bugs [14], it is likely to fail the current build.
H11–H13 measure the probability that each current file is changed in
previous broken builds. The higher the value, the higher possibility
to fail the current build. H14, H16, H18 and H20 measure the number
of production, test, build script and documentation files changed
between the latest passed build and the previous build. If the previ-
ous build is broken, they actually measure the files changed in the
previous consecutive broken builds. Therefore, a higher value indi-
cates a higher difficulty to fix previous broken builds. H15, H17, H19
and H21 measure the intersection between the current files and the
changed files in previous consecutive broken builds. The smaller the
intersection, the lower possibility to fix previous broken builds. Sim-
ilarly, H22 and H24 measure the number of production and test files
reported in the build log of the previous build. Such files are listed in
build logs mostly due to exceptions in production and test files, and
hence indicate the potential root causes of exceptions. Therefore, a
higher value indicates a higher difficulty to fix exceptions. H23 and
H25 measure their intersection to current production and test files. A
smaller intersection indicates a lower possibility to fix exceptions.
H26 measures the degree of collaboration in the last three months.

Due to space limitation, we omit the implementation detail of fea-
ture extraction. The implementation and a detailed explanation of
each feature are available at our website [2].

3.3 Prediction Model Generation

Our predictionmodel is designed to have two characteristics, i.e., fea-
ture selection and adaptive model, to improve the performance.

Feature Selection.As shown in Table 2, 3 and 4, a total of 72 fea-
tures are introduced from three dimensions. Considering the poten-
tially different characteristics of different projects, we leverage fea-
ture selection methods [24] to automatically select the features that
contributemost to build outcome prediction for a specific project, in-
stead of manually determining a fixed set of features for all projects.
As will be discussed in our evaluation (see Sec. 4.4), different sets of
features are selected for different projects.

AdaptiveModel.Whether the previous build fails or passes has a
different impact on the development activities in the current build. If
the previous build fails, developers mainly conduct corrective or pre-
ventive activities during the current build. If the previous build passes,
developers mainly perform adaptive or perfective activities during
the current build. Thus, to learn such differences without confusing
the model, we separate our training dataset into two representative
datasets; i.e., the first dataset includes the builds whose previous
build fails and the second dataset includes the builds whose previous
build passes. However, both datasets still have imbalanced data for
passed and failed builds, which might hinder the prediction perfor-
mance for failed builds. To partially solve this problem, we include
all the failed builds into the two datasets without distinguishing the
build outcome of their previous build; i.e., we further include the

failed builds whose previous build passes into the first dataset, and
further include the failed builds whose previous build fails into the
second dataset. Based on these two datasets, we respectively train a
model to predict build outcomes. In this way, in the prediction phase,
if the build under prediction has a failed previous build, we use the
first model, and if the build under prediction has a passed previous
build, we use the second model.

3.4 Cost-Benefit Analysis

Practical usage scenarios have to be analyzed tomeasure the cost and
benefit of build outcome prediction. As CI builds arrive in chronolog-
ical order, build outcome has to be predicted in an onlineway in chrono-
logical order. Except for [18, 45, 59], all the existing approaches do not
predict in chronological order but in a cross-validation way (i.e., a
build may be predicted based on amodel learned from future builds).

Following this online scenario, build outcome prediction can be
used in two scenarios, depending on whether the predicted-to-pass
builds are ran or not. First, each build is actually ran. However, team
members and project managers could have more confidence to start
using the latest code base and conducting project plan without wait-
ing for the build to finish if it is predicted to pass. Hence, computing
resources are not reduced; but waiting times are reduced, promoting
parallel development and speeding up the release cycle. Second, the
predicted-to-fail builds are actually ran, while the predicted-to-pass
builds are skipped. Therefore, computing resources are also reduced.
In both scenarios, however, developers maywork on the buggy code
base and need to redo or roll back their work if the prediction is not
correct (i.e., predicted-to-pass builds actually fail). In the latter sce-
nario, those integration errors may accumulate for a long time with-
out timely correction, increasing the fixing efforts.

As indicated by our survey (see Sec. 2.2), developers havemore con-
cerns on the second aggressive usage scenario, e.g., delaying the dis-
covery of bugs due to incorrect predictions, increasing the difficulty
of bug fixing due to incorrect predictions, and requiring the build ar-
tifacts that would be needed by other projects. Therefore, we decide
to take the first conservative usage scenario. Under this scenario, the
benefit comes from the correct prediction for passed builds. Here we
use the build time of such builds as the indicator of the benefit. As we
do not directly pinpoint the root cause of build failures, we consider
no benefit from the correct prediction for failed builds. Correspond-
ingly, the cost comes from the incorrect prediction for failed builds.
Here we use the build time of such builds as the indicator of the cost,
and consider no cost from the incorrect prediction for passed builds
because developers would wait for the build to complete in the same
way as no build outcome prediction approach is used. Finally, we
define the gain as the difference between benefit and cost.

4 EVALUATION

Wehave implemented BuildFast in 13.1K lines of Python, Ruby and
Java code, using scikit-learn [1] for machine learning and ClDiff
[29] for code change analysis. We have released the code of Build-
Fast at our website [2] with the dataset used in our evaluation.

4.1 Evaluation Setup

To evaluate the effectiveness and efficiency of the proposed ap-
proach, we compared our approach with three state-of-the-art build

BuildFast: History-Aware Build Outcome Prediction for Fast

Feedback and Reduced Cost in Continuous Integration ASE ’20, September 21–25, 2020, Virtual Event, Australia

Table 5: Project Statistics

ID Project Creation
Date LOC Stars Passed

Builds
Failed
Builds

P1 HikariCP 2013-10 12.5K 6,091 1,388 158
P2 caelum/vraptor4 2013-05 26.6K 322 1,770 227
P3 Checkstyle 2013-08 210.7K 2,940 2,261 235
P4 Achilles 2012-11 48.3K 192 632 94
P5 DSpace 2012-03 172.9K 342 1,791 175
P6 jackson-databind 2011-12 114.1K 1,550 1,720 718
P7 Closure Compiler 2014-04 368.9K 4,017 1,972 171
P8 Graylog 2010-05 175.8K 4,046 5,736 828
P9 jOOQ 2011-04 181.6K 2,181 1,168 583
P10 Optiq 2012-08 141.7K 225 559 152
P11 Kill Bill 2012-10 169.5K 1,609 1,227 1,851
P12 lWicket-Bootstrap 2012-02 1.4K 284 621 695
P13 Vectorz 2012-09 53.5K 137 1,147 64
P14 MyBatis-3 2013-02 58.1K 6,659 824 71
P15 OWL API 2013-02 154.4K 296 1,149 223
P16 Pushy 2013-08 7.2K 759 732 116
P17 QuickML 2011-09 19.3K 218 625 314
P18 Retrofit 2010-09 20.4K 26,096 1,617 299
P19 Rexster 2010-02 23.4K 446 495 93
P20 Weld 2010-08 151.5K 275 1,669 175

outcome prediction approaches, and measured the contribution of
each component in BuildFast to its effectiveness, using 20 GitHub
Java projects. Our evaluation is designed to answer the following
research questions.

