CLDIFF: Generating Concise Linked Code Differences

Kaifeng Huang® Bihuan Chen* " Xin Peng’
Fudan University Fudan University Fudan University
China China China
Daihong Zhou" Ying Wang" Yang Liu
Fudan University Fudan University Nanyang Technological University
China China Singapore
Wenyun Zhao*
Fudan University
China
ABSTRACT KEYWORDS

Analyzing and understanding source code changes is important in a
variety of software maintenance tasks. To this end, many code differ-
encing and code change summarization methods have been proposed.
For some tasks (e.g. code review and software merging), however,
those differencing methods generate too fine-grained a representa-
tion of code changes, and those summarization methods generate
too coarse-grained a representation of code changes. Moreover, they
do not consider the relationships among code changes. Therefore,
the generated differences or summaries make it not easy to analyze
and understand code changes in some software maintenance tasks.
In this paper, we propose a code differencing approach, named
CLDIFF, to generate concise linked code differences whose granu-
larity is in between the existing code differencing and code change
summarization methods. The goal of CLDIFF is to generate more eas-
ily understandable code differences. CLDIFF takes source code files
before and after changes as inputs, and consists of three steps. First,
it pre-processes the source code files by pruning unchanged declara-
tions from the parsed abstract syntax trees. Second, it generates con-
cise code differences by grouping fine-grained code differences at or
above the statement level and describing high-level changes in each
group. Third, it links the related concise code differences according
to five pre-defined links. Experiments with 12 Java projects (74,387
commits) and a human study with 10 participants have indicated the
accuracy, conciseness, performance and usefulness of CLDIFF.

CCS CONCEPTS

« Software and its engineering — Software maintenance tools;

“K. Huang, B. Chen, X. Peng, D. Zhou, Y. Wang and W. Zhao are with the School of
Computer Science and Shanghai Key Laboratory of Data Science, Fudan University,
China and the Shanghai Institute of Intelligent Electronics & Systems, China.

B. Chen is the corresponding author.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

ASE ’18, September 3-7, 2018, Montpellier, France

© 2018 Association for Computing Machinery.

ACM ISBN 978-1-4503-5937-5/18/09...$15.00
https://doi.org/10.1145/3238147.3238219

679

Code Differencing, Program Comprehension, AST

ACM Reference Format:

Kaifeng Huang, Bihuan Chen, Xin Peng, Daihong Zhou, Ying Wang, Yang
Liu, and Wenyun Zhao. 2018. CLDIFF: Generating Concise Linked Code
Differences. In Proceedings of the 2018 33rd ACM/IEEE International Con-
ference on Automated Software Engineering (ASE °18), September 3-7, 2018,
Montpellier, France. ACM, New York, NY, USA, 12 pages. https://doi.org/10.
1145/3238147.3238219

1 INTRODUCTION

Analyzing and understanding source code changes is important in a
variety of software maintenance tasks. For example, to improve soft-
ware quality, developers often spend a significant amount of time to
comprehend code changes during code review [6, 52]; to resolve merg-
ing conflicts, code change knowledge is required during software
merging [43]; and to efficiently find regression bugs, code change in-
formation is useful for selecting the test cases that need to be rerun
during regression testing [51]. Therefore, a number of code differ-
encing and code change summarization methods have been proposed
to represent code changes at different granularity.

In particular, for code differencing, text-based methods [4, 9, 44,
46, 50] are unaware of the syntactic structure of source code and
compute textual differences that are not easy for further analysis
and understanding. Instead, tree-based methods [16, 17, 19, 21, 24]
directly work at the abstract syntax tree (AST) granularity for gen-
erating fine-grained syntactic code differences. The differences be-
tween two ASTs are in the form of an edit script, a sequence of edit
actions to transform the AST before changes to the AST after changes.
Such edit scripts can be too fine-grained, too scattered, and too long to
understand code changes in some applications (e.g. code review and
software merging), especially for large code changes [24]. Moreover,
the relationships among code changes (e.g. a change to the signa-
ture of a method can result in changes to all the invocations of the
method) are missing, which are in fact important for code change
analysis and understanding (e.g. the related code changes need to
be considered together during code review or software merging).

On the other hand, code change summarization methods [27, 37,
38, 45, 49] generate natural language summaries to describe code
changes, e.g. the motivation behind code changes [49], the commit
message for code changes in a commit [27, 37, 38], and the release

https://doi.org/10.1145/3238147.3238219
https://doi.org/10.1145/3238147.3238219
https://doi.org/10.1145/3238147.3238219

ASE ’18, September 3-7, 2018, Montpellier, France

@ org. spri _scheduling. nfigurati

t.java

@ org.springframework.scheduling. 1

K. Huang, B. Chen, X. Peng, D. Zhou, Y. Wang, Y. Liu and W. Zhao

ler.java

public abstract class ExecutorConfigurationSupport .. {
public void shutdown() {

this.executor.shutdownNow () ;

public class 1

+

private final Map<Object, ListenableFuture<?>> listenableFutureMap = ..;

public ListenableFuture<?> submitListenable (Runnable task) {

ler extends figurati —

1| -
2| + for (Runnable remainingTask : this.executor.shutdownNow()) { ice = 1 O
3| + cancelRemainingTask (remainingTask) ; try {
4| + } 16| - ListenableFutureTask<Object> future = new ListenableFutureTask<>(task, null);
. 7| - .execute lingTask (future, false));
} 18] - return future;
9] + Listenabl Object> listenableFuture = new ListenableFutureTask<>(task, null);
5| + protected void cancelRemainingTask (Runnable task) {..} 0] + ; listenableFuture) ;
) 21| + return listenableFuture;
}
catch (RejectedExecutionException ex) {..}
@ org.spri .scheduling. T 1 .java }
public class 1 extends nfigurat t . (public <T> ListenableFuture<T> submitListenable(Callable<T> task) {
] ice - 1 0
6| + private final Map<Runnable, Object> decoratedTaskMap = ..; try {
2| - ListenableFutureTask<T> future = new ListenableFutureTask<>(task);
protected ExecutorService initializeExecutor (ThreadFactory threadFactory, 23| - -execute lingTask (future, false));
Rej ionHandler rej ionHandler) { 24| - return future;
. 5| + ListenableFutureTask<T> listenableFuture = new ListenableFutureTask<>(task);
7| - super. execute (5)) ; 26| + , listenableFuture) ;
8| + Runnable = . (27| + return listenableFuture;
9| + if (decorated !'= command) {
10| + .put command) ; catch (RejectedExecutionException ex) {..}
uf + } }
2| + super.execute (decorated) ;
28| + private void (ice , ListenableFutureTask<?> listenableFuture) {..}
}
29| + @Override
13| + G@Override 30| + protected void cancelRemainingTask (Runnable task) {..}
14| + void cancelRemainingTask (Runnable task) {..}

} }

Figure 1: An Example of Code Changes from Commit 3c1adf7 in spring-framework

note for code changes in a release [45]. These methods are mostly
developed for the ease of documentation of code changes. Thus, the
generated summaries are usually too coarse-grained to be useful
for in-depth analysis and understanding of code changes (e.g. code
review and software merging).

To address the problems with existing methods and to provide
more easily understandable code differencing information required
for tasks such as code review and software merging, we propose and
implement a novel code differencing approach, named CLDIFF. It is
designed to generate a concise, linked representation of code dif-
ferences, whose granularity is in between the existing code differ-
encing and code change summarization methods. In other words,
CLDIFF not only generates short and informative code differences,
but also establishes their relationships.

Technically, CLDIFF takes as inputs source code files before and
after changes (e.g. in a patch, commit or release), and works in three
steps. First, CLDIFF pre-processes the source code files by pruning
unchanged declarations from parsed ASTs. The purpose is to avoid
unnecessary differencing analysis on unchanged AST elements in
the second step. Second, CLDIFF generates concise code differences
via grouping the fine-grained code differences, generated by Gum-
TREE [17], at or above the statement level and describing high-level
changes in each group. The underlying idea is to put together the
fine-grained code differences that are scattered but related to a high-
level AST element. Third, CLDIFF links the related concise code dif-
ferences according to five pre-defined links. The motivation is to
consider such related code changes as a whole in some tasks.

We have implemented CLDIFF for Java, and conducted experi-
ments with 12 open-source Java projects (i.e. 74,387 commits in to-
tal) to evaluate the accuracy, conciseness and performance of CLD-
IFF as well as a human study with 10 participants to evaluate the use-
fulness of CLD1FF. The results have demonstrated that CLDIFF gen-
erated concise code differences and established their links with an ac-
curacy of 99% and 98%, respectively; and compared to GUMTREE, CLD-
IFF generated more than 80% shorter edit script for 48% commits with
72% shorter time, and was more useful in change understanding.

In summary, this work makes the following contributions.

680

e We proposed a code differencing approach named CLDIFF to gen-
erate concise linked code differences.

e We implemented CLD1FF for Java, and provided visualization for
the generated concise linked code differences.

e We conducted experiments with 12 open-source Java projects as
well as a human study with 10 participants to demonstrate CLD-
IFF’s accuracy, conciseness, performance and usefulness.

2 PRELIMINARIES

AST. A source code file can be parsed into an abstract syntax tree
(AST), which is a rooted, labeled, ordered tree. Each node has a label
to indicate its type representing a structural element (e.g. declara-
tion) of the source code. Some nodes have a string value to indicate
the actual token (e.g. variable name) in code.