• RQ4: How is the effectiveness of BuildFast in predicting build out-
comes, compared with the state-of-the-art approaches? (Sec. 4.2)

• RQ5: How is the efficiency of BuildFast in predicting build out-
comes, compared with the state-of-the-art approaches? (Sec. 4.3)

• RQ6: How is the contribution of each component in BuildFast to
the achieved effectiveness of BuildFast? (Sec. 4.4)

Dataset.We randomly selected 20 projects from the 1,621 projects
used in our empirical study (see Sec. 2.1). The statistics about these
projects are listed in Table 5, including their creation date, lines of code,
the number of stars, and the number of passed and failed builds. We
can see that these projects are mostly large in size, and have a long
evolution history, which ensures diverse build data. For each project,
we split the builds into the training and testing dataset by 3:1.

Comparison Approaches. ForRQ4 andRQ5, we selected BS1
[26],BS2 [44] andBS3 [59] as the baselines becauseBS1 andBS2 are
the state-of-art approaches that predict in a cross-validationway and
BS3 is the state-of-art approach that predicts in chronological order.
ForRQ6, we ran BuildFast by removing feature selection, by train-
ing only one model with all builds, by training two models without
including all failed builds, and by excluding our new features.

Evaluation Metrics. Following prior works, we used precision,
recall, F1-score and AUC to measure the accuracy of build outcome
prediction.We distinguished precision, recall and F1-score for passed
builds and failed builds for a detailed comparison across different
approaches. We also used benefit, cost and gain (see Sec. 3.4) to mea-
sure the cost-efficiency. As BS3 is designed for optimizing AUC, we
can only measure its AUC. In summary, we used accuracy and cost-
efficiency to indicate the effectiveness.

ModelConfiguration.Duringmodel generation (see Sec. 3.3), we
adopted Chi-Squared Testing [23] to select the top 30 features for our
first model, and Information Gain [35] to select the top 25 features
for our second model. Besides, we used XGBoost [11] with de-
fault parameters as the classifier. This configuration was empirically

established as good. For space limitation, detailed comparisons to
other configurations are available at our website [2].

4.2 Effectiveness Evaluation (RQ4)

Table 6 presents the results of BS1,BS2,BS3 and BuildFast with re-
spect to the seven effectiveness metrics. The first column shows the
build outcome prediction approaches, the second column lists themet-
rics, and the next twenty columns report the metric values for each
project under each approach, and the last column gives the average
for precision, recall, F1-score and AUC and the sum for benefit, cost
and gain across all projects. The unit of benefit, cost and gain is hour.

Compared withBS1, BuildFast significantly improved the preci-
sion, recall and F1-score for failed builds by 16.5%, 60.2% and 47.5%; and
such differenceswere statistically significant usingWilcoxon Signed-
Rank test. Meanwhile, BuildFast slightly improved the F1-score for
passed builds. Overall, BuildFast improved F1-score andAUCof BS1
by 3.9% and 5.5%, with the differences statistically significant. For ben-
efit, cost and gain, there was no statistically significant difference
due to the minority of failed builds and the variance of build times.
Still, BuildFast had a total gain of 2,131 hours for all projects from
one-fourth of the builds (i.e., testing data) with its benefit exceeding
its cost. Thus, BuildFast is cost-efficient and can save CI cost.

Compared withBS2 whichwas designed to improve the accuracy
for failed builds, BuildFast significantly improved all the accuracy
metrics except for the recall for failed builds. Overall, BuildFast im-
proved F1-score for failed builds, F1-score for passed builds, F1-score
and AUC by 55.2%, 42.0%, 43.0% and 19.5%; and the differences were
statistically significant. Due to such a large accuracy improvement
for passed builds, BuildFast improved gain by 74.2%.

Compared with BS3 which was specifically designed to optimize
AUC, BuildFast still significantly improved AUC by 27.7%, and the
differencewas statistically significant. Surprisingly,BS3 achieved the
lowest AUC among the four approaches. This could be attributed
to the seven coarse-grained features in their work.

BuildFast significantly outperformed the best of the state-of-
the-art approaches, BS1, by 47.5% in F1-score for failed builds
without losing the F1-score for passed builds. Besides, Build-
Fast saved a sum of 2,131 hours for all the 20 projects.

4.3 Efficiency Evaluation (RQ5)

Table 7 reports the time overhead of the four approaches. The first col-
umn lists the specific approach phases, i.e., training phase and pre-
diction phase. The time overhead of prediction phase is composed of
two parts in form of a + b, where a denotes feature extraction time
andb denotes outcome prediction time.We can see thatBS2 took the
longest time for training, i.e., averagely 469.8 seconds for each project,
because it used cascaded classifiers, while BuildFast took 6.9 sec-
onds, which was longer than BS3 but shorter than BS1. As training
is a one-time job, this time overhead is acceptable. On the other hand,
BuildFast took 1.3 seconds to extract features for each build, and
another 0.004 seconds to obtain the predicted build outcome. While
being the slowest due to the large number of used features, Build-
Fast is still practical for real-world projects.

ASE ’20, September 21–25, 2020, Virtual Event, Australia Bihuan Chen, Linlin Chen, Chen Zhang, and Xin Peng

Table 6: Effectiveness Comparisons to the State-of-the-Art

A. Metric P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12 P13 P14 P15 P16 P17 P18 P19 P20 All

B
S
1

Pre.f .500 .000 .125 1.00 .267 .604 .500 .328 .833 .636 .862 .792 .667 .000 .571 .000 .769 .469 .500 .389 .491
Pre.p .896 .879 .918 .943 .964 .899 .932 .925 .937 .795 .525 .824 .952 .889 .884 .797 .824 .855 .795 .954 .869
Pre. .852 .773 .852 .947 .934 .851 .900 .870 .910 .758 .779 .804 .936 .790 .845 .637 .807 .791 .720 .924 .834
Rec.f .067 .000 .017 .250 .200 .457 .063 .227 .819 .179 .820 .913 .167 .000 .098 .000 .577 .185 .333 .113 .274
Rec.p .992 1.00 .989 1.00 .975 .942 .995 .953 .942 .969 .602 .627 .995 1.00 .989 .979 .920 .958 .886 .990 .935
Rec. .890 .879 .909 .944 .942 .863 .928 .887 .910 .784 .766 .801 .948 .889 .877 .783 .811 .830 .745 .945 .867
F1f .118 .000 .030 .400 .229 .520 .113 .268 .826 .280 .841 .848 .267 .000 .167 .000 .659 .266 .400 .175 .320
F1p .941 .936 .952 .971 .970 .920 .962 .939 .939 .873 .561 .712 .973 .941 .934 .879 .869 .904 .838 .972 .899
F1 .851 .823 .876 .928 .938 .855 .901 .878 .910 .735 .771 .795 .933 .837 .837 .703 .803 .798 .726 .931 .841

AUC .619 .568 .610 .873 .683 .808 .636 .773 .883 .785 .763 .853 .878 .515 .815 .713 .844 .788 .813 .643 .743
Benefit 10.5 7.5 968.9 17.4 68.3 30.7 127.3 431.7 31.2 98.6 559.2 1.7 8.6 49.0 54.4 9.1 8.3 25.6 10.1 214.3 2,732
Cost 1.1 0.6 14.3 0.6 3.3 1.8 5.3 17.4 1.0 16.8 520.8 0.4 0.5 5.2 4.0 2.5 0.8 2.8 6.3 6.1 611
Gain 9.4 6.9 954.6 16.8 65.0 28.9 122.0 414.3 30.2 81.8 38.4 1.3 8.1 43.8 50.4 6.6 7.5 22.8 3.8 208.2 2,121