Example 2.1. Fig. 2(a) and 2(b) give the two ASTs before and after
the code changes at Line 7-12 in Fig. 1. We only show partial ASTs
for clarity. The AST in Fig. 2(a) contains eight nodes. Specifically,
node ns has three child nodes ng, n7 and ng, and its label is Method-
Invocation. The label of n¢, ny and ng is SimpleName. ng, n7 and ng re-
spectively denote the receiver, name and argument of the method in-
vocation; and their value is taskDecorator, decorate and command.

AST Node Type Hierarchy. The type of the root node of an AST
is CompilationUnit, whose child nodes can be of the type BodyDec-
laration. The common subtypes of BodyDeclaration are TypeDecla-
ration (class or interface declaration), MethodDeclaration (method
or constructor declaration), Initializer (static or instance initializing
block), FieldDeclaration (field declaration), and EnumDeclaration
(enumeration declaration). Declarations can contain a list of state-
ments which have 22 different statement types (e.g. IfStatement and
VariableDeclarationStatement). Statements can contain a list of ex-
pressions (e.g. MethodInvocation). Therefore, declaration, state-
ment and expression have a decreasing granularity. However, they
can be nested with each other.

AST Differencing. Given two ASTs before and after code changes
(i.e. ASTy, and AST,), AST differencing tools can generate an edit
script (i.e. a sequence of edit actions). By sequentially applying the

CLDIiFF: Generating Concise Linked Code Differences

|-Block (n;) <n,, ng>

| -ExpressionStatement (n,) <ny, N3p>
| -SuperMethodInvocation (n,) <ny, ny>

| -SimpleName :execute (n,) <ng, nyp>

| -MethodInvocation (ns) <ng, nys>

| -SimpleName : taskDecorator (ng) <ng, nie>

| -SimpleName:decorate (n,) <0, nyp>

| -SimpleName : command (ng) <ng, ny>

(a) Partial AST Before Changes (c) Mapping by GUMTREE

add(nyo, ny, 1)
add(ny,, n,, 2)
add(ny;, nyo, 1)
add(n;;, nyo, 2)
add(ngo, nys, 1)

|-Block (no)

|-VariableDeclarationStatement (ny,)

| |-SimpleType:Runnable (ny;)

| | |-SimpleName:Runnable (n;,)

| |-VariableDeclarationFragment (ny;)
| -SimpleName :decorated (n;,)
|-MethodInvocation (nys)

| -SimpleName : taskDecorator (n;q)

| -SimpleName:decorate (n,;)

add(nz;, ny,, 2)
add(ny,, ny;, 1)
add(n;,, ny;, 1
move (n,,

| -SimpleName : command (n,s) add(ny, ny, 1)

-IfStatement (n,,) add(nz,, nyo, 2)

| -InfixExpression:!= (n,) add(nz, nz, 1)
| |-SimpleName:decorated (n,;) add(n;, n3, 2)

| |-SimpleName:command (n,;) add(ns, nzq, 1)

|-Block (n,s3) add(nz, nys, 1)

| -ExpressionStatement (n,,) add(ng;, nzs, 2)

| -MethodInvocation (n,s) add(nzg, nzs, 3)

| -SimpleN: (nz6) add (ng, Nps, 4)

| -SimpleName:put (n,;)

2 (d) Edit Script by GUMTREE
| -SimpleName:decorated (n,g)

| -SimpleName : command (ns)
-ExpressionStatement (ns;)
| -SuperMethodInvocation (ns;)
| -SimpleName:execute (nj;)

addVariableDecl ti

addIfStatement (n;,, n;, 2)

updateExpressionStatement (n,) by
addSimpleName (ny;, ny, 2)

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| (A, ny, 1)
|

| -SimpleName :decorated (ny3) moveMethodInvocation (ns, ny;, 2)

(b) Partial AST After Changes (e) Edit Script by CLDIFF

Figure 2: An Example of Differencing on Line 7-12 in Fig. 1

edit actions, we can convert ASTy, to AST,. Here we apply the state-
of-the-art tool, GUMTREE [17], to generate fine-grained code differ-
ences. GUMTREE works in two steps. First, it uses heuristics to derive
a mapping between nodes in two ASTs. The mapping is a set of
pairs (np, ng), where node ny, in AST}, is mapped to node n, in AST,.
Then, based on the mapping, it generates the edit script that con-
tains four kinds of edit actions, i.e. update, add, delete and move.

o update(n,v) replaces the value of node n with a value v.

e add(n,p,i) adds a new node n as the i-th child node of node p if
p is not null. Otherwise, n becomes the new root node and has
the previous root node as its only child node.

o delete(n) removes a leaf node n.

e move(n, p, i) moves node n to be the i-th child node of node p.
All descendant nodes of n are moved together with n.

Example 2.2. Fig. 2(c) give the mapping, generated by GUMTREE,
between the nodes in the two ASTs in Fig. 2(a) and 2(b). Here all
the eight nodes in Fig. 2(a) are mapped. Based on this mapping,
GUMTREE generates an edit script containing 18 edit actions, as listed
in Fig. 2(d). Specifically, one of the edit actions is move(ns, n13, 2),
which moves the method invocation rooted at ns to be the second
child node of a variable declaration fragment rooted at njs.

3 MOTIVATION AND OVERVIEW

In this section, we motivate the proposed approach with an example
before introducing our approach overview.

3.1 Motivation Example

Fig. 1 lists three source code files changed in a commit taken from
spring-framework. In class @, a for structure (Line 2-4) is added,
where a newly-declared method (Line 5) is invoked. This new method
is then overridden in both class @ (Line 13-14) and class @ (Line
29-30) because @ and @ inherit @. In class @, a field is declared
(Line 6), a variable is extracted (Line 7-8), and both of them are used
in a newly-added if structure (Line 9-11). In class @, a filed is de-
clared (Line 15) and then used in a newly-declared method (Line

681

ASE ’18, September 3-7, 2018, Montpellier, France

28). This new method is then invoked in two similar code changes
(Line 16-21 and 22-27). This example is used throughout the paper.

Given the code changes at Line 7-12 in class @ in Fig. 1, we present
the two partial ASTs before and after the changes in Fig. 2(a) and
2(b). The added nodes are highlighted in green and the moved nodes
are highlighted in yellow. Here no deletion or update is involved. For
these changes, GUMTREE generates the edit script shown in Fig. 2(d),
which means that 17 new nodes are added and one node is moved.

However, some edit actions (e.g. those underlined ones in Fig. 2(d))
are related to a high-level AST element (e.g. variable declaration state-
ment), but are scattered across the edit script. Such related but scat-
tered edit actions, although being exhibited together in visualiza-
tion, make the follow-up analysis and understanding of code changes
difficult. For example, in code review, developers will recognize the
insertion of a variable declaration statement intuitively rather than
thinking of the fine-grained tree operations. Similarly, in software
merging, a newly-added variable declaration statement will be con-
sidered as a whole to resolve a conflict. Therefore, to generate more
easily-understandable code differences for both developers and au-
tomatic analysis tools, we try to obtain high-level concise code dif-
ferences at or above the statement level. Fig. 2(e) shows the edit
script generated by our approach. It has four high-level edit actions,
i.e. adding a variable declaration statement, adding an if statement,
updating an expression statement by adding a simple name, and mov-
ing a method invocation to be a part of the newly-added variable
declaration statement (see approach details in Section 4.2).

On the other hand, the relationships among code changes are
not considered in GUMTREE but are actually helpful in the analysis
and understanding of code changes. As an example, for the newly-
declared method at Line 5 in Fig. 1, it is invoked at Line 3 and overrid-
den at Line 13-14 and 29-30. As another example, the code changes
at Line 16-21 are almost the same to the code changes at Line 22-27.
Such relationships capture the causality of code changes, which can
speed up the process of code review and improve the accuracy of
merging conflict resolution. Therefore, we attempt to establish the
links among generated high-level code differences (see approach
details in Section 4.3).

3.2 Approach Overview

Fig. 3 presents an overview of CLDIFF. The inputs of CLDIFF are a set
of pairs of source code files before and after changes (e.g. in a com-
mit, patch or release). The outputs can be visualized by our web-
based tool. CLDIFF works in three steps, pre-processing (Section 4.1),
generating concise code differences (Section 4.2) and linking code
differences (Section 4.3), to generate concise linked code differences.
First, since code changes often affect a small part of a source code
file and a large amount of code remains unchanged, we pre-process
the pairs of source code files to remove some unchanged code in or-
der to avoid unnecessary differencing analysis. To this end, CLDIFF
first parses every pair of source code files into an AST pair, and then
prunes unchanged declaration-level elements from the AST pair
based on a hashing technique. Here we select declaration as the
pruning unit to strike a balance between feasibility and scalability.
Second, as fine-grained code differences (in the form of edit ac-
tions) are often related to high-level AST elements but scattered across
the edit script, we generate high-level concise code differences at or

ASE ’18, September 3-7, 2018, Montpellier, France

Generating Concise
Pre-Processing Code Differences
Source Code File Pairs :

%
Pruned AST Pairs

add @ delete @ update move

Concise Code Differences

K. Huang, B. Chen, X. Peng, D. Zhou, Y. Wang, Y. Liu and W. Zhao

add @ delete @ update move

Linking
Code Differences

Visualized Code Differences

Linked Code Differences

Figure 3: An Overview of CLDIFF

above the statement level. Specifically, CLD1FF first uses GUMTREE [17]
to obtain the mapping and edit actions for each pruned AST pair.
Then, it traverses the edit actions and the pruned AST pair to itera-
tively group edit actions that are related to an AST element at or
above the statement level. Finally, it generates a concise code differ-
ence for each group to capture its high-level changes. Here we choose
statement as the suitable granularity of code differences to better
reflect developers’ intuition about code changes.