B
S
2

Pre.f .102 .500 .072 .075 .107 .157 .228 .144 .271 .318 .848 .707 .088 .000 .128 .667 .596 .305 .500 .143 .298
Pre.p .884 .883 .908 .933 .969 .786 .954 .949 .893 .797 .553 .839 .967 .886 .600 .812 .795 .860 .871 .927 .853
Pre. .798 .836 .839 .870 .932 .683 .902 .875 .731 .685 .775 .759 .917 .788 .540 .783 .732 .768 .776 .881 .793
Rec.f .433 .036 .407 .950 .400 .871 .460 .680 .974 .359 .858 .952 .667 .000 .951 .083 .538 .290 .667 .597 .559
Rec.p .531 .995 .528 .056 .849 .092 .879 .593 .076 .766 .534 .388 .583 .975 .211 .990 .830 .868 .771 .278 .590
Rec. .520 .879 .518 .123 .830 .219 .848 .601 .310 .671 .777 .731 .588 .867 .129 .808 .738 .772 .745 .294 .598
F1f .166 .067 .123 .139 .168 .266 .305 .237 .424 .337 .853 .811 .155 .000 .215 .148 .566 .298 .571 .231 .304
F1p .663 .935 .668 .106 .905 .164 .915 .730 .140 .781 .543 .531 .727 .929 .315 .892 .812 .864 .818 .428 .643
F1 .609 .831 .623 .108 .873 .181 .871 .685 .214 .677 .776 .701 .695 .825 .145 .743 .734 .770 .755 .410 .611

AUC .640 .648 .409 .674 .596 .647 .448 .718 .827 .666 .768 .819 .846 .599 .517 .761 .741 .709 .552 .537 .656
Benefit 5.6 7.4 520.2 0.9 61.7 3.1 115.3 267.8 2.5 82.9 492.1 1.0 4.9 47.6 0.5 9.2 7.1 22.9 8.8 45.8 1,707
Cost 0.4 0.6 8.5 0.0 3.0 0.5 3.0 5.9 0.1 15.5 431.5 0.3 0.2 5.2 0.1 2.4 0.7 2.5 2.1 1.9 484
Gain 5.2 6.8 511.7 0.9 58.7 2.6 112.3 261.9 2.4 67.4 60.6 0.7 4.7 42.4 0.4 6.8 6.4 20.4 6.7 43.9 1,223

B
S
3 AUC .389 .699 .560 .020 .704 .542 1.00 .970 .717 .167 .574 .293 1.00 .899 .630 .135 .531 .949 .859 .636 .614

Bu
il
dF

as
t

Pre.f .600 .381 .227 .692 .263 .674 .200 .701 .819 .621 .870 .871 .889 .333 .400 .833 .759 .418 .733 .152 .572
Pre.p .899 .905 .922 .957 .966 .898 .932 .935 .936 .848 .545 .945 .980 .894 .883 .870 .900 .895 .969 .957 .902
Pre. .866 .842 .864 .937 .936 .862 .879 .913 .906 .795 .789 .900 .975 .832 .822 .863 .855 .816 .909 .915 .874
Rec.f .100 .286 .085 .450 .250 .443 .095 .314 .819 .462 .828 .971 .667 .067 .098 .417 .788 .492 .917 .226 .439
Rec.p .992 .936 .974 .984 .968 .958 .970 .987 .936 .914 .625 .776 .995 .983 .979 .979 .884 .864 .886 .932 .926
Rec. .894 .858 .900 .944 .938 .874 .907 .925 .906 .808 .777 .895 .976 .881 .868 .867 .854 .802 .894 .895 .883
F1f .171 .327 .123 .545 .256 .534 .129 .434 .819 .529 .848 .918 .762 .111 .157 .556 .774 .452 .815 .182 .472
F1p .943 .920 .947 .970 .967 .927 .951 .960 .936 .880 .582 .852 .988 .937 .928 .922 .892 .879 .925 .944 .913
F1 .858 .849 .879 .939 .937 .863 .891 .912 .906 .798 .782 .892 .975 .845 .831 .848 .854 .808 .897 .905 .874

AUC .683 .717 .654 .713 .755 .797 .711 .830 .907 .793 .795 .939 .898 .672 .737 .880 .885 .839 .924 .554 .784
Benefit 10.5 6.9 954.0 17.1 67.7 31.3 124.2 445.4 31.0 92.9 576.9 2.0 8.6 48.2 53.9 9.0 8.1 23.4 10.2 201.9 2,723
Cost 1.0 0.4 14.0 0.5 3.2 2.0 4.8 14.1 1.0 12.6 520.0 0.1 0.2 4.8 3.9 1.8 0.5 1.7 0.0 5.5 592
Gain 9.5 6.5 940.0 16.6 64.5 29.3 119.4 431.3 30.0 80.3 56.9 1.9 8.4 43.4 50.0 7.2 7.6 21.7 10.2 196.4 2,131

Table 7: Efficiency Comparisons to the State-of-the-Art

Phase BS1 BS2 BS3 BuildFast
Training (sec) 9.4 469.8 0.4 6.9
Prediction (sec) 0.2 + 0.001 0.1 + 0.002 0.1 + 0.001 1.3 + 0.004

BuildFast took 6.9 seconds for training, and 1.3 seconds to
predict for a build, which was acceptable for practical usages.

4.4 Ablation Study (RQ6)

Table 8 shows the result of our ablation study to measure the contri-
bution of various settings in BuildFast to the effectiveness in Sec. 4.2.

Removing Feature Selection. BuildFast had a degradation in
almost all the accuracy metrics after removing feature selection. Sig-
nificantly, the precision for failed builds decreased by 9.7% from 0.572
to 0.516 , and the recall for passed builds decreased by 6.5% from 0.926

to 0.866. Overall, F1-score had a degradation of 5.0%. Therewas no sig-
nificant difference for AUC, benefit, cost and gain. These results show
that feature selection contributes to the improved accuracy for both
failed and passed builds by selecting representative features.

TrainingOneModelwithAll Builds.When only onemodel was
trained in BuildFast with all builds, BuildFast suffered a signifi-
cant degradation in all the precision, recall, F1-score and AUC met-
rics except for the recall for failed builds. Overall, F1-score for failed
builds, F1-score for passed builds, F1-score, andAUCdecreased by 20.8%,
20.3%, 18.2% and 5.5%. Because of such a large degradation for passed
builds, gain decreased by 11.0%. These results indicate that our adop-
tion of twomodels greatly contributes to accuracy and cost-efficiency
by learning specialized knowledge from distinguishable build data.