Third, since code changes are often causally related with each
other, we establish links among the generated concise code differ-
ences. Specifically, based on the concise code differences for each
pair of source code files, CLDIFF checks whether there exists a code
change link between two concise code differences according to five
pre-defined links (e.g., Def-Use link).

4 METHODOLOGY

In this section, we elaborate each step of CLD1FF (Fig. 3) in detail.
Our approach is general, although we explain our approach for Java.

4.1 Pre-Processing

In the first step, we pre-process the source code files to prune some
unchanged declarations from parsed ASTs.

Given each pair of source code files (3, fu), we parse it into an AST
pair (ASTy, AST,), where ASTy, is the AST of the file f;, before code
changes and AST, is the AST of the file f, after code changes. Then,
we traverse ASTj, to compute two hash values for the node whose la-
bel is a field, enumeration, method, inner class, or initializor decla-
ration, and store the AST node to a map whose key is the two hash
values. One hash value is calculated over the canonical name of the
residing class and is used to distinguish the same declaration in both
outer and inner classes. Another hash value is calculated over the cor-
responding declaration code (i.e. the subtree rooted at the node). Fi-
nally, we traverse AST, to compute the two hash values for each dec-
laration node, and prune the node (including all its descendant nodes)
from both AST}, and AST,, if the two hash values find a match in the
map. The output is a pruned AST pair (AST;, AST}). Notice that as
comments and Javadocs are not treated as code, they are removed
from ASTs beforehand.

4.2 Generating Concise Code Differences

In the second step, we generate concise code differences from fine-
grained code differences. Our underlying idea is to put fine-grained
code differences within a statement or declaration AST element to
a group and describe high-level changes in the group.

Specifically, given a pruned AST pair (AST;, AST}), we use Gum-
Tree [17] to generate the mapping M and the edit script A between
the two ASTs. Recall that M maintains the mapped AST node pairs
and A stores the edit actions (Section 2). Then, we traverse the edit

682

actions in three phases to group edit actions and generate concise
code differences.

Phase 1. Different from update, add and delete actions that only
affect one atomic node but not its descendant nodes, move actions
move the whole subtree rooted at one node. Therefore, a move ac-
tion can already reflect high-level concise code changes. In that sense,
for each move(n, p, i) € A, we generate a concise code difference
moveX(n, p, i), where X is the label of node n and explicitly reflects
the syntactic information, and remove move(n, p, i) from A.

Example 4.1. The edit script in Fig. 2(d) contains one move action
move(ns, n13, 2) that moves a whole method invocation. Thus, CLD-
IFF generates moveMethodInvocation(ns, nis, 2).

Phase 2. Some statements or declarations have simple structures,
while others contain complex ones with statements or declarations
nested as composing elements. In that sense, an add or a delete ac-
tion on a statement or declaration AST node is mostly accompanied
by simultaneous add or delete actions on its composing elements; i.e.
awhole or a part of a statement or declaration is added or deleted to-
gether. Hence, we group edit actions with respect to the composing
elements of a statement or declaration, and distinguish whether a
whole or a part of a composing element is added or deleted together.

Before introducing how to group edit actions, we first categorize
all statements and declarations into two categories and define their
base and composing elements.

e C1. This category includes statements and declarations whose
child nodes N can contain statements or declarations, e.g. IfState-
ment, TryStatement, MethodDeclaration and TypeDeclaration.
We define each node n € N that is a non-block statement or a dec-
laration as a composing element, each child node of the node
n € N which is a block statement as a composing element, and
all the other nodes in NV and their parent node as a base element.

e (2. This category contains statements and declarations whose
child nodes do not contain statements or declarations, e.g. Expres-
sionStatement, VariableDeclarationStatement, ReturnStatement
and FieldDeclaration. They are defined as a base element and do
not have composing elements.

Example 4.2. InFig. 2, nqg is a variable declaration statement that
belongs to C2; and thus ng and all its descendant nodes are consid-
ered as the base element of nyg. ny9 is an if statement which belongs
to C1; and hence nq9, nyg, n21, n22 and ny3 are considered as the base
element of ny9 (representing the wrapper of the if statement intu-
itively), while ny4 and all its descendant nodes are considered as a
composing element of n19 (indicating the statement in the if state-
ment body). Similarly, the base element of a method declaration
denotes the method with an empty body, while its composing ele-
ments represent the statements in the method body.

CLDIiFF: Generating Concise Linked Code Differences

Then we introduce how to group edit actions. Specifically, for
each add(n, p, i) € A where n is a statement or declaration, we put
this action to 8 which maintains the add actions on the base ele-
ment, locate n on AST, (because add actions are applied on AST,),
and traverse n’s descendant nodes in a depth-first way while distin-
guishing base and composing elements. For the base element, for
each traversed node m, if m is newly-added by an add action a, we
group a to B and continue the traversal on m’s child nodes; other-
wise (m is not newly-added, i.e. there exists a match in M for m), we
mark B as a partial addition, stop our traversal on m’s child nodes,
but continue the traversal on other nodes in the base element. After
completing the traversal, if B is marked as a partial addition, we
generate a concise code difference addXP(n, p, i), where X is the
label of n, P denotes partial addition, and n is the subtree result-
ing from the actions in 8B, and remove B from A; otherwise (the
whole base element is newly-added), we traverse the composing
elements to determine whether they are all newly-added. If yes,
we store all these add actions to C, generate a concise code differ-
ence addX(n, p, i), where X is the label of n and n is the subtree
resulting from the actions in 8 and C, and remove 8 and C from
A. If not, we generate addXP(n, p, i) and remove B from A. Intu-
itively, if one whole statement or declaration is added, we generate
one code difference; otherwise, we generate code differences on its
base and composing elements separately.

On the other hand, for each delete(n) € A where n is a statement
or declaration, we traverse n on ASTy, (as delete actions are applied
on AST}) in the same way as for add actions, and generate either
deleteXP(n) or deleteX(n).

Example 4.3. When traversing the edit script in Fig. 2(d), we first
analyze add(nig, n1, 1), which adds a variable declaration statement
that belongs to C2. We group it with add(n11, n19, 1), add(n13, nio, 2),
add(ny2,n11,1) and add(ni4, n13,1) in B. As B is marked as a par-
tial addition, we generate the first code difference in Fig. 2(e). Then
we analyze add(ny9, n1, 2), which adds an if statement of C1. We
group it with add(ny, n19, 1), add(nz1, no, 1), add(naz, no, 2) and
add(nz3, n9, 2) in B. As B is not marked, we further group add(na4,
na3, 1) with add(nas, na, 1), add(nag, n2s, 1), add(na7, n2s, 2), add(nasg,
ns, 3) and add(nag, n2s, 4) in C, and then generate the second code
difference in Fig. 2(e) that adds a complete if statement.

Example 4.4. Fig. 4 shows another case of generating concise
code differences. When traversing the edit script in Fig. 4(e), we first
encounter add(nis, ny, 1), which adds an if statement that belongs
to C1. We group it with all the other add actions in Fig. 4(e) in B. As
8B is not marked, we further analyze its composing elements. How-
ever, the composing element is not newly-added but moved. Thus,
we generate the first code difference in Fig. 4(f), which actually adds
a wrapper of an if statement.

Phase 3. After Phase 1 and Phase 2, the remaining actions in A
are only add, delete and update actions on non-statement and non-
declaration AST nodes. Given that some actions are applied within
the same statement or declaration, we group such actions together
with respect to their common ancestor statement or declaration. In
particular, for each traversed add(n, p, i) € A, we locate n’s closest
ancestor node m that is a statement or declaration in AST,, re-
place m with its mapping m’ in AST}, using M if m’ exists, and put
add(n, p, i) to a list Qp, that maintains all the actions applied within

683

ASE ’18, September 3-7, 2018, Montpellier, France

org.springframework.web.servlet.mvc.condition. PatternsRequestCondition. java

public class

tCondition.. {

public List<String> (String 1) {
matches.sort (this. o 1)i
if (matches.size() > 1) {
matches. sort (this. . @));
}
return matches;
}
}

5w e
+ o+

(a) An Example of Code Changes from Commit b104897 in spring-framework

Block (ny)

- <n;, N>
. <y, na>
| -ExpressionStatement (n,) Soar Paa?
| |-MethodInvocation (n;) 3
et : <ng, mp>
| |-SimpleName:matches (n,)
" N <ns, Nys>
| |-SimpleName:sort (nj) o s
| I-MethodInvocation (n) S
o <n,, ny>
| |-FieldAccess (n;)
= N N <ng, Nyg>
| | |-ThisExpression (ng) o s
| | |-SimpleName:pathMatcher (n,) Pt
| | -SimpleName : getPatternComparator (n;o) 0r 230
| <nj;, Ny>

| -SimpleName : lookupPath (n,;)
| -ReturnStatement (n,,)
| -SimpleName :matches (n;3)