TrainingTwoModelswithoutAll FailedBuilds.Whenwe did
not include all failed builds into the training data of the two separate
models, BuildFast had a degradation in all metrics. Significantly,

BuildFast: History-Aware Build Outcome Prediction for Fast

Feedback and Reduced Cost in Continuous Integration ASE ’20, September 21–25, 2020, Virtual Event, Australia

Table 8: Contributions of Each Component in BuildFast

A. Metric P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12 P13 P14 P15 P16 P17 P18 P19 P20 All

Bu
il
dF

as
t
w
ith

ou
tF

ea
tu
re

Se
le
ct
io
n Pre.f .400 .119 .556 .421 .556 .221 .146 .685 .814 .800 .885 .787 .778 .000 .385 .846 .695 .444 .667 .123 .516

Pre.p .896 .876 .923 .952 .967 .911 .932 .933 .939 .803 .617 .909 .975 .885 .885 .879 .895 .890 .886 .960 .896
Pre. .841 .785 .893 .913 .949 .798 .875 .910 .906 .802 .819 .835 .964 .787 .822 .872 .832 .816 .830 .917 .858
Rec.f .067 .571 .085 .400 .250 .757 .111 .291 .828 .205 .865 .962 .583 .000 .122 .458 .788 .452 .667 .339 .440
Rec.p .988 .417 .994 .956 .991 .481 .949 .987 .933 .984 .659 .597 .990 .967 .972 .979 .839 .888 .886 .869 .866
Rec. .886 .435 .919 .914 .959 .526 .889 .923 .906 .802 .814 .819 .967 .859 .865 .875 .823 .815 .830 .841 .833
F1f .114 .196 .147 .410 .345 .342 .126 .408 .821 .327 .875 .866 .667 .000 .185 .595 .739 .448 .667 .180 .423
F1p .939 .565 .957 .954 .979 .629 .941 .959 .936 .884 .637 .721 .983 .924 .926 .926 .866 .889 .886 .912 .871
F1 .849 .520 .890 .913 .952 .582 .882 .909 .906 .754 .816 .809 .965 .822 .833 .860 .826 .816 .830 .874 .830

AUC .739 .505 .718 .807 .771 .721 .706 .825 .903 .804 .836 .924 .840 .560 .757 .821 .861 .835 .917 .608 .773
Benefit 10.5 3.1 973.2 16.6 69.4 15.5 122.5 444.9 30.9 101.0 611.7 1.5 8.5 47.2 53.5 9.0 8.0 23.9 10.2 182.8 2,744
Cost 1.1 0.3 13.8 0.5 3.2 0.8 5.2 14.9 1.0 17.2 392.1 0.2 0.3 5.2 3.9 1.6 0.3 1.9 2.1 4.1 470
Gain 9.4 2.8 959.4 16.1 66.2 14.7 117.3 430.0 29.9 83.8 219.6 1.3 8.2 42.0 49.6 7.4 7.7 22.0 8.1 178.7 2,274

Bu
il
dF

as
t
w
ith

O
ne

M
od

el

Pre.f .417 .145 .148 .500 .039 .556 .113 .163 .265 .392 .870 .608 .333 .000 .400 1.00 .833 .433 .636 .140 .400
Pre.p .904 .915 .922 .949 .893 .916 .979 .939 1.00 .909 .574 .000 .989 .888 .883 .828 .828 .885 .861 .956 .851
Pre. .851 .822 .858 .916 .856 .857 .917 .868 .809 .788 .797 .370 .952 .789 .822 .862 .830 .810 .804 .914 .825
Rec.f .167 .714 .136 .350 .850 .571 .873 .529 1.00 .795 .850 1.00 .833 .000 .098 .167 .577 .419 .583 .226 .537
Rec.p .971 .422 .930 .972 .056 .911 .467 .728 .024 .625 .614 .000 .899 .992 .979 1.00 .946 .891 .886 .925 .712
Rec. .883 .457 .864 .926 .091 .856 .496 .709 .279 .665 .792 .608 .896 .881 .868 .833 .829 .813 .809 .889 .722
F1f .238 .241 .142 .412 .075 .563 .200 .249 .420 .525 .860 .756 .476 .000 .157 .286 .682 .426 .609 .173 .374
F1p .937 .577 .926 .960 .106 .914 .632 .820 .047 .741 .593 .000 .942 .937 .928 .906 .883 .888 .873 .940 .728
F1 .860 .537 .861 .920 .105 .857 .601 .768 .144 .690 .794 .460 .916 .833 .831 .782 .819 .811 .806 .901 .715

AUC .644 .591 .634 .740 .589 .791 .695 .693 .904 .774 .807 .789 .853 .578 .749 .855 .830 .833 .898 .583 .741
Benefit 10.3 3.2 909.5 16.9 3.5 29.7 73.7 328.9 0.7 65.1 574.6 0.0 7.7 48.6 54.1 9.2 8.7 24.1 10.1 196.7 2,375
Cost 0.9 0.2 13.5 0.6 0.3 1.5 0.5 11.3 0.0 5.1 424.0 0.0 0.1 5.2 4.0 2.2 0.8 2.0 0.6 5.1 478
Gain 9.4 3.0 896.0 16.3 3.2 28.2 73.2 317.6 0.7 60.0 150.6 0.0 7.6 43.4 50.1 7.0 7.9 22.1 9.5 191.6 1,897

Bu
il
dF

as
t
w
ith

ou
tA

ll
Fa
ile
d
D
at
a Pre.f .429 .316 .189 .636 .278 .636 .194 .662 .826 .708 .872 .855 .778 .333 .333 .917 .737 .414 .692 .152 .548

Pre.p .898 .897 .926 .950 .966 .891 .932 .930 .936 .846 .533 .926 .975 .894 .880 .880 .907 .888 .912 .954 .896
Pre. .847 .827 .865 .926 .937 .850 .879 .906 .908 .814 .788 .883 .964 .832 .811 .887 .853 .809 .856 .913 .868
Rec.f .100 .214 .169 .350 .250 .400 .095 .262 .819 .436 .816 .962 .583 .067 .073 .458 .808 .444 .750 .161 .411
Rec.p .984 .936 .934 .984 .971 .956 .969 .987 .939 .945 .636 .746 .990 .983 .979 .990 .866 .875 .886 .951 .925
Rec. .886 .849 .871 .937 .940 .865 .906 .920 .908 .826 .772 .877 .967 .881 .865 .883 .848 .803 .851 .910 .878
F1f .162 .255 .179 .452 .263 .491 .128 .375 .823 .540 .843 .905 .667 .111 .120 .611 .771 .428 .720 .156 .450
F1p .939 .916 .930 .966 .969 .922 .950 .958 .938 .893 .580 .826 .983 .937 .927 .931 .886 .881 .899 .953 .909
F1 .854 .836 .868 .928 .938 .852 .891 .904 .908 .810 .778 .874 .965 .845 .825 .867 .849 .806 .853 .912 .868

AUC .684 .692 .655 .762 .714 .780 .719 .825 .908 .803 .796 .933 .919 .609 .649 .843 .874 .833 .919 .629 .777
Benefit 10.4 6.9 914.9 17.1 67.2 31.2 123.7 445.4 31.1 96.5 586.5 2.0 8.5 48.2 53.9 9.1 7.9 23.6 10.2 201.3 269,5
Cost 1.0 0.5 13.4 0.6 3.2 2.0 4.8 15.4 1.0 12.7 534.0 0.2 0.3 4.8 4.0 1.7 0.4 2.0 0.4 5.9 608
Gain 9.4 6.4 901.5 16.5 64.0 29.2 118.9 430.0 30.1 83.8 52.5 1.8 8.2 43.4 49.9 7.4 7.5 21.6 9.8 195.4 2,087