(b) Partial AST Before Changes

<npz, nzp>
<ny3, Ny>

(d) Mapping by GUMTREE

Block (n;,) add(n;5, n,, 1)
I=... add(nye, ny5, 1)
|-I£Statement (ny5) add(ngy, nys, 2)
| |-InfixExpression:> (n;¢) add(ny;, ny, 1)
| | |-MethodInvocation (n;;) add (nyy, nae, 2)

| | |-SimpleName:matches (n,g)
| | |-SimpleName:size (n;s)

| |-NumberLiteral:1 (ng)
|-Block (ny;)

move (n;, ny, 1)
add(nyg, ny;, 1)
add(n;s, ny7, 2)

(e) Edit Script by GUMTREE

|

I

|

I

| |-ExpressionStatement (n,,)

I | -MethodInvocation (n,s)

I | -SimpleName:matches (n,,)
| |-SimpleName:sort (n,s)
I

|

|

I

|

I

|

addIfStatementP(n;s, n,, 1)
moveExpressionStatement (n,, n,, 1)
|-MethodInvocation (nze)
|-FieldAccess (ny;)
| |-ThisExpression (n,g)
| |-SimpleName:pathMatcher (ngs)
| -SimpleName : getPatternComparator (ns)
| -SimpleName : lookupPath (nj;)
-ReturnStatement (nj;)
| -SimpleName :matches (nj;)

(c) Partial AST After Changes

(f) Edit Script by CLDIFF

Figure 4: An Example of Concise Code Differences

m. Similarly, for each traversed delete(n) or update(n,v) in A, we
find n’s closest ancestor node m that is a statement or declaration in
ASTy,, and store delete(n) or update(n, v) to Qp,. After the traversal,
for each Q;,, we generate a concise code difference updateX(m) by Y
where X is the label of m and Y represents the actions in Q,, with
the syntactic information highlighted in their action names. In this
way, all originally-scattered edit actions on one statement or dec-
laration are grouped together for the ease of analysis and under-
standing. Unlike our add and delete actions, m is not a subtree but
an atomic node to inform that the actions in Q,, are applied on
scattered descendant nodes of m.

Example 4.5. Following Example 4.1 and 4.3, there is only one re-
maining edit action add(nss3, n3, 2) in the edit script in Fig. 2(d) after
Phase 1 and Phase 2. n33’s closest ancestor node that is a statement
or declaration in Fig. 2(b) is n3¢, mapped to ny in Fig. 2(a). Hence,
updateExpressionStatement(nz) by addSimpleName(ns3, n3, 2) is
generated, as shown by the last code difference in Fig. 2(e).

4.3 Linking Code Differences

In the third step, we establish code change links among the gener-
ated concise code differences according to five pre-defined links. Such
links reflect the causality of code changes.

We first define the five kinds of code change links, which are not
meant to be exhaustive but to demonstrate that a small set of links
are already useful in change understanding. They can be extended to
incorporate new kinds of links.

e Def-Use Link. If the declaration of a variable, field or method is
changed (i.e. added, deleted, updated or moved) by code difference

ASE ’18, September 3-7, 2018, Montpellier, France

211 else { 21 }
212 this. executor. shutdownNow(); =¥

214 awaitTerminationIfllecessary(this. executor);
216 3
218 e

219 * lait for the executor to terminate, according to the value of the
2 “ {flink #setanaitTerminationSeconds “ausitTerminationSeconds"} property

i

private void ausitTerminationIfNecessary(ExecutorService executor) {
if (this.auaitTerminationseconds > @) {
try {
if (lexecutor.auaitT

f.Use: cancelRemainingTask invoked in shutdown
rerride-Method: cancelRemainingTask overridden in
oolTaskExecutorjava

+ Oveniide-Method: cancelRemainingTask overridden in IE

if (logger

Har

} ThreadPoolTaskScheduler java

catch (InterruptedException ex) {
if (logger.isharnenabled()) {

b

else {
for (Runnsble remainingTask : this.executor.shutdomniiow()) {
cancelRemainingTask(remainingTask) ;

¥

awaitTerminationIfNecessary(this.executor);

protected void cancelRemainingTask(Runnable task) {
if (task instanceof RunnableFuture) {
((RunnableFuture<?>) task).cancel(true);

K. Huang, B. Chen, X. Peng, D. Zhou, Y. Wang, Y. Liu and W. Zhao

addEnhancedForP

moveMethodinvocation

addExpressionStatement

* Cancel the given remaining task which never commended execution,

* as returned from {@link ExecutorservicesishutdomnNow()}-

* @param task the task to cancel (potentially a {@link RunnableFuture})
* @since 5.0.5

* @sce #shutdown ()
* @see RunnableFuturescancel (boolean)

addMethodDeclaration

Figure 5: A Snapshot of Our Visualization Tool

d1, the usage of the variable, field or method can be changed by ds.

We define the link between d; and dz as a Def-Use link d E do.
o Abstract-Method Link. If the declaration of an abstract method
in a class is changed by dj, the implementation of the abstract
method in each sub-class must be changed by da. We define the

link between dy and dy as an Abstract-Method link dq ﬂ> ds.
e Override-Method Link. If the declaration of a method in a class

is changed by dj, the implementation of the method might be

changed through override in each sub-class by dz. We define the

link between dy and ds as an Override-Method link d; % ds.

o Implement-Method Link. If the declaration of a method in an in-
terface is changed by dj, the implementation of the method must
be changed in each class that implements the interface by dy. We
define the link between d; and dy as an Implement-Method link

M
di — ds.

o Systematic-Change Link. If two code differences d; and d3 are sim-
ilar, they might be caused by systematic changes (e.g. refactor-
ing [35] and recurring bug fixes [47]). We define the link between

dq and dy as a Systematic-Change link d; ﬁ) do.

Then, we introduce how to establish these links based on concise
code differences D; for each pruned AST pair. Assuming that there
are totally k AST pairs,i.e.1 < i < k. Specifically, to establish Def-
Use links, we first find each d € D; that is applied on a variable dec-
laration statement, a field declaration or a method declaration, and
extract the name of the variable, field or method. Then, we locate
every e € D; that is within the same scope (i.e. for a variable decla-
ration statement, the scope is its enclosing method declaration; and
for a field or method declaration, the scope is its enclosing class dec-
laration) and involves a variable, field access or method invocation

with the same name, and establish the link d E]e e. Here we only
consider the Def-Use links within a limited scope; e.g. we do not
consider that a method declaration might be used in another class.

To build Abstract-Method, Override-Method or Implement-Method
links, we first find each d € D; that is applied on an abstract method
declaration, a method declaration or an interface method declara-
tion, and extract the method signature and the name of the enclosing
abstract class, class or interface. Then, we find every e € Dj (j # i)
that is applied on such a method declaration that it has the same
method signature and its enclosing class extends a class or imple-

ments an interface with the same name, and construct the link

AM oM M
d—e,d— cecord —e.

684

To construct Systematic-Change links, for each delete, add or move
action d € D; that is applied on node ng, we first get each delete,
add or move action e € D; (e # d) that is applied on n, whose label
is the same to ny. Then, we check whether the size of the grouped
edit actions (see Section 4.2) for nz and n, is the same. If yes, we
compute the bi-gram similarity [2] between the code snippets cor-
responding to the subtrees rooted at ng and n,. If the similarity is

large than or equal to 0.8, we build the link d =, e. For each update
action, the overall procedure is similar but the similarity computa-
tion is different. Since our update actions often group a set of fine-
grained edit actions that are scattered, ny and n, are atomic nodes.
Hence, we get the subtrees rooted at ny and n, from the pruned
AST pair (i.e. either from both AST}, and AST, or only from AST}, de-
pending on whether n; and n, can be respectively mapped in their
M), and compute the bi-gram similarity. Intuitively, this checks
whether the changed code before and after changes is similar.

It is worth mentioning that our strategy of establishing links is
designed to be heuristic and lightweight and directly work at the
source code level, but not rely on heavyweight program analysis
techniques. Our assumption is that code changes are often focused,
and such a simple strategy is often sufficient to achieve a balance
between accuracy and scalability. We leave it as our future work to
investigate the cost-benefit of using heavyweight program analysis
techniques to establish links.

Example 4.6. For the code changes in Fig. 1, CLDIFF correctly es-
tablishes all the links without any false positive or false negative.
For example, it constructs a Override-Method links between the
addMethodDeclaration for Line 5 and the addMethodDeclaration for
Line 14. It establishes a Def-Use link between the addVariableDecla-
rationStatementP for Line 8 and the addIfStatement for Line 9-11. It
builds a Systematic-Change link between the updateVariableDeclara-
tion for Line 16, 19 and the updateVariableDeclaration for Line 22, 25.

5 IMPLEMENTATION AND EVALUATION

We have implemented CLDIFF for Java with 30K lines of Java code,
and developed a web-based tool to visualize our concise linked code
differences with 4.6K lines of JavaScript code. Fig. 5 gives a snapshot
of our visualization tool. A concise code difference is visualized via
highlighting the code and prompting the action name. A click on one
of the highlighted code snippets will pop a window to show the links
that are related to this code difference, while a click on one of the
links will navigate to the corresponding code difference. CLDIFF is
open-sourced and is available at [1].

CLDIiFF: Generating Concise Linked Code Differences

Table 1: Projects Used in Our Experiments

ASE ’18, September 3-7, 2018, Montpellier, France

Table 2: Accuracy of CLDIFF

[Projects [Creation Date [LOC [Stars [Commits Proiect [Concise Code Differences [Links
RxJava 2012-03 2700K 32.6K 4226 ! [Size T Accuracy [Size [Accuracy |
elasticsearch 2010-02 889.2K 30.5K 29929 RxJava 99 1.00 26 1.00
okhttp 2011-05 60.0K 26.3K 2784 elasticsearch 88 1.00 24 1.00
retrofit 2010-09 224K 27.5K 1090 okhttp 88 0.98 52 0.85
spring-framework 2008-07 673.5K 20.7K 12838 retrofit 78 1.00 31 1.00
zxing 2007-10 156.0K 18.3K 1793 spring-framework 175 1.00 69 0.99
netty 2008-08 258.6K 13.7K 11047 zxing 83 1.00 36 1.00
fastjson 2011-07 170.0K 13.3K 2304 netty 122 0.98 42 1.00
guava 2009-06 342.0K 23.7K 3925 fastjson 95 0.98 37 1.00
glide 2012-12 73.6K 21.4K 1745 guava 167 0.99 54 1.00
mybatis-3 2010-05 96.0K 7.4K 1189 glide 154 0.99 45 1.00
MPAndroidChart 2014-04 26.7K 21.8K 1517 mybatis-3 129 1.00 38 1.00
MPAndroidChart 178 0.98 58 1.00

5.1 Evaluation Setup

To evaluate the effectiveness of CLDIFF, we conducted experiments
using 12 highly-stared open-source Java projects from GitHub by com-
paring CLDIFF with one of the state-of-the-art AST differencing tools,
GuMTREE [17]. Table 1 reports the statistics about projects, includ-
ing project name, creation date, lines of code, the number of stars, and
the number of commits. The number of commits is computed by re-
moving the commits that are not related to code changes (e.g. changes
to configuration files) or only related to testing code changes. In
total, 74,387 commits are used. We can see that these projects are all
large-scale and popular, and have a long evolution history. This en-
sures that these projects contain rich and diverse code changes. Gum-
TREE was configured with the same setting as the one used in [17].

On the other hand, to evaluate the usefulness of CLDIFF, we con-
ducted a human study with 10 participants to understand the changes
in 10 commits. In particular, from our school, we hired 10 graduate
students who had at least 2-years experience in Java programming.
One of them had 6-years experience; and the average experience
was 4 years. All the participants are not the authors of this paper.
Besides, we randomly selected 10 commits from those 12 projects
with the criterion that at most 6 Java source files were involved in
a commit. This is to control the complexity of understanding code
changes and thus keep the concentration of participants.

Using the previous setup, we conducted the experiments and the
human study to answer the following research questions.

e RQ1: How is the accuracy of the generated concise code differ-
ences and the established links by CLD1FrF? (Section 5.2)

e RQ2: How is the size of the generated concise code differences
of CLDIFF compared to GUMTREE? (Section 5.3)

e RQ3: How is the performance overhead of CLDIFF compared to
GUMTREE? (Section 5.4)

e RQ4: How is the usefulness of CLDIFF in understanding code
changes compared to GUMTREE? (Section 5.5)

5.2 Accuracy Evaluation (RQ1)

To evaluate the accuracy of CLDIFF’s generated concise code differ-
ences and established links, we randomly chose 10 commits from
each project, and manually analyzed the results of CLDIFF on them.
Table 2 shows the accuracy results, where we also reported the total
number of generated code differences for the 10 commits and the
total number of established links under column Size. In total, we
analyzed 1,456 code differences, and achieved an accuracy of 99%;
and we analyzed 512 links and achieved an accuracy of 98%.

685

For all the 12 inaccurate code differences, we found that all of them
were caused by the inaccurate mapping in GUMTREE (because CLD-
IFF uses the mapping that is heuristically generated by GUMTREE). In
detail, 10 of them were caused by missed mappings, i.e. two AST nodes
that should have been mapped are actually not mapped. As a result,
GUMTREE generates a delete and an add action instead of a move ac-
tion, making CLDIFF fail to generate a move action as well. In addi-
tion, two of them were caused by wrong mappings, i.e. two AST nodes
that should not have been mapped are actually mapped. Thus, both
GUMTREE and CLDIFF generate a code difference that does not re-
flect the real code change, confusing the change understanding.

Among the 512 links, our five pre-defined links all occurred ex-
cept for Implement-Method links; and around 91% of them were Def-
Use links. We found totally 9 inaccurate links and all of them were
Def-Use links. They were caused by our heuristic nature of establish-
ing links; e.g. when a local variable shares the same name as a field in
its enclosing class, our approach might construct wrong links. This
high accuracy is surprising but still reasonable as code changes are
often focused and our simple strategy only analyzes those changed
code that contain small sources of inaccuracy.

Summary. Based on the results in Table 2, we can positively an-
swer RQ1 that CLDIFF had a high accuracy of 99% and 98% for the
generated concise code differences and established links.

5.3 Conciseness Evaluation (RQ2)

To analyze whether CLDIFF generates concise (or short) code differ-
ences compared to GUMTREE, we measured the length of the edit
script (i.e. the number of actions in the script) for each commit. Since
the update actions in CLDIFF simply put a set of fine-grained actions
together but not represent a complete action like our add and delete
actions do, we used the number of those fine-grained actions for the
counting for our update actions to have a fair comparison. Overall,
for 90% commits, CLDIFF generated shorter edit scripts than Gum-
TRrEE. For the remaining 10% commits, CLDIFF had the same length
as GUMTREE, meaning that the fine-grained edit actions cannot be
grouped at or above the statement level.

Table 3 presents the maximum and median length for each project
(the minimum lengths are omitted as they are all one), which shows
that CLDIFF significantly shortened the edit script. Fig. 6 further
shows the length ratio of CLDIFF to GUMTREE with respect to each
commit in each project. For all the projects, the median ratio was
around 0.2. Numerically, for 48% commits, CLDIFF shortened edit
scripts by more than 80%. This owes to our high-level add and delete
actions, describing a group of fine-grained add and delete actions.

ASE ’18, September 3-7, 2018, Montpellier, France

Table 3: Length of Generated Code Differences

Project Maximum Median]

| GumTree | CiDirF [GumTree | CiLDIFF |
RxJava 56905 4727 107.5 10
elasticsearch 317867 9695 62 11
okhttp 17325 1039 79 14
retrofit 4738 360 51 8
spring-framework 102587 5972 46 9
zxing 14580 915 36 8
netty 48401 6411 38 8
fastjson 69996 1889 54 8
guava 23820 4276 46 4
glide 23592 902 59 10
mybatis-3 9592 336 31 7
MPAndroidChart 18123 2920 100 21
[Average [58961 3287 59 [10

+ +

1.0 * t

®
++
A

0.

0.

o

0,

S

0.

o

0.0

o s & & F O s L & & &
2 s & F S & ¢ S $ S
« g ¢ & & 0 & $
& 2 $
& $ &
& §°' &
N <

Table 4 lists the maximum and median group size for our add and
delete actions. These maximum cases often correspond to the addi-
tion or deletion of an entire method declaration. The median size
was respectively 8 and 6 for our add and delete actions.

Summary. Based on the results in Table 3 and 4 and Fig. 6, we can
positively answer RQ2 that CLD1FF generated more than 80% shorter
edit scripts for 48% commits than GUMTREE.

5.4 Performance Evaluation (RQ3)

Table 5 compares the average performance overhead (in millisec-
onds) of CLD1FF and GUMTREE in generating code differences for the
set of changed source code files in each commit. It also reports the per-
formance overhead of each step in CLDIFF. We can see that CLDIFF
took 72% shorter time than GUMTREE. The reason is that, in CLDIFF,
we prune unchanged declarations in the AST pairs before applying
GUMTREE to generate fine-grained code differences, while GUMTREE
directly works on raw ASTs. Besides, the second step of CLDIFF is
the most expensive step, spending 92% of the time. The third step is
the cheapest step, only taking 0.42 milliseconds for a commit. This
actually owes to our heuristic-based strategy to build links, which
also achieves high accuracy as discussed in Section 5.2. On average,
CLDIFF spent 188.51 milliseconds for a commit.

Summary. Based on the results in Table 5, we can positively an-
swer RQ3 that CLDIFF spent 72% shorter time than GUMTREE.