Bu
il
dF

as
t
w
ith

ou
tO

ur
N
ew

M
et
ric

s Pre.f .286 .269 .500 .471 .455 .597 .333 .625 .825 .588 .867 .864 .750 .000 .389 .750 .629 .402 .615 .268 .524
Pre.p .895 .898 .919 .952 .967 .910 .930 .925 .934 .807 .576 .852 .970 .885 .890 .861 .873 .873 .882 .956 .888
Pre. .828 .822 .885 .917 .945 .859 .887 .898 .905 .756 .795 .859 .958 .787 .827 .839 .795 .795 .814 .921 .855
Rec.f .067 .250 .034 .400 .250 .529 .048 .203 .810 .256 .854 .913 .500 .000 .171 .375 .750 .347 .667 .177 .380
Rec.p .979 .907 .997 .964 .986 .931 .993 .988 .939 .945 .602 .776 .990 .967 .961 .969 .795 .897 .857 .974 .921
Rec. .879 .828 .917 .922 .955 .865 .924 .916 .906 .784 .792 .860 .962 .859 .862 .850 .780 .806 .809 .933 .870
F1f .108 .259 .063 .432 .323 .561 .083 .307 .817 .357 .860 .888 .600 .000 .237 .500 .684 .372 .640 .214 .415
F1p .935 .902 .957 .958 .977 .920 .960 .955 .936 .871 .589 .812 .980 .924 .924 .912 .832 .885 .870 .965 .903
F1 .844 .825 .883 .919 .948 .862 .897 .896 .905 .751 .793 .858 .958 .822 .838 .829 .785 .800 .811 .926 .858

AUC .657 .591 .604 .838 .767 .813 .730 .823 .906 .750 .800 .893 .871 .608 .761 .842 .853 .824 .850 .730 .776
Benefit 10.4 6.7 976.2 16.7 69.1 30.4 126.4 445.7 31.1 95.3 559.6 2.0 8.5 47.6 53.6 8.9 7.4 24.1 9.9 209.8 2,739
Cost 1.1 0.4 14.2 0.4 3.2 1.7 5.3 17.5 1.1 16.1 442.8 0.4 0.4 5.2 3.7 1.8 0.5 2.2 2.1 5.8 526
Gain 9.3 6.3 962.0 16.3 65.9 28.7 121.1 428.2 30.0 79.2 116.8 1.6 8.1 42.4 49.9 7.1 6.9 21.9 7.8 204.0 2,213

the F1-score for failed builds decreased by 4.7%. This is consistent to
ourmotivation of including all failed builds into the twomodel train-
ing process, i.e., partially solving the unbalanced size of failed builds
in order to improve the prediction accuracy for failed builds.

ExcludingOurNew Features.After we excluded new features,
BuildFast had a significant degradation in accuracy metrics for

failed builds. Overall, the F1-score for failed builds decreased by
12.1%. This indicates the importance of our new features to model
the characteristics of build failures. To further look into the impor-
tance of our new features, we analyzed the most important features
in our two models across all projects by accumulating a feature’s
importance value, computed during feature selection, across all the

ASE ’20, September 21–25, 2020, Virtual Event, Australia Bihuan Chen, Linlin Chen, Chen Zhang, and Xin Peng

Table 9: Important Features in Our Two Models

First Model Second Model
Feature Imp. Proj. Feature Imp. Proj.
pr_state .147 20 pr_state .333 20

fail_ratio_pr .111 1 fail_ratio_com_re .073 20
log_src_files_in .072 12 log_src_files_in .067 20
pr_test_exception .069 20 file_fail_prob_sum .054 2

pr_src_files .062 9 team_size .053 14
field_modified .059 2 files_added .051 1
last_fail_gap .055 9 class_changed .050 1
pr_src_churn .048 1 met_deleted .043 2

commits_on_files .047 3 file_fail_prob_max .040 5
pr_tests_ok .046 14 test_ast_diff .039 7

file_fail_prob_sum .044 8 field_deleted .039 6
fail_ratio_com_re .043 9 merge_commits .039 5
consec_fail_sum .039 14 src_churn .037 2

file_fail_prob_max .037 9 line_deleted .036 1
pr_duration .037 8 commits .036 5

by_core_member .036 4 is_master .035 10
src_files .034 5 import_added .034 7

met_body_modified .034 6 line_added .034 2
log_src_files .033 12 last_fail_gap .034 3
import_added .033 3 commits_on_files .034 8

projects. The top 20 important features for our two models are re-
ported in Table 9, where Imp. denotes the accumulated importance
value of a feature, and Proj. denotes the number of projects that se-
lect a feature. We can see that more than half of the important fea-
tures are newly introduced in this work (highlighted in bold). This
indicates the usefulness of our new features. Besides, these impor-
tant features are actually selected in various number of projects,
meaning that different projects select different sets of features. This
demonstrates the importance of feature selection.

Feature selection, adaptive models, and newly introduced fea-
tures all contribute positively to the achieved effectiveness of
BuildFast, especially for failed builds.

4.5 Discussion

We discuss the threats to and limitations of this work.
Threats. First, we designed an online survey with GitHub devel-

opers instead of face-to-face interviews because it can allow us to
recruit a relatively large number of participants (although the partic-
ipant rate was low). Second, we decided to not offer compensation
but ask participants to voluntarily take the survey.We expected that
developers who were really interested in build outcome prediction
and well motivated would participate in this survey and thus the
survey quality could be improved. Third, BuildFast was only eval-
uated against open-source projects without developers’ feedback.
Experiments with industrial projects and developers are needed to
better measure the practical usages of BuildFast.

Limitations. First, although BuildFast outperforms the state-
of-the-art approaches significantly in prediction accuracy for failed
builds, we have to admit that there is still a room for improvements.
One potential way is to understand the semantics of code changes by
recent advances in deep code representation learning [5], as we only
focus on code changes at syntactic level. Second, BuildFast only
predicts whether a build fails, but cannot identify the root causes
which would be useful for developers to fix the failure in advance.
We plan to extend BuildFast to classify a failed build into several
root causes (e.g., compilation errors and testing failures).

5 RELATEDWORK

We review the most closely related work on build prediction, cost re-
duction in CI, empirical studies about CI, and defect prediction.

Build Prediction.Hassan and Zhang [25] used decision trees to
predict build outcomewith combined features related to social, tech-
nical, coordination and prior-build factors. Their model correctly
predicted 69% of the failed builds and 95% of the passed builds on a
large project at the IBM Toronto Labs. Wolf et al. [56] adopted social
network analysis to obtain communication structure measures, and
leveraged suchmeasures into a Bayesian classifier to predict the out-
come of a build. They achieved precision and recall between 50% and
76% on IBM’s Jazz project. Then, Schroter [47] extendedWolf et al.’s
work [56] by adding technical dependencies into the social network.
Kwan et al. [33] analyzed the effect of social-technical congruence
(i.e., the match between the coordination needs established by tech-
nical domain and the coordination activities carried out by project
members) on build outcome. Their study on the IBM Rational Team
Concert project showed that social-technical congruence had a neg-
ative effect on integration build success rate. The social factors in
these approaches are often organization-specific, greatly hindering
the generalizability of predictive models over a wider audience. In-
stead, BuildFast is specifically designed for CI environment, and
thus can be applied to any project as long as it adopts CI.