5.5 Usefulness Evaluation (RQ4)

To evaluate the usefulness of CLD1FF, we conducted a human study
with 10 participants to understand the changes in 10 commits (i.e. to
finish 10 tasks) with the help of CLD1FF and GUMTREE. This study was

686

K. Huang, B. Chen, X. Peng, D. Zhou, Y. Wang, Y. Liu and W. Zhao

Table 4: Group Size of Our add and delete Actions

Project { Maximum Median
[add [delete | add [delete]
RxJava 2540 341 8 6
elasticsearch 2832 2029 8 6
okhttp 851 179 7 5
retrofit 2631 130 7 6
spring-framework 969 1425 8 6
zxing 2797 157 7 5
netty 1955 881 7 5
fastjson 1898 511 7 6
guava 6276 6240 10 6
glide 408 213 8 6
mybatis-3 781 188 8 5
MPAndroidChart 1486 872 7 7
[Average [2119 [1097] 8 [6 |

Table 5: Performance Overhead of GUMTREE and CLDIFF
CLDIFF (ms) |

Project GuMTREE (ms) I Step1 [Step2 | Step3 [Total |
RxJava 1987 38 41 0 79
elasticsearch 869 18 87 3 108
okhttp 379 12 18 0 30
retrofit 185 8 14 0 22
spring-framework 452 9 15 1 25
zxing 221 7 14 0 21
netty 378 9 21 0 30
fastjson 329 16 40 1 57
guava 2306 16 1763 0 1779
glide 244 11 17 0 28
mybatis-3 292 7 9 0 16
MPAndroidChart 416 22 45 0 67
[Average [671.50 [1442] 173.67 | 042 | 18851 |

conducted blindly; i.e. participants did not know which tool was de-
veloped by us. We divided the participants into two groups equally.
The first group used CLDIFF to understand the changes for the first
five tasks and used GUMTREE for the remaining five tasks. The sec-
ond group used CLDIFF and GUMTREE in an opposite way. Every par-
ticipant was asked to answer several questions about the changes in
each task, write down a summary of his/her understanding about the
changes in each task, and record the time required to finish each
task. Details of the 10 tasks are available at [1]. After they finished
all the tasks, we further asked the participants to finish a question-
naire which contained four questions with provided options.

e Q1: Does CLDIFF do a good job?
(a) Yes, (b) Neutral, (c) No
e (2: Does GUMTREE do a good job?
(a) Yes, (b) Neutral, (c) No
o (3:Is CLDIFF or GUMTREE more helpful?
(a) CLDIFF, (b) GUMTREE, (c) No Difference
e (4: Are CLDIFF’s code differences and links helpful?
(a) Both, (b) Code Differences, (c) Links, (d) Neither

Based on this human study, we used three indicators to compare
CLD1rF with GUMTREE. The first indicator is a score to assess the de-
gree of understanding the changes in each task. Two of the authors
manually assigned a score between 0 and 2 to both the task-specific
questions and the summary of each task for each participant. Thus a
full score is 4. As task-specific questions had deterministic answers,
0.5 was deducted for one wrong answer. The summary was scored
based on whether code changes were understood. Due to the subjec-
tive nature, the two authors finalized the summary’s score through
discussion. The second indicator is the time required to finish each
task. The third is the qualitative results about the questionnaire.

CLDIiFF: Generating Concise Linked Code Differences

4.0

B GumTree
mmm CLDiff

Score

€20

O B, S
R A A
L& L&

7;7:

(a) Score of Understanding the Changes in 10 Tasks

ASE ’18, September 3-7, 2018, Montpellier, France

500 - mEmm GumTree
mm CLDiff

400 -

k=

c

S 300

Q

)

g

= 200 A
100 A

Tisgy

L L L L AL Y
S N N N N NN

"t

S
&
&’D

(b) Time of Understanding the Changes in 10 Tasks

Figure 7: Comparison Results of the Score and Time of Understanding the Changes in 10 Tasks

Table 6: Answers to the Questionnaire

- Answers \
Question —5——T—H | © [@ |
01 10 -
0z 3
03 10
04 5

0

N oo
w|lo|w|lo

Fig. 7 shows the results of the two indicators score and time. The
x-axis in Fig. 7 denotes each task, the y-axis in Fig. 7a and 7b respec-
tively denote the average score of understanding the changes in each
task and the average time to finish each task. Overall, the average to-
tal score of CLDIFF and GUMTREE for 10 tasks was respectively 34.0
and 29.6; and there was a significant difference in score between
CLD1rF and GUMTREE according to the Wilcoxon Signed-Rank Test.
The average total time of CLD1rF and GUMTREE for 10 tasks was
respectively 1,539 and 1,865 seconds. However, there was no signif-
icant difference in time between CLDIFF and GUMTREE. Specifically,
in four tasks, CLDIFF took more time but had higher score; in two
tasks, CLDIFF took less time but had lower score; and in four tasks,
CLDIFF took less time and had higher score.

Table 6 reports the results of the four questions in the question-
naire. The first column lists the question, and the other four columns
report the number of participants choosing the corresponding op-
tions. Generally, all the participant felt that CLD1FF was helpful (Q1),
and was more helpful than GUMTREE (Q3), while some participants
felt that GUMTREE was not very helpful (Q2). Besides, seven partic-
ipants thought that our concise code differences were helpful, and
eight participants thought that our links were helpful (Q4).

Summary. Based on the results in Fig. 7 and Table 6, we can
positively answer RQ4 that CLDIFF was more useful than GUMTREE
in understanding code changes for all participants; and our concise
code differences and their links were helpful for most participants.

5.6 Discussion

Threats. The primary threats to the validity of our experiments and
human study are twofold. First, we analyzed the accuracy of CLDIFF
using a total number of 120 commits, which was not very large-scale.
This is because such a manual analysis is very time-consuming, in-
volving the understanding of mapping, edit script, AST pairs and real
code changes. Hence, we followed the similar work in the literature
[24] to use 120 commits. However, these commits were taken from 12
different projects, and thus can be considered as representative code

687

changes. Second, we hired 10 graduate students to participate the
human study rather than developers working in the industry. There-
fore, we only recruited the students that had at least 3-years pro-
gramming experience. A further human study is required to evalu-
ate the usefulness of CLDIFF in the industry.

Limitations. One main limitation of CLDIFF is the heuristic na-
ture of establishing links, especially for Def-Use links, as indicated in
our accuracy evaluation (Section 5.2). We plan to investigate the
cost and benefit of using data-flow analysis to further improve the
link accuracy. On the other hand, we only support five kinds of links.
We plan to further analyze the usefulness of each kind of links, ex-
tend the capability of current links and support more links such that
we can have a compact but really useful set of links.

Applications. We believe that CLDIFF can be useful in various
applications. For example, by applying CLDIFF to the evolution his-
tory of a project and chaining these code differences together, we
can detect logical coupling [57] at a finer granularity. Using statistics
about the different kinds of code differences in each commit as fea-
tures, we can classify commits [10] into bug fixing, refactoring or
upgrading based on machine learning techniques. By further attach-
ing a semantic understanding of our generated code differences,
we can characterize or even quantify semantic changes for security
patch or compatibility analysis [54, 56]. By combining CLDIFF with
performance analysis techniques [7, 12, 13], we can analyze perfor-
mance regressions and potentially locate their root causes.

6 RELATED WORK

We focus our discussion on the most relevant work in four aspects,
i.e. code differencing, code change summarization, code change de-
composition, and systematic code changes.

6.1 Code Differencing

Text-based approaches [44, 46] are first proposed to compute differ-
ences (in the form of inserted, removed or changed lines of code)
between two versions of a source file, followed by several advances
[4,9,50] that further identify moved lines of code. These approaches
are often fast and language-independent; however, they fail to com-
pute syntactic code changes [39], hindering code review, automatic
analysis and tool development based on their code differences.
Tree-based approaches [17, 19, 21] are then proposed to generate
syntactic code changes. CHANGEDISTILLER [19] uses a general tree

ASE ’18, September 3-7, 2018, Montpellier, France

differencing algorithm [11] to generate an edit script from two coarse-
grained ASTs where the leaf nodes are code statements (e.g., method
invocations or control statements) rather than raw ASTs. Although
being sufficient to meet its purpose of classifying certain change
types [18], CHANGEDISTILLER is not able to distinguish updates on
statements. This also explains why we used and compared GUMTREE
but not CHANGEDISTILLER. D1FF/TS [21] can work on raw ASTs. It
extends a tree differencing algorithm [58] to generate a fine-grained
edit script. A more recent approach is GUMTREE [17], which also
works on raw ASTs. The goal is to find an edit script that well reflects
the developer intent based on several heuristics. Higo et al. [24] ex-
tend GUMTREE by introducing copy-and-paste as a new kind of edit
actions to make edit scripts shorter and more easily understandable.
Dotzler and Philippsen [16] propose some general optimizations to
improve the accuracy of the previous tree-based approaches in de-
tecting moved code. Most of these tree-based approaches generate
low-level fine-grained representations of code changes, whereas our
approach first computes high-level abstracted code changes and
then establishes potential links among code changes.

Besides, graph-based differencing approaches [3, 25, 48, 55] are pro-
posed to deal with graph representations of source code, e.g., ex-
tended control flow graph [3, 25] and abstract syntax tree [48] with
program semantics, and class model [55] with UML semantics. With
the semantic information, they can capture certain semantic code
changes. Further, some advances [26, 36] have been made to achieve
semantic differencing based on input-output behaviors. These ap-
proaches provide us with a good insight on extending our approach
to understand the semantics behind our syntactic code changes.

6.2 Code Change Summarization

To generate natural language descriptions of code changes, a num-
ber of advances [8, 14, 27, 37, 38, 45, 49] have been made to summa-
rize code changes. DELTaDoc [8] captures the behavioral changes for
every method and the conditions under which they occur. CHANGE-
SCRIBE [14, 37] generates a commit message by providing a general
description of a commit and detailed descriptions of code changes
in the commit based on predefined rules. Jiang et al. [27] and Loyola
et al. [38] adapt a neural encoder-decoder architecture to automati-
cally generate commit messages from code differences. As software
documents are often related, Rastkar and Murphy [49] propose a ma-
chine learning-based technique to extract descriptions from a set of
relevant documents (e.g., commit messages or bug reports). Inte-
grating the ideas of [37] and [49], ARENA [45] summarizes code
changes at the system level and links to issues to generate release
notes. These change summarization techniques are mostly designed
for the ease of documentation of code changes, while CLDIFF gen-
erates more fine-grained code changes at the syntactic level.

6.3 Code Change Decomposition

Developers usually commit unrelated or loosely related code changes
in a single commit, resulting in tangled changes which make code
review difficult and commit-oriented analysis biased. To this end,
Kawrykow and Robillard [30] detect non-essential changes (e.g.,
local variable extractions) in a commit based on fine-grained code
change analysis. Herzig and Zeller [23] report the first empirical
study on the frequency and impact of tangled changes. They use a

688

K. Huang, B. Chen, X. Peng, D. Zhou, Y. Wang, Y. Liu and W. Zhao

multilevel graph-partition algorithm [29] to decompose tangled
changes based on a set of features. Dias et al. [15] improve features
in [23] by not relying on static analysis but considering fine-grained
code change information gathered during development. Based on
improved features, they leverage machine learning and clustering
to decompose tangled changes. Barnett et al. [5] use def-use infor-
mation from added or changed code to decompose tangled changes.
Tao and Kim [53] develop three heuristics to decompose tangled
changes into changes for formatting, changes with static dependen-
cies, and changes with similar patterns. Guo and Song [20] apply
program slicing and AST searching to interactively decompose tan-
gled code changes for code review and regression testing. These ap-
proaches inspire us to explicitly establish links among code changes.

6.4 Systematic Code Changes

Systematic code changes (i.e., similar, related code changes) can be
caused by crosscutting concerns [31], API evolution [22, 28], recur-
ring bug fixes [47] or refactoring [35]. Kim et al. [33] first identify
such systematic code changes at the method signature level and
represent them as logic rules. Then, Kim et al. [32, 34] extend [33] to
describe changes within a method body and at a field level. Recently,
Zhang et al. [59] propose an interactive approach to allow develop-
ers to customize a generated change template and to match the tem-
plate to summarize systematic changes and locate potential incon-
sistent or missing changes. Given a systematic code change, McIn-
tyre and Walker [40] discover locations where this change should
be applied (if any exist); and Meng et al. [41, 42] further automati-
cally apply this change to the discovered locations with different
contexts. Different from these approaches that focus on a specific
kind of code changes (i.e. systematic code changes), our approach
focuses on a broader range of code changes. Further, we plan to use
them to improve the construction of Systematic-Change links.

7 CONCLUSIONS

In this paper, we have proposed and implemented a code differenc-
ing approach, named CLDIFF, to generate concise linked code differ-
ences. CLDIFF’s goal is to generate more easily understandable code
differences. Taking as inputs a set of source code files before and
after changes, CLDIFF works in three steps. First, it pre-processes
source code files to prune unchanged declarations from parsed ab-
stract syntax trees. Second, it groups fine-grained code differences at
or above the statement level and generates a concise code difference
to capture high-level changes in each group. Third, it links the re-
lated concise code differences based on five pre-defined links. Our
experiments with 12 open-source Java projects and a human study
with 10 participants have demonstrated the accuracy, conciseness,
performance and usefulness of CLDIFF.

ACKNOWLEDGMENTS

This work was supported by the National Key Research and Devel-
opment Program of China under Grant No. 2016YFB1000801 and the
Shanghai Science and Technology Development Funds (16]JC1400801),
and was partially supported by the National Research Foundation,
Prime Ministers Office, Singapore under its National Cybersecurity
R&D Program (Award No. NRF2016NCR-NCR002-026) and admin-
istered by the National Cybersecurity R&D Directorate.

CLDIiFF: Generating Concise Linked Code Differences

REFERENCES

(1]
(2]

[3

[4

=

[11

[12

[13]

[14]

[15]

[16

[17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

2018. CLDIFF. https://github.com/FudanSELab/CLDIFF.

George W Adamson and Jillian Boreham. 1974. The use of an association measure
based on character structure to identify semantically related pairs of words and
document titles. Information storage and retrieval 10, 7-8 (1974), 253-260.
Taweesup Apiwattanapong, Alessandro Orso, and Mary Jean Harrold. 2004. A
Differencing Algorithm for Object-Oriented Programs. In Proceedings of the 19th
IEEE International Conference on Automated Software Engineering. 2-13.
Muhammad Asaduzzaman, Chanchal K Roy, Kevin A Schneider, and Massimiliano
Di Penta. 2013. LHDIff: A language-independent hybrid approach for tracking
source code lines. In Proceedings of the 29th IEEE International Conference on
Software Maintenance. 230-239.

Mike Barnett, Christian Bird, Jodo Brunet, and Shuvendu K. Lahiri. 2015. Helping
Developers Help Themselves: Automatic Decomposition of Code Review Change-
sets. In Proceedings of the 37th International Conference on Software Engineering -
Volume 1. 134-144.

Tobias Baum, Kurt Schneider, and Alberto Bacchelli. 2017. On the Optimal Order
of Reading Source Code Changes for Review. In Proceedings of the 2017 IEEE
International Conference on Software Maintenance and Evolution. 329-340.

Marc Briinink and David S. Rosenblum. 2016. Mining Performance Specifica-
tions. In Proceedings of the 2016 24th ACM SIGSOFT International Symposium on
Foundations of Software Engineering. 39-49.

Raymond PL Buse and Westley R Weimer. 2010. Automatically documenting
program changes. In Proceedings of the IEEE/ACM international conference on
Automated software engineering. 33-42.

Gerardo Canfora, Luigi Cerulo, and Massimiliano Di Penta. 2009. Tracking your
changes: A language-independent approach. IEEE Software 26, 1 (2009), 50-57.
Casey Casalnuovo, Yagnik Suchak, Baishakhi Ray, and Cindy Rubio-Gonzalez.
2017. GitcProc: a tool for processing and classifying GitHub commits. In Proceed-
ings of the 26th ACM SIGSOFT International Symposium on Software Testing and
Analysis. 396-399.

Sudarshan S. Chawathe, Anand Rajaraman, Hector Garcia-Molina, and Jennifer
Widom. 1996. Change Detection in Hierarchically Structured Information. In
Proceedings of the 1996 ACM SIGMOD International Conference on Management of
Data. 493-504.

Bihuan Chen, Yang Liu, and Wei Le. 2016. Generating Performance Distributions
via Probabilistic Symbolic Execution. In Proceedings of the 38th International
Conference on Software Engineering. 49-60.

Zhifei Chen, Bihuan Chen, Lu Xiao, Xiao Wang, Lin Chen, Yang Liu, and Baowen
Xu. 2018. Speedoo: Prioritizing Performance Optimization Opportunities. In
Proceedings of the 40th International Conference on Software Engineering. 811—
821.

Luis Fernando Cortés-Coy, Mario Linares-Vasquez, Jairo Aponte, and Denys
Poshyvanyk. 2014. On Automatically Generating Commit Messages via Summa-
rization of Source Code Changes. In Proceedings of the 2014 IEEE 14th International
Working Conference on Source Code Analysis and Manipulation. 275-284.

Martin Dias, Alberto Bacchelli, Georgios Gousios, Damien Cassou, and Stéphane
Ducasse. 2015. Untangling fine-grained code changes. In Proceedings of the IEEE
22nd International Conference on Software Analysis, Evolution and Reengineering.
341-350.

Georg Dotzler and Michael Philippsen. 2016. Move-optimized Source Code Tree
Differencing. In Proceedings of the 31st IEEE/ACM International Conference on
Automated Software Engineering. 660-671.

Jean-Rémy Falleri, Floréal Morandat, Xavier Blanc, Matias Martinez, and Martin
Monperrus. 2014. Fine-grained and Accurate Source Code Differencing. In Pro-
ceedings of the 29th ACM/IEEE International Conference on Automated Software
Engineering. 313-324.

Beat Fluri and Harald C. Gall. 2006. Classifying Change Types for Qualifying
Change Couplings. In Proceedings of the 14th IEEE International Conference on
Program Comprehension. 35-45.

Beat Fluri, Michael Wuersch, Martin PInzger, and Harald Gall. 2007. Change
distilling: Tree differencing for fine-grained source code change extraction. IEEE
Transactions on software engineering 33, 11 (2007), 725-743.

Bo Guo and Myoungkyu Song. 2017. Interactively Decomposing Composite
Changes to Support Code Review and Regression Testing. In Proceedings of the
IEEE 41st Annual Computer Software and Applications Conference. 118-127.
Masatomo Hashimoto and Akira Mori. 2008. Diff/TS: A Tool for Fine-Grained
Structural Change Analysis. In Proceedings of the 2008 15th Working Conference
on Reverse Engineering. 279-288.

Johannes Henkel and Amer Diwan. 2005. CatchUp!: Capturing and Replaying
Refactorings to Support API Evolution. In Proceedings of the 27th International
Conference on Software Engineering. 274-283.

Kim Herzig and Andreas Zeller. 2013. The Impact of Tangled Code Changes.
In Proceedings of the 10th Working Conference on Mining Software Repositories.
121-130.

Yoshiki Higo, Akio Ohtani, and Shinji Kusumoto. 2017. Generating Simpler AST
Edit Scripts by Considering Copy-and-paste. In Proceedings of the 32Nd IEEE/ACM

689

[25]

[26

[27

™~
&,

[29

(30]

(31

[32

@
&

(34

[35

[36

[38

[39

[40]

[41

[42

[43

[44

[45]

=
&

[47

(48

ASE ’18, September 3-7, 2018, Montpellier, France

International Conference on Automated Software Engineering. 532-542.