Finlay et al. [18] used data streammining techniques based on code
metrics (i.e., basic metrics, dependency metrics, complexity metrics,
cohesion metrics, and Halstead metrics) to predict build outcome.
They achieved 72% accuracy on IBM’s Jazz project. As only source
code files were included in metric computation, this approach could
not predict build failures caused by errors in non-source code files
(e.g., configuration files). Recently, Ni and Li [44] used cascaded clas-
sifiers to predict build outcome in CI based on file-level metrics from
the current and previous build and failure statistics from historical
builds. Similarly, Hassan and Wang [26] leveraged metrics from the
current and previous build. Differently, they included metrics about
failure type of the previous build and coarse-grained code changes
in the current build, and did not consider historical builds. Different
from such approaches, we extract fine-grained code change features
from historical builds. Ni and Li [45] proposed to dynamically adapt
a pool of classifiers learned from various projects to a new project
that does not have sufficient data of builds. This approach is orthog-
onal to the previous approaches and our approach, because it reuses
the classifiers trained by the previous approaches and our approach.
Xia and Li [57] investigated the accuracy of nine classifiers in the on-
line build outcome prediction scenario, and found that the accuracy
fell to a fairly low level. Xie and Li [59] targeted the online scenario,
and proposed a semi-supervised online AUC optimization method.
However, the coarse-grained features hinder its effectiveness. Ex-
cept for three approaches [18, 45, 59], all the previous build outcome
prediction approaches were evaluated in the cross-validation way,
and thus they might not work well in the practical online scenario.
Instead, BuildFast targets the online scenario. Moreover, apart
from the accuracy indicators, we analyze the benefit from correct
predictions and the cost of incorrect predictions to systematically
evaluate the cost-effectiveness of BuildFast. Recently, Jin and Ser-
vant [31] proposed SmartBuildSkip to predict the first builds in a
sequence of build failures with a machine learning classifier and

BuildFast: History-Aware Build Outcome Prediction for Fast

Feedback and Reduced Cost in Continuous Integration ASE ’20, September 21–25, 2020, Virtual Event, Australia

then determine that all subsequent builds will fail until it observes
a passed build. This approach targets a different usage scenario of
BuildFast, and our classifier can be integrated into their approach.

Besides, Bisong et al. [8] developed a predictive model to predict
the build time of a build job in CI. McIntosh et al. [40], Xia et al. [58]
and Macho et al. [37] used machine learning techniques to predict
whether source code changes will induce changes in the build sys-
tem (i.e., build configuration co-changes). These techniques target
a different prediction problem than BuildFast.

CostReduction inCI.Apart from build outcome prediction, var-
ious techniques have been proposed to reduce cost in CI. For exam-
ple, to reduce build cost, some plugins [12, 13] are designed into CI ser-
vices for developers to skip some builds by manually configuring
the build process; Abdalkareem et al. [4] proposed a rule-based tech-
nique to automatically identify commits that can be CI skipped; fol-
lowed by a machine learning-based approach [3]; and Gambi et
al. [21] developed a novel build system that can lazily retrieve parts
of libraries that are needed during the execution of a build target. Tu-
fano et al. [51] proposed to analyze developer’s changes and predict
whether it impacts the longest critical path, whether it may lead to
build time increase and the delta, and the percentage of future builds
that might be affected by such changes. To reduce testing cost, Ce-
lik et al. [10] consolidated repetitive and expensive setup activities
into pre-configured testing virtual machines; and a number of test
case prioritization [9, 16, 36, 39, 60] and test case selection [41, 49]
have been developed into CI to minimize test execution cost. These
techniques are orthogonal to BuildFast as they focus on different
aspects in CI. Ideally, they can be combined together to achieve
optimal cost reduction.

Empirical Studies about CI.With the widespread adoption of
CI, empirical studies have been widely conducted to investigate dif-
ferent aspects of CI, e.g., usage, cost, benefits, barriers and needswhen
developers use CI [27, 28, 52], type and frequency of build failures in
CI [30, 32, 46, 54], build failures caused by compilation [48, 62], test-
ing [6, 34] and static violations in static analysis [61], noise and het-
erogeneity [20] in historical build dataset [7], characteristics of long
build duration [22], anti-patterns in CI [53], and test code evolution
in CI [43]. Some studies [22, 28] reported concrete evidence on ex-
pensive build cost, and some studies [27, 53] revealed that waiting
for builds to finish is a common barrier faced by developers. There-
fore, these studies motivate the need for build outcome prediction to
save build cost. Besides, studies about build failures [30, 32, 46, 54]
shed light on our feature selection.

Defect Prediction. Defect prediction has been widely studied.
Generally, defect prediction methods (e.g., [14, 17, 38, 50, 55]) build
machine learning models based on different kinds of metrics and
predict defects at different granularity levels. As defect prediction
mostly focuses on defects in source code files and build failures can
be caused by errors in non-source code files, defect prediction tech-
niques cannot directly translate to build outcome prediction in CI.

6 CONCLUSIONS

In this paper, motivated by our empirical study on build times and
our developer survey on build outcome prediction, we propose a
new history-aware approach, named BuildFast, to predict CI build
outcomes cost-efficiently and practically. Our experiments on 20

projects have demonstrated that BuildFast can improve the state-
of-the-art approaches by 47.5% in F1-score for failed builds without
losing the accuracy for passed builds, and the benefit of BuildFast
exceeds its cost, bringing fast feedback and reduced CI cost.

ACKNOWLEDGMENTS

This work was supported by the National Natural Science Founda-
tion of China (Grant No. 61802067).

REFERENCES

[1] [n.d.]. scikit-learn. Retrieved May 6, 2020 from http://scikit-learn.github.io/stable
[2] [n.d.]. BuildFast. Retrieved May 6, 2020 from https://buildfastinci.github.io
[3] Rabe Abdalkareem, Suhaib Mujahid, and Emad Shihab. 2020. AMachine Learning

Approach to Improve the Detection of CI Skip Commits. IEEE Transactions on

Software Engineering (2020).
[4] Rabe Abdalkareem, Suhaib Mujahid, Emad Shihab, and Juergen Rilling. 2019.

Which commits can be CI skipped? IEEE Transactions on Software Engineering

(2019).
[5] Miltiadis Allamanis, Earl T Barr, Premkumar Devanbu, and Charles Sutton. 2018.

A survey of machine learning for big code and naturalness. Comput. Surveys 51,
4 (2018), 81.

[6] Moritz Beller, Georgios Gousios, and Andy Zaidman. 2017. Oops, my tests broke
the build: An explorative analysis of Travis CI with GitHub. In Proceedings of the

IEEE/ACM 14th International Conference on Mining Software Repositories. 356–367.
[7] Moritz Beller, Georgios Gousios, and Andy Zaidman. 2017. Travistorrent: Syn-

thesizing travis ci and github for full-stack research on continuous integration.
In Proceedings of the IEEE/ACM 14th International Conference on Mining Software

Repositories. 447–450.
[8] Ekaba Bisong, Eric Tran, and Olga Baysal. 2017. Built to last or built too fast?

evaluating prediction models for build times. In Proceedings of the IEEE/ACM 14th

International Conference on Mining Software Repositories. 487–490.
[9] Benjamin Busjaeger and Tao Xie. 2016. Learning for Test Prioritization: An

Industrial Case Study. In Proceedings of the 2016 24th ACM SIGSOFT International

Symposium on Foundations of Software Engineering. 975–980.
[10] Ahmet Celik, Alex Knaust, Aleksandar Milicevic, and Milos Gligoric. 2016. Build

System with Lazy Retrieval for Java Projects. In Proceedings of the 24th ACM SIG-

SOFT International Symposium on Foundations of Software Engineering. 643–654.
[11] Tianqi Chen and Carlos Guestrin. 2016. Xgboost: A scalable tree boosting system.

In Proceedings of the 22nd acm sigkdd international conference on knowledge

discovery and data mining. 785–794.
[12] Travis CI. [n.d.]. Customizing the Build - Skipping a Build. Retrieved February

2, 2020 from https://docs.travis-ci.com/user/customizing-the-build/#skipping-a-
build

[13] Cloudbee. [n.d.]. Jenkins Enterprise by CloudBees 14.5 User Guide - Using the
Skip Next Build plugin. Retrieved February 2, 2020 from https://docs.huihoo.
com/jenkins/enterprise/14/skip.html

[14] Marco D’Ambros, Michele Lanza, and Romain Robbes. 2012. Evaluating defect
prediction approaches: a benchmark and an extensive comparison. Empirical

Software Engineering 17, 4-5 (2012), 531–577.
[15] Paul M Duvall, Steve Matyas, and Andrew Glover. 2007. Continuous integration:

improving software quality and reducing risk. Pearson Education.
[16] Sebastian Elbaum, Gregg Rothermel, and John Penix. 2014. Techniques for

Improving Regression Testing in Continuous Integration Development Envi-
ronments. In Proceedings of the 22nd ACM SIGSOFT International Symposium on

Foundations of Software Engineering. 235–245.
[17] Norman E Fenton and Martin Neil. 1999. A critique of software defect prediction

models. IEEE Transactions on software engineering 25, 5 (1999), 675–689.
[18] Jacqui Finlay, Russel Pears, and Andy M Connor. 2014. Data stream mining for

predicting software build outcomes using source code metrics. Information and

Software Technology 56, 2 (2014), 183–198.
[19] Martin Fowler. 2000. Continuous Integration. http://martinfowler.com/articles/

originalContinuousIntegration.html
[20] Keheliya Gallaba, Christian Macho, Martin Pinzger, and Shane McIntosh. 2018.

Noise and heterogeneity in historical build data: an empirical study of Travis
CI. In Proceedings of the 33rd ACM/IEEE International Conference on Automated

Software Engineering. 87–97.
[21] Alessio Gambi, Zabolotnyi Rostyslav, and Schahram Dustdar. 2015. Improving

Cloud-Based Continuous Integration Environments. In Proceedings of the 37th

International Conference on Software Engineering - Volume 2. 797–798.
[22] Taher Ahmed Ghaleb, Daniel Alencar Da Costa, and Ying Zou. 2019. An empirical

study of the long duration of continuous integration builds. Empirical Software

Engineering 24, 4 (2019), 2102–2139.
[23] Priscilla E Greenwood and Michael S Nikulin. 1996. A guide to chi-squared testing.

Vol. 280. John Wiley & Sons.

http://scikit-learn.github.io/stable
https://buildfastinci.github.io
https://docs.travis-ci.com/user/customizing-the-build/#skipping-a-build
https://docs.travis-ci.com/user/customizing-the-build/#skipping-a-build
https://docs.huihoo.com/jenkins/enterprise/14/skip.html
https://docs.huihoo.com/jenkins/enterprise/14/skip.html
http://martinfowler.com/articles/ originalContinuousIntegration.html
http://martinfowler.com/articles/ originalContinuousIntegration.html

ASE ’20, September 21–25, 2020, Virtual Event, Australia Bihuan Chen, Linlin Chen, Chen Zhang, and Xin Peng

[24] Isabelle Guyon and André Elisseeff. 2003. An Introduction to Variable and Feature
Selection. Journal of Machine Learning Research 3, Mar (2003), 1157–1182.

[25] Ahmed E Hassan and Ken Zhang. 2006. Using decision trees to predict the
certification result of a build. In Proceedings of the 21st IEEE/ACM International

Conference on Automated Software Engineering. 189–198.
[26] Foyzul Hassan and Xiaoyin Wang. 2017. Change-Aware Build Prediction Model

for Stall Avoidance in Continuous Integration. In Proceedings of the 11th ACM/IEEE

International Symposium on Empirical Software Engineering and Measurement.
157–162.

[27] Michael Hilton, Nicholas Nelson, Timothy Tunnell, Darko Marinov, and Danny
Dig. 2017. Trade-offs in continuous integration: assurance, security, and flexi-
bility. In Proceedings of the 2017 11th Joint Meeting on Foundations of Software

Engineering. 197–207.
[28] Michael Hilton, Timothy Tunnell, Kai Huang, Darko Marinov, and Danny Dig.

2016. Usage, costs, and benefits of continuous integration in open-source projects.
In Proceedings of the 31st IEEE/ACM International Conference on Automated Soft-

ware Engineering. 426–437.
[29] Kaifeng Huang, Bihuan Chen, Xin Peng, Daihong Zhou, Ying Wang, Yang Liu,

and Wenyun Zhao. 2018. ClDiff: Generating Concise Linked Code Differences. In
Proceedings of the 33rd ACM/IEEE International Conference on Automated Software

Engineering. 679–690.
[30] Md Rakibul Islam andMinhaz F Zibran. 2017. Insights into continuous integration

build failures. In Proceedings of the IEEE/ACM 14th International Conference on

Mining Software Repositories. 467–470.
[31] Xianhao Jin and Francisco Servant. 2020. A Cost-efficient Approach to Building

in Continuous Integration. In Proceedings of the 42nd International Conference on

Software Engineering.
[32] Noureddine Kerzazi, Foutse Khomh, and Bram Adams. 2014. Why do auto-

mated builds break? an empirical study. In Proceedings of the IEEE International

Conference on Software Maintenance and Evolution. 41–50.
[33] Irwin Kwan, Adrian Schroter, and Daniela Damian. 2011. Does socio-technical

congruence have an effect on software build success? a study of coordination
in a software project. IEEE Transactions on Software Engineering 37, 3 (2011),
307–324.

[34] Adriaan Labuschagne, Laura Inozemtseva, and Reid Holmes. 2017. Measuring the
cost of regression testing in practice: a study of Java projects using continuous
integration. In Proceedings of the 2017 11th JointMeeting on Foundations of Software

Engineering. 821–830.
[35] Changki Lee and Gary Geunbae Lee. 2006. Information gain and divergence-based

feature selection for machine learning-based text categorization. Information

processing & management 42, 1 (2006), 155–165.
[36] Jingjing Liang, Sebastian Elbaum, and Gregg Rothermel. 2018. Redefining priori-

tization: continuous prioritization for continuous integration. In Proceedings of

the 40th International Conference on Software Engineering. 688–698.
[37] Christian Macho, Shane McIntosh, and Martin Pinzger. 2016. Predicting build

co-changes with source code change and commit categories. In Proceedings

of the IEEE 23rd international conference on software analysis, evolution, and

reengineering. 541–551.
[38] Lech Madeyski and Marcin Kawalerowicz. 2017. Continuous defect prediction:

the idea and a related dataset. In Proceedings of the IEEE/ACM 14th International

Conference on Mining Software Repositories. 515–518.
[39] Dusica Marijan, Arnaud Gotlieb, and Sagar Sen. 2013. Test Case Prioritization

for Continuous Regression Testing: An Industrial Case Study. In Proceedings of

the 2013 IEEE International Conference on Software Maintenance. 540–543.
[40] Shane Mcintosh, Bram Adams, Meiyappan Nagappan, and Ahmed E Hassan. 2014.