Susan Horwitz. 1990. Identifying the Semantic and Textual Differences Between
Two Versions of a Program. In Proceedings of the ACM SIGPLAN 1990 Conference
on Programming Language Design and Implementation. 234-245.

Daniel Jackson and David A Ladd. 1994. Semantic Diff: A Tool for Summarizing
the Effects of Modifications. In Proceedings of the International Conference on
Software Maintenance. 243-252.

Siyuan Jiang, Ameer Armaly, and Collin McMillan. 2017. Automatically generat-
ing commit messages from diffs using neural machine translation. In Proceedings
of the 32nd IEEE/ACM International Conference on Automated Software Engineering.
135-146.

Puneet Kapur, Brad Cossette, and Robert J. Walker. 2010. Refactoring References
for Library Migration. In Proceedings of the ACM International Conference on
Object Oriented Programming Systems Languages and Applications. 726-738.
George Karypis and Vipin Kumar. 1995. Analysis of multilevel graph partitioning.
In Proceedings of the IEEE/ACM Conference on Supercomputing. 29-29.

David Kawrykow and Martin P. Robillard. 2011. Non-essential Changes in
Version Histories. In Proceedings of the 33rd International Conference on Software
Engineering. 351-360.

Gregor Kiczales, John Lamping, Anurag Mendhekar, Chris Maeda, Cristina Lopes,
Jean-Marc Loingtier, and John Irwin. 1997. Aspect-oriented programming. In
Proceedings of the 11th European Conference on Object-Oriented Programming.
220-242.

Miryung Kim and David Notkin. 2009. Discovering and Representing Systematic
Code Changes. In Proceedings of the 31st International Conference on Software
Engineering. 309-319.

Miryung Kim, David Notkin, and Dan Grossman. 2007. Automatic Inference of
Structural Changes for Matching Across Program Versions. In Proceedings of the
29th International Conference on Software Engineering. 333-343.

Miryung Kim, David Notkin, Dan Grossman, and Gary Wilson Jr. 2013. Identifying
and Summarizing Systematic Code Changes via Rule Inference. IEEE Transactions
on Software Engineering 39, 1 (2013), 45-62.

Miryung Kim, Vibha Sazawal, David Notkin, and Gail Murphy. 2005. An Em-
pirical Study of Code Clone Genealogies. In Proceedings of the 10th European
Software Engineering Conference Held Jointly with 13th ACM SIGSOFT Interna-
tional Symposium on Foundations of Software Engineering. 187-196.

Shuvendu K. Lahiri, Chris Hawblitzel, Ming Kawaguchi, and Henrique Rebélo.
2012. SYMDIFF: A Language-agnostic Semantic Diff Tool for Imperative Programs.
In Proceedings of the 24th International Conference on Computer Aided Verification.
712-717.

Mario Linares-Vasquez, Luis Fernando Cortés-Coy, Jairo Aponte, and Denys
Poshyvanyk. 2015. Changescribe: A tool for automatically generating commit
messages. In Proceedings of the 2015 IEEE/ACM 37th IEEE International Conference
on Software Engineering. 709-712.

Pablo Loyola, Edison Marrese-Taylor, and Yutaka Matsuo. 2017. A Neural Archi-
tecture for Generating Natural Language Descriptions from Source Code Changes.
In Proceedings of the 55th Annual Meeting of the Association for Computational
Linguistics (Volume 2: Short Papers). 287-292.

Jonathan I Maletic and Michael L Collard. 2004. Supporting source code difference
analysis. In Proceedings of the 20th IEEE International Conference on Software
Maintenance. 210-219.

Mark M McIntyre and Robert] Walker. 2007. Assisting potentially-repetitive
small-scale changes via semi-automated heuristic search. In Proceedings of the
22nd IEEE/ACM International Conference on Automated Software Engineering.
497-500.

Na Meng, Miryung Kim, and Kathryn S. McKinley. 2011. Systematic Editing:
Generating Program Transformations from an Example. In Proceedings of the 32Nd
ACM SIGPLAN Conference on Programming Language Design and Implementation.
329-342.

Na Meng, Miryung Kim, and Kathryn S. McKinley. 2013. LASE: Locating and
Applying Systematic Edits by Learning from Examples. In Proceedings of the 2013
International Conference on Software Engineering. 502-511.

T. Mens. 2002. A State-of-the-Art Survey on Software Merging. IEEE Transactions
on Software Engineering 28, 5 (2002), 449-462.

Webb Miller and Eugene W Myers. 1985. A file comparison program. Software:
Practice and Experience 15, 11 (1985), 1025-1040.

Laura Moreno, Gabriele Bavota, Massimiliano Di Penta, Rocco Oliveto, Andrian
Marcus, and Gerardo Canfora. 2017. ARENA: an approach for the automated
generation of release notes. IEEE Transactions on Software Engineering 43, 2
(2017), 106-127.

Eugene W Myers. 1986. An O(ND) difference algorithm and its variations. Algo-
rithmica 1, 1-4 (1986), 251-266.

Tung Thanh Nguyen, Hoan Anh Nguyen, Nam H. Pham, Jafar Al-Kofahi, and
Tien N. Nguyen. 2010. Recurring Bug Fixes in Object-oriented Programs. In Pro-
ceedings of the 32Nd ACM/IEEE International Conference on Software Engineering.
315-324.

Shruti Raghavan, Rosanne Rohana, David Leon, Andy Podgurski, and Vinay
Augustine. 2004. Dex: A Semantic-Graph Differencing Tool for Studying Changes

https://github.com/FudanSELab/CLDIFF

ASE ’18, September 3-7, 2018, Montpellier, France

[49]

[50

[51]

[52]

in Large Code Bases. In Proceedings of the 20th IEEE International Conference on
Software Maintenance. 188-197.

Sarah Rastkar and Gail C Murphy. 2013. Why did this code change?. In Proceedings
of the 2013 International Conference on Software Engineering. 1193-1196.

Steven P. Reiss. 2008. Tracking Source Locations. In Proceedings of the 30th
International Conference on Software Engineering. 11-20.

Gregg Rothermel and Mary Jean Harrold. 1996. Analyzing regression test selec-
tion techniques. IEEE Transactions on software engineering 22, 8 (1996), 529-551.
Yida Tao, Yingnong Dang, Tao Xie, Dongmei Zhang, and Sunghun Kim. 2012.
How Do Software Engineers Understand Code Changes?: An Exploratory Study
in Industry. In Proceedings of the ACM SIGSOFT 20th International Symposium on
the Foundations of Software Engineering. 51:1-51:11.

Yida Tao and Sunghun Kim. 2015. Partitioning Composite Code Changes to
Facilitate Code Review. In Proceedings of the 12th Working Conference on Mining
Software Repositories. 180-190.

Lili Wei, Yepang Liu, and Shing-Chi Cheung. 2016. Taming Android fragmen-
tation: Characterizing and detecting compatibility issues for Android apps. In
Proceedings of the 31st IEEE/ACM International Conference on Automated Software

690

[55

[56

[57

[59

]

]

K. Huang, B. Chen, X. Peng, D. Zhou, Y. Wang, Y. Liu and W. Zhao

Engineering. 226-237.

Zhenchang Xing and Eleni Stroulia. 2005. UMLDIff: An Algorithm for Object-
oriented Design Differencing. In Proceedings of the 20th IEEE/ACM International
Conference on Automated Software Engineering. 54-65.

Zhengzi Xu, Bihuan Chen, Mahinthan Chandramohan, Yang Liu, and Fu Song.
2017. SPAIN: security patch analysis for binaries towards understanding the
pain and pills. In Proceedings of the 39th International Conference on Software
Engineering. 462—-472.

Annie T. T. Ying, Gail C. Murphy, Raymond Ng, and Mark C. Chu-Carroll. 2004.
Predicting Source Code Changes by Mining Change History. IEEE Transactions
on Software Engineering 30, 9 (2004), 574-586.

K. Zhang and D. Shasha. 1989. Simple Fast Algorithms for the Editing Distance
Between Trees and Related Problems. SIAM J. Comput. 18, 6 (1989), 1245-1262.
Tianyi Zhang, Myoungkyu Song, Joseph Pinedo, and Miryung Kim. 2015. Interac-
tive Code Review for Systematic Changes. In Proceedings of the 37th International
Conference on Software Engineering - Volume 1. 111-122.

	Abstract
	1 Introduction
	2 Preliminaries
	3 Motivation and Overview
	3.1 Motivation Example
	3.2 Approach Overview

	4 Methodology
	4.1 Pre-Processing
	4.2 Generating Concise Code Differences
	4.3 Linking Code Differences

	5 Implementation and Evaluation
	5.1 Evaluation Setup
	5.2 Accuracy Evaluation (RQ1)
	5.3 Conciseness Evaluation (RQ2)
	5.4 Performance Evaluation (RQ3)
	5.5 Usefulness Evaluation (RQ4)
	5.6 Discussion

	6 Related Work
	6.1 Code Differencing
	6.2 Code Change Summarization
	6.3 Code Change Decomposition
	6.4 Systematic Code Changes

	7 Conclusions
	References