Mining co-change information to understand when build changes are necessary.
In Proceedings of the IEEE International Conference on Software Maintenance and

Evolution. 241–250.
[41] Atif Memon, Zebao Gao, Bao Nguyen, Sanjeev Dhanda, Eric Nickell, Rob Siem-

borski, and John Micco. 2017. Taming Google-Scale Continuous Testing. In
Proceedings of the 39th International Conference on Software Engineering: Software

Engineering in Practice Track. 233–242.
[42] John Micco. 2013. Continuous integration at google scale. https://eclipsecon.org/

2013/sites/eclipsecon.org.2013/files/2013-03-24%20Continuous%20Integration%
20at%20Google%20Scale.pdf

[43] Gustavo Sizilio Nery, Daniel Alencar da Costa, and Uirá Kulesza. 2019. An
Empirical Study of the Relationship between Continuous Integration and Test
Code Evolution. In Proceedings of the IEEE International Conference on Software

Maintenance and Evolution. 426–436.
[44] Ansong Ni and Ming Li. 2017. Cost-effective build outcome prediction using

cascaded classifiers. In Proceedings of the IEEE/ACM 14th International Conference

on Mining Software Repositories. 455–458.
[45] Ansong Ni and Ming Li. 2018. Poster: ACONA: Active Online Model Adapta-

tion for Predicting Continuous Integration Build Failures. In Proceedings of the

IEEE/ACM 40th International Conference on Software Engineering: Companion.
366–367.

[46] Thomas Rausch, Waldemar Hummer, Philipp Leitner, and Stefan Schulte. 2017.
An empirical analysis of build failures in the continuous integration workflows

of Java-based open-source software. In Proceedings of the IEEE/ACM 14th Interna-

tional Conference on Mining Software Repositories. 345–355.
[47] Adrian Schroter. 2010. Predicting build outcome with developer interaction in

jazz. In Proceedings of the ACM/IEEE 32nd International Conference on Software

Engineering. 511–512.
[48] Hyunmin Seo, Caitlin Sadowski, Sebastian Elbaum, Edward Aftandilian, and

Robert Bowdidge. 2014. Programmers’ build errors: a case study (at google). In
Proceedings of the 36th International Conference on Software Engineering. 724–734.

[49] August Shi, Suresh Thummalapenta, Shuvendu K. Lahiri, Nikolaj Bjorner, and
Jacek Czerwonka. 2017. Optimizing Test Placement for Module-Level Regression
Testing. In Proceedings of the 39th International Conference on Software Engineering.
689–699.

[50] Ming Tan, Lin Tan, Sashank Dara, and Caleb Mayeux. 2015. Online defect predic-
tion for imbalanced data. In Proceedings of the IEEE/ACM 37th IEEE International

Conference on Software Engineering. 99–108.
[51] Michele Tufano, Hitesh Sajnani, and Kim Herzig. 2019. Towards predicting the

impact of software changes on building activities. In Proceedings of the IEEE/ACM

41st International Conference on Software Engineering: New Ideas and Emerging

Results. 49–52.
[52] Bogdan Vasilescu, Yue Yu, Huaimin Wang, Premkumar Devanbu, and Vladimir

Filkov. 2015. Quality and productivity outcomes relating to continuous integra-
tion in GitHub. In Proceedings of the 10th Joint Meeting on Foundations of Software

Engineering. 805–816.
[53] Carmine Vassallo, Sebastian Proksch, Harald C Gall, and Massimiliano Di Penta.

2019. Automated reporting of anti-patterns and decay in continuous integra-
tion. In Proceedings of the IEEE/ACM 41st International Conference on Software

Engineering. 105–115.
[54] Carmine Vassallo, Gerald Schermann, Fiorella Zampetti, Daniele Romano, Philipp

Leitner, Andy Zaidman, Massimiliano Di Penta, and Sebastiano Panichella. 2017.
A tale of CI build failures: An open source and a financial organization perspective.
In Proceedings of the IEEE international conference on software maintenance and

evolution. 183–193.
[55] Zhiyuan Wan, Xin Xia, Ahmed E Hassan, David Lo, Jianwei Yin, and Xiaohu

Yang. 2018. Perceptions, expectations, and challenges in defect prediction. IEEE
Transactions on Software Engineering (2018).

[56] Timo Wolf, Adrian Schroter, Daniela Damian, and Thanh Nguyen. 2009. Predict-
ing build failures using social network analysis on developer communication.
In Proceedings of the IEEE 31st International Conference on Software Engineering.
1–11.

[57] Jing Xia and Yanhui Li. 2017. Could we predict the result of a continuous
integration build? An empirical study. In Proceedings of the IEEE International

Conference on Software Quality, Reliability and Security Companion. 311–315.
[58] Xin Xia, David Lo, Shane McIntosh, Emad Shihab, and Ahmed E Hassan. 2015.

Cross-project build co-change prediction. In Proceedings of the IEEE 22nd Interna-

tional Conference on Software Analysis, Evolution, and Reengineering. 311–320.
[59] Zheng Xie andMing Li. 2018. Cutting the Software Building Efforts in Continuous

Integration by Semi-Supervised Online AUC Optimization. In Proceedings of the

27th International Joint Conference on Artificial Intelligence. 2875–2881.
[60] Shin Yoo, Robert Nilsson, and Mark Harman. 2011. Faster fault finding at Google

using multi objective regression test optimisation. In Proceedings of the 8th Euro-

pean Software Engineering Conference and the ACM SIGSOFT Symposium on the

Foundations of Software Engineering.
[61] Fiorella Zampetti, Simone Scalabrino, Rocco Oliveto, Gerardo Canfora, and Mas-

similiano Di Penta. 2017. How open source projects use static code analysis
tools in continuous integration pipelines. In Proceedings of the IEEE/ACM 14th

International Conference on Mining Software Repositories. 334–344.
[62] Chen Zhang, Bihuan Chen, Linlin Chen, Xin Peng, and Wenyun Zhao. 2019.

A large-scale empirical study of compiler errors in continuous integration. In
Proceedings of the 2019 27th ACM Joint Meeting on European Software Engineering

Conference and Symposium on the Foundations of Software Engineering. 176–187.

https://eclipsecon.org/2013/sites/eclipsecon.org.2013/files/2013-03-24%20Continuous%20Integration%20at%20Google%20Scale.pdf
https://eclipsecon.org/2013/sites/eclipsecon.org.2013/files/2013-03-24%20Continuous%20Integration%20at%20Google%20Scale.pdf
https://eclipsecon.org/2013/sites/eclipsecon.org.2013/files/2013-03-24%20Continuous%20Integration%20at%20Google%20Scale.pdf

